You're breathtaking!

This commit is contained in:
Wojtek Figat
2020-12-07 23:40:54 +01:00
commit 6fb9eee74c
5143 changed files with 1153594 additions and 0 deletions

View File

@@ -0,0 +1,84 @@
// Copyright (c) 2012-2020 Wojciech Figat. All rights reserved.
#pragma once
#include "Engine/Audio/Types.h"
#include "Engine/Core/Collections/Array.h"
class ReadStream;
/// <summary>
/// Interface used for implementations that parse audio formats into a set of PCM samples.
/// </summary>
class AudioDecoder
{
public:
/// <summary>
/// Finalizes an instance of the <see cref="AudioDecoder"/> class.
/// </summary>
virtual ~AudioDecoder()
{
}
public:
/// <summary>
/// Tries to open the specified stream with audio data and loads the whole audio data.
/// </summary>
/// <param name="stream">The data stream audio data is stored in. Must be valid until decoder usage end. Decoder may cache this pointer for the later usage.</param>
/// <param name="info">The output information describing meta-data of the audio in the stream.</param>
/// <param name="result">The output data.</param>
/// <param name="offset">The offset.</param>
/// <returns>True if the data is invalid or conversion failed, otherwise false.</returns>
virtual bool Convert(ReadStream* stream, AudioDataInfo& info, Array<byte>& result, uint32 offset = 0)
{
if (!IsValid(stream, offset))
return true;
if (!Open(stream, info, offset))
return true;
// Load the whole audio data
const int32 bytesPerSample = info.BitDepth / 8;
const int32 bufferSize = info.NumSamples * bytesPerSample;
result.Resize(bufferSize);
Read(result.Get(), info.NumSamples);
return false;
}
public:
/// <summary>
/// Tries to open the specified stream with audio data. Must be called before any reads or seeks.
/// </summary>
/// <param name="stream">The data stream audio data is stored in. Must be valid until decoder usage end. Decoder may cache this pointer for the later usage.</param>
/// <param name="info">The output information describing meta-data of the audio in the stream.</param>
/// <param name="offset">The offset.</param>
/// <returns>True if the data is invalid, otherwise false.</returns>
virtual bool Open(ReadStream* stream, AudioDataInfo& info, uint32 offset = 0) = 0;
/// <summary>
/// Moves the read pointer to the specified offset. Any further Read() calls will read from this location. User must ensure not to seek past the end of the data.
/// </summary>
/// <param name="offset">The offset to move the pointer in. In number of samples.</param>
virtual void Seek(uint32 offset) = 0;
/// <summary>
/// Reads a set of samples from the audio data.
/// </summary>
/// <remarks>
/// All values are returned as signed values.
/// </remarks>
/// <param name="samples">Pre-allocated buffer to store the samples in.</param>
/// <param name="numSamples">The number of samples to read.</param>
virtual void Read(byte* samples, uint32 numSamples) = 0;
/// <summary>
/// Checks if the data in the provided stream valid audio data for the current format. You should check this before calling Open().
/// </summary>
/// <param name="stream">The stream to check.</param>
/// <param name="offset">The offset at which audio data in the stream begins, in bytes.</param>
/// <returns>True if the data is valid, otherwise false.</returns>
virtual bool IsValid(ReadStream* stream, uint32 offset = 0) = 0;
};

View File

@@ -0,0 +1,33 @@
// Copyright (c) 2012-2020 Wojciech Figat. All rights reserved.
#pragma once
#include "Engine/Audio/Types.h"
#include "Engine/Core/Types/DataContainer.h"
/// <summary>
/// Interface used for implementations that encodes set of PCM samples into a target audio format.
/// </summary>
class AudioEncoder
{
public:
/// <summary>
/// Finalizes an instance of the <see cref="AudioEncoder"/> class.
/// </summary>
virtual ~AudioEncoder()
{
}
public:
/// <summary>
/// Converts the input PCM samples buffer into the encoder audio format.
/// </summary>
/// <param name="samples">The buffer containing samples in PCM format. All samples should be in signed integer format.</param>
/// <param name="info">The input information describing meta-data of the audio in the samples buffer.</param>
/// <param name="result">The output data.</param>
/// <param name="quality">The output data compression quality (normalized in range [0;1]).</param>
/// <returns>True if the data is invalid or conversion failed, otherwise false.</returns>
virtual bool Convert(byte* samples, AudioDataInfo& info, BytesContainer& result, float quality = 0.5f) = 0;
};

View File

@@ -0,0 +1,30 @@
// Copyright (c) 2012-2020 Wojciech Figat. All rights reserved.
using System.Collections.Generic;
using Flax.Build;
using Flax.Build.NativeCpp;
/// <summary>
/// Audio data utilities module.
/// </summary>
public class AudioTool : EngineModule
{
/// <inheritdoc />
public override void Setup(BuildOptions options)
{
base.Setup(options);
// TODO: convert into private deps
options.PublicDependencies.Add("minimp3");
options.PublicDependencies.Add("ogg");
options.PublicDependencies.Add("vorbis");
options.PublicDefinitions.Add("COMPILE_WITH_AUDIO_TOOL");
options.PublicDefinitions.Add("COMPILE_WITH_OGG_VORBIS");
}
/// <inheritdoc />
public override void GetFilesToDeploy(List<string> files)
{
}
}

View File

@@ -0,0 +1,263 @@
// Copyright (c) 2012-2020 Wojciech Figat. All rights reserved.
#include "AudioTool.h"
#include "Engine/Core/Core.h"
#include "Engine/Core/Memory/Allocation.h"
void ConvertToMono8(const int8* input, uint8* output, uint32 numSamples, uint32 numChannels)
{
for (uint32 i = 0; i < numSamples; i++)
{
int16 sum = 0;
for (uint32 j = 0; j < numChannels; j++)
{
sum += *input;
++input;
}
*output = sum / numChannels;
++output;
}
}
void ConvertToMono16(const int16* input, int16* output, uint32 numSamples, uint32 numChannels)
{
for (uint32 i = 0; i < numSamples; i++)
{
int32 sum = 0;
for (uint32 j = 0; j < numChannels; j++)
{
sum += *input;
++input;
}
*output = sum / numChannels;
++output;
}
}
void Convert32To24Bits(const int32 input, uint8* output)
{
const uint32 valToEncode = *(uint32*)&input;
output[0] = (valToEncode >> 8) & 0x000000FF;
output[1] = (valToEncode >> 16) & 0x000000FF;
output[2] = (valToEncode >> 24) & 0x000000FF;
}
void ConvertToMono24(const uint8* input, uint8* output, uint32 numSamples, uint32 numChannels)
{
for (uint32 i = 0; i < numSamples; i++)
{
int64 sum = 0;
for (uint32 j = 0; j < numChannels; j++)
{
sum += AudioTool::Convert24To32Bits(input);
input += 3;
}
const int32 avg = (int32)(sum / numChannels);
Convert32To24Bits(avg, output);
output += 3;
}
}
void ConvertToMono32(const int32* input, int32* output, uint32 numSamples, uint32 numChannels)
{
for (uint32 i = 0; i < numSamples; i++)
{
int64 sum = 0;
for (uint32 j = 0; j < numChannels; j++)
{
sum += *input;
++input;
}
*output = (int32)(sum / numChannels);
++output;
}
}
void Convert8To32Bits(const int8* input, int32* output, uint32 numSamples)
{
for (uint32 i = 0; i < numSamples; i++)
{
const int8 val = input[i];
output[i] = val << 24;
}
}
void Convert16To32Bits(const int16* input, int32* output, uint32 numSamples)
{
for (uint32 i = 0; i < numSamples; i++)
output[i] = input[i] << 16;
}
void Convert24To32Bits(const uint8* input, int32* output, uint32 numSamples)
{
for (uint32 i = 0; i < numSamples; i++)
{
output[i] = AudioTool::Convert24To32Bits(input);
input += 3;
}
}
void Convert32To8Bits(const int32* input, uint8* output, uint32 numSamples)
{
for (uint32 i = 0; i < numSamples; i++)
output[i] = (int8)(input[i] >> 24);
}
void Convert32To16Bits(const int32* input, int16* output, uint32 numSamples)
{
for (uint32 i = 0; i < numSamples; i++)
output[i] = (int16)(input[i] >> 16);
}
void Convert32To24Bits(const int32* input, uint8* output, uint32 numSamples)
{
for (uint32 i = 0; i < numSamples; i++)
{
Convert32To24Bits(input[i], output);
output += 3;
}
}
void AudioTool::ConvertToMono(const byte* input, byte* output, uint32 bitDepth, uint32 numSamples, uint32 numChannels)
{
switch (bitDepth)
{
case 8:
ConvertToMono8((int8*)input, output, numSamples, numChannels);
break;
case 16:
ConvertToMono16((int16*)input, (int16*)output, numSamples, numChannels);
break;
case 24:
ConvertToMono24(input, output, numSamples, numChannels);
break;
case 32:
ConvertToMono32((int32*)input, (int32*)output, numSamples, numChannels);
break;
default:
CRASH;
break;
}
}
void AudioTool::ConvertBitDepth(const byte* input, uint32 inBitDepth, byte* output, uint32 outBitDepth, uint32 numSamples)
{
int32* srcBuffer = nullptr;
const bool needTempBuffer = inBitDepth != 32;
if (needTempBuffer)
srcBuffer = (int32*)Allocator::Allocate(numSamples * sizeof(int32));
else
srcBuffer = (int32*)input;
// Convert it to a temporary 32-bit buffer and then use that to convert to actual requested bit depth.
// It could be more efficient to convert directly from source to requested depth without a temporary buffer,
// at the cost of additional complexity. If this method ever becomes a performance issue consider that.
switch (inBitDepth)
{
case 8:
Convert8To32Bits((int8*)input, srcBuffer, numSamples);
break;
case 16:
Convert16To32Bits((int16*)input, srcBuffer, numSamples);
break;
case 24:
::Convert24To32Bits(input, srcBuffer, numSamples);
break;
case 32:
// Do nothing
break;
default:
CRASH;
break;
}
switch (outBitDepth)
{
case 8:
Convert32To8Bits(srcBuffer, output, numSamples);
break;
case 16:
Convert32To16Bits(srcBuffer, (int16*)output, numSamples);
break;
case 24:
Convert32To24Bits(srcBuffer, output, numSamples);
break;
case 32:
Platform::MemoryCopy(output, srcBuffer, numSamples * sizeof(int32));
break;
default:
CRASH;
break;
}
if (needTempBuffer)
{
Allocator::Free(srcBuffer);
srcBuffer = nullptr;
}
}
void AudioTool::ConvertToFloat(const byte* input, uint32 inBitDepth, float* output, uint32 numSamples)
{
if (inBitDepth == 8)
{
for (uint32 i = 0; i < numSamples; i++)
{
const int8 sample = *(int8*)input;
output[i] = sample / 127.0f;
input++;
}
}
else if (inBitDepth == 16)
{
for (uint32 i = 0; i < numSamples; i++)
{
const int16 sample = *(int16*)input;
output[i] = sample / 32767.0f;
input += 2;
}
}
else if (inBitDepth == 24)
{
for (uint32 i = 0; i < numSamples; i++)
{
const int32 sample = Convert24To32Bits(input);
output[i] = sample / 2147483647.0f;
input += 3;
}
}
else if (inBitDepth == 32)
{
for (uint32 i = 0; i < numSamples; i++)
{
const int32 sample = *(int32*)input;
output[i] = sample / 2147483647.0f;
input += 4;
}
}
else
{
CRASH;
}
}
void AudioTool::ConvertFromFloat(const float* input, int32* output, uint32 numSamples)
{
for (uint32 i = 0; i < numSamples; i++)
{
const float sample = *(float*)input;
output[i] = static_cast<int32>(sample * 2147483647.0f);
input++;
}
}

View File

@@ -0,0 +1,61 @@
// Copyright (c) 2012-2020 Wojciech Figat. All rights reserved.
#pragma once
#include "Engine/Core/Config.h"
#include "Engine/Core/Types/BaseTypes.h"
/// <summary>
/// Audio data importing and processing utilities.
/// </summary>
class FLAXENGINE_API AudioTool
{
public:
/// <summary>
/// Converts a set of audio samples using multiple channels into a set of mono samples.
/// </summary>
/// <param name="input">A set of input samples. Per-channels samples should be interleaved. Size of each sample is determined by bitDepth. Total size of the buffer should be (numSamples * numChannels * bitDepth / 8).</param>
/// <param name="output">The pre-allocated buffer to store the mono samples. Should be of (numSamples * bitDepth / 8) size.</param>
/// <param name="bitDepth">The size of a single sample in bits.</param>
/// <param name="numSamples">The number of samples per a single channel.</param>
/// <param name="numChannels">The number of channels in the input data.</param>
static void ConvertToMono(const byte* input, byte* output, uint32 bitDepth, uint32 numSamples, uint32 numChannels);
/// <summary>
/// Converts a set of audio samples of a certain bit depth to a new bit depth.
/// </summary>
/// <param name="input">A set of input samples. Total size of the buffer should be *numSamples * inBitDepth / 8).</param>
/// <param name="inBitDepth">The size of a single sample in the input array, in bits.</param>
/// <param name="output">The pre-allocated buffer to store the output samples in. Total size of the buffer should be (numSamples * outBitDepth / 8).</param>
/// <param name="outBitDepth">Size of a single sample in the output array, in bits.</param>
/// <param name="numSamples">The total number of samples to process.</param>
static void ConvertBitDepth(const byte* input, uint32 inBitDepth, byte* output, uint32 outBitDepth, uint32 numSamples);
/// <summary>
/// Converts a set of audio samples of a certain bit depth to a set of floating point samples in range [-1, 1].
/// </summary>
/// <param name="input">A set of input samples. Total size of the buffer should be (numSamples * inBitDepth / 8). All input samples should be signed integers.</param>
/// <param name="inBitDepth">The size of a single sample in the input array, in bits.</param>
/// <param name="output">The pre-allocated buffer to store the output samples in. Total size of the buffer should be numSamples * sizeof(float).</param>
/// <param name="numSamples">The total number of samples to process.</param>
static void ConvertToFloat(const byte* input, uint32 inBitDepth, float* output, uint32 numSamples);
/// <summary>
/// Converts a set of audio samples of floating point samples in range [-1, 1] to a 32-bit depth PCM data.
/// </summary>
/// <param name="input">A set of input samples. Total size of the buffer should be (numSamples * sizeof(float)). All input samples should be in range [-1, 1].</param>
/// <param name="output">The pre-allocated buffer to store the output samples in. Total size of the buffer should be numSamples * sizeof(float).</param>
/// <param name="numSamples">The total number of samples to process.</param>
static void ConvertFromFloat(const float* input, int32* output, uint32 numSamples);
/// <summary>
/// Converts a 24-bit signed integer into a 32-bit signed integer.
/// </summary>
/// <param name="input">The 24-bit signed integer as an array of 3 bytes.</param>
/// <returns>The 32-bit signed integer.</returns>
FORCE_INLINE static int32 Convert24To32Bits(const byte* input)
{
return (input[2] << 24) | (input[1] << 16) | (input[0] << 8);
}
};

View File

@@ -0,0 +1,88 @@
// Copyright (c) 2012-2020 Wojciech Figat. All rights reserved.
#include "MP3Decoder.h"
#include "Engine/Core/Log.h"
#include "Engine/Core/Math/Math.h"
#include "Engine/Serialization/MemoryWriteStream.h"
#define MINIMP3_IMPLEMENTATION
#include <minimp3/minimp3.h>
bool MP3Decoder::Convert(ReadStream* stream, AudioDataInfo& info, Array<byte>& result, uint32 offset)
{
ASSERT(stream);
mStream = stream;
mStream->SetPosition(offset);
int32 dataSize = mStream->GetLength() - offset;
Array<byte> dataBytes;
dataBytes.Resize(dataSize);
byte* data = dataBytes.Get();
mStream->ReadBytes(data, dataSize);
info.NumSamples = 0;
info.SampleRate = 0;
info.NumChannels = 0;
info.BitDepth = 16;
mp3dec_frame_info_t mp3Info;
short pcm[MINIMP3_MAX_SAMPLES_PER_FRAME];
MemoryWriteStream output(Math::RoundUpToPowerOf2(dataSize));
do
{
const int32 samples = mp3dec_decode_frame(&mp3d, data, dataSize, pcm, &mp3Info);
if (samples)
{
info.NumSamples += samples * mp3Info.channels;
output.WriteBytes(pcm, samples * 2 * mp3Info.channels);
if (!info.SampleRate)
info.SampleRate = mp3Info.hz;
if (!info.NumChannels)
info.NumChannels = mp3Info.channels;
if (info.SampleRate != mp3Info.hz || info.NumChannels != mp3Info.channels)
break;
}
data += mp3Info.frame_bytes;
dataSize -= mp3Info.frame_bytes;
} while (mp3Info.frame_bytes);
if (info.SampleRate == 0)
return true;
// Load the whole audio data
const int32 bytesPerSample = info.BitDepth / 8;
const int32 bufferSize = info.NumSamples * bytesPerSample;
result.Set(output.GetHandle(), bufferSize);
return false;
}
bool MP3Decoder::Open(ReadStream* stream, AudioDataInfo& info, uint32 offset)
{
CRASH;
// TODO: open MP3
return true;
}
void MP3Decoder::Seek(uint32 offset)
{
// TODO: seek MP3
CRASH;
}
void MP3Decoder::Read(byte* samples, uint32 numSamples)
{
// TODO: load MP3 format
CRASH;
}
bool MP3Decoder::IsValid(ReadStream* stream, uint32 offset)
{
// TODO: check MP3 format
CRASH;
return false;
}

View File

@@ -0,0 +1,43 @@
// Copyright (c) 2012-2020 Wojciech Figat. All rights reserved.
#pragma once
#if COMPILE_WITH_AUDIO_TOOL
#include "AudioDecoder.h"
#include "Engine/Serialization/ReadStream.h"
#include <minimp3/minimp3.h>
/// <summary>
/// Decodes .mp3 audio data into raw PCM format.
/// </summary>
/// <seealso cref="AudioDecoder" />
class MP3Decoder : public AudioDecoder
{
private:
ReadStream* mStream;
mp3dec_t mp3d;
public:
/// <summary>
/// Initializes a new instance of the <see cref="MP3Decoder"/> class.
/// </summary>
MP3Decoder()
{
mStream = nullptr;
mp3dec_init(&mp3d);
}
public:
// [AudioDecoder]
bool Convert(ReadStream* stream, AudioDataInfo& info, Array<byte>& result, uint32 offset = 0) override;
bool Open(ReadStream* stream, AudioDataInfo& info, uint32 offset = 0) override;
void Seek(uint32 offset) override;
void Read(byte* samples, uint32 numSamples) override;
bool IsValid(ReadStream* stream, uint32 offset = 0) override;
};
#endif

View File

@@ -0,0 +1,114 @@
// Copyright (c) 2012-2020 Wojciech Figat. All rights reserved.
#if COMPILE_WITH_OGG_VORBIS
#include "OggVorbisDecoder.h"
#include "Engine/Core/Log.h"
#include "Engine/Core/Math/Math.h"
#include "Engine/Serialization/MemoryReadStream.h"
#include <vorbis/codec.h>
size_t oggRead(void* ptr, size_t size, size_t nmemb, void* data)
{
OggVorbisDecoder* decoderData = static_cast<OggVorbisDecoder*>(data);
const auto len = Math::Min<uint32>(static_cast<uint32>(size * nmemb), decoderData->Stream->GetLength() - decoderData->Stream->GetPosition());
decoderData->Stream->ReadBytes(ptr, len);
return static_cast<std::size_t>(len);
}
int oggSeek(void* data, ogg_int64_t offset, int whence)
{
OggVorbisDecoder* decoderData = static_cast<OggVorbisDecoder*>(data);
switch (whence)
{
case SEEK_SET:
offset += decoderData->Offset;
break;
case SEEK_CUR:
offset += decoderData->Stream->GetPosition();
break;
case SEEK_END:
offset = Math::Max<ogg_int64_t>(0, decoderData->Stream->GetLength() - 1);
break;
}
decoderData->Stream->SetPosition(static_cast<uint32>(offset));
return static_cast<int>(decoderData->Stream->GetPosition() - decoderData->Offset);
}
long oggTell(void* data)
{
OggVorbisDecoder* decoderData = static_cast<OggVorbisDecoder*>(data);
return static_cast<long>(decoderData->Stream->GetPosition() - decoderData->Offset);
}
bool OggVorbisDecoder::Open(ReadStream* stream, AudioDataInfo& info, uint32 offset)
{
if (stream == nullptr)
return false;
stream->SetPosition(offset);
Stream = stream;
Offset = offset;
const ov_callbacks callbacks = { &oggRead, &oggSeek, nullptr, &oggTell };
const int status = ov_open_callbacks(this, &OggVorbisFile, nullptr, 0, callbacks);
if (status < 0)
{
LOG(Warning, "Failed to open Ogg Vorbis file.");
return false;
}
vorbis_info* vorbisInfo = ov_info(&OggVorbisFile, -1);
info.NumChannels = vorbisInfo->channels;
info.SampleRate = vorbisInfo->rate;
info.NumSamples = static_cast<uint32>(ov_pcm_total(&OggVorbisFile, -1) * vorbisInfo->channels);
info.BitDepth = 16;
ChannelCount = info.NumChannels;
return true;
}
void OggVorbisDecoder::Seek(uint32 offset)
{
ov_pcm_seek(&OggVorbisFile, offset / ChannelCount);
}
void OggVorbisDecoder::Read(byte* samples, uint32 numSamples)
{
uint32 numReadSamples = 0;
while (numReadSamples < numSamples)
{
const int32 bytesToRead = static_cast<int32>(numSamples - numReadSamples) * sizeof(int16);
const uint32 bytesRead = ov_read(&OggVorbisFile, (char*)samples, bytesToRead, 0, 2, 1, nullptr);
if (bytesRead > 0)
{
const uint32 samplesRead = bytesRead / sizeof(int16);
numReadSamples += samplesRead;
samples += samplesRead * sizeof(int16);
}
else
{
break;
}
}
}
bool OggVorbisDecoder::IsValid(ReadStream* stream, uint32 offset)
{
stream->SetPosition(offset);
Stream = stream;
Offset = offset;
OggVorbis_File file;
const ov_callbacks callbacks = { &oggRead, &oggSeek, nullptr, &oggTell };
if (ov_test_callbacks(this, &file, nullptr, 0, callbacks) == 0)
{
ov_clear(&file);
return true;
}
return false;
}
#endif

View File

@@ -0,0 +1,55 @@
// Copyright (c) 2012-2020 Wojciech Figat. All rights reserved.
#pragma once
#if COMPILE_WITH_OGG_VORBIS
#include "AudioDecoder.h"
#include "Engine/Serialization/ReadStream.h"
#include <ThirdParty/vorbis/vorbisfile.h>
/// <summary>
/// Decodes .ogg audio data into raw PCM format.
/// </summary>
/// <seealso cref="AudioDecoder" />
class OggVorbisDecoder : public AudioDecoder
{
public:
ReadStream* Stream;
uint32 Offset;
uint32 ChannelCount;
OggVorbis_File OggVorbisFile;
public:
/// <summary>
/// Initializes a new instance of the <see cref="OggVorbisDecoder"/> class.
/// </summary>
OggVorbisDecoder()
{
Stream = nullptr;
Offset = 0;
ChannelCount = 0;
OggVorbisFile.datasource = nullptr;
}
/// <summary>
/// Finalizes an instance of the <see cref="OggVorbisDecoder"/> class.
/// </summary>
~OggVorbisDecoder()
{
if (OggVorbisFile.datasource != nullptr)
ov_clear(&OggVorbisFile);
}
public:
// [AudioDecoder]
bool Open(ReadStream* stream, AudioDataInfo& info, uint32 offset = 0) override;
void Seek(uint32 offset) override;
void Read(byte* samples, uint32 numSamples) override;
bool IsValid(ReadStream* stream, uint32 offset = 0) override;
};
#endif

View File

@@ -0,0 +1,265 @@
// Copyright (c) 2012-2020 Wojciech Figat. All rights reserved.
#if COMPILE_WITH_OGG_VORBIS
#include "OggVorbisEncoder.h"
#include "Engine/Core/Log.h"
#include "Engine/Core/Math/Math.h"
#include "AudioTool.h"
#include <ThirdParty/vorbis/vorbisenc.h>
// Writes to the internal cached buffer and flushes it if needed
#define WRITE_TO_BUFFER(data, length) \
if ((_bufferOffset + length) > BUFFER_SIZE) \
Flush(); \
if(length > BUFFER_SIZE) \
_writeCallback(data, length, _userData); \
else \
{ \
Platform::MemoryCopy(_buffer + _bufferOffset, data, length); \
_bufferOffset += length; \
}
OggVorbisEncoder::OggVorbisEncoder()
: _bufferOffset(0)
, _numChannels(0)
, _bitDepth(0)
, _closed(true)
{
}
OggVorbisEncoder::~OggVorbisEncoder()
{
Close();
}
bool OggVorbisEncoder::Open(WriteCallback writeCallback, uint32 sampleRate, uint32 bitDepth, uint32 numChannels, float quality, void* userData)
{
_numChannels = numChannels;
_bitDepth = bitDepth;
_writeCallback = writeCallback;
_userData = userData;
_closed = false;
ogg_stream_init(&_oggState, rand());
vorbis_info_init(&_vorbisInfo);
int32 status = vorbis_encode_init_vbr(&_vorbisInfo, numChannels, sampleRate, quality);
if (status != 0)
{
LOG(Warning, "Failed to write Ogg Vorbis file.");
Close();
return true;
}
vorbis_analysis_init(&_vorbisState, &_vorbisInfo);
vorbis_block_init(&_vorbisState, &_vorbisBlock);
// Generate header
vorbis_comment comment;
vorbis_comment_init(&comment);
ogg_packet headerPacket, commentPacket, codePacket;
status = vorbis_analysis_headerout(&_vorbisState, &comment, &headerPacket, &commentPacket, &codePacket);
vorbis_comment_clear(&comment);
if (status != 0)
{
LOG(Warning, "Failed to write Ogg Vorbis file.");
Close();
return true;
}
// Write header
ogg_stream_packetin(&_oggState, &headerPacket);
ogg_stream_packetin(&_oggState, &commentPacket);
ogg_stream_packetin(&_oggState, &codePacket);
ogg_page page;
while (ogg_stream_flush(&_oggState, &page) > 0)
{
WRITE_TO_BUFFER(page.header, page.header_len);
WRITE_TO_BUFFER(page.body, page.body_len);
}
return false;
}
void OggVorbisEncoder::Write(uint8* samples, uint32 numSamples)
{
static const uint32 WRITE_LENGTH = 1024;
uint32 numFrames = numSamples / _numChannels;
while (numFrames > 0)
{
const uint32 numFramesToWrite = Math::Min(numFrames, WRITE_LENGTH);
float** buffer = vorbis_analysis_buffer(&_vorbisState, numFramesToWrite);
if (_bitDepth == 8)
{
for (uint32 i = 0; i < numFramesToWrite; i++)
{
for (uint32 j = 0; j < _numChannels; j++)
{
const int8 sample = *(int8*)samples;
const float encodedSample = sample / 127.0f;
buffer[j][i] = encodedSample;
samples++;
}
}
}
else if (_bitDepth == 16)
{
for (uint32 i = 0; i < numFramesToWrite; i++)
{
for (uint32 j = 0; j < _numChannels; j++)
{
const int16 sample = *(int16*)samples;
const float encodedSample = sample / 32767.0f;
buffer[j][i] = encodedSample;
samples += 2;
}
}
}
else if (_bitDepth == 24)
{
for (uint32 i = 0; i < numFramesToWrite; i++)
{
for (uint32 j = 0; j < _numChannels; j++)
{
const int32 sample = AudioTool::Convert24To32Bits(samples);
const float encodedSample = sample / 2147483647.0f;
buffer[j][i] = encodedSample;
samples += 3;
}
}
}
else if (_bitDepth == 32)
{
for (uint32 i = 0; i < numFramesToWrite; i++)
{
for (uint32 j = 0; j < _numChannels; j++)
{
const int32 sample = *(int32*)samples;
const float encodedSample = sample / 2147483647.0f;
buffer[j][i] = encodedSample;
samples += 4;
}
}
}
else
{
CRASH;
}
// Signal how many frames were written
vorbis_analysis_wrote(&_vorbisState, numFramesToWrite);
WriteBlocks();
numFrames -= numFramesToWrite;
}
}
void OggVorbisEncoder::WriteBlocks()
{
while (vorbis_analysis_blockout(&_vorbisState, &_vorbisBlock) == 1)
{
// Analyze and determine optimal bit rate
vorbis_analysis(&_vorbisBlock, nullptr);
vorbis_bitrate_addblock(&_vorbisBlock);
// Write block into ogg packets
ogg_packet packet;
while (vorbis_bitrate_flushpacket(&_vorbisState, &packet))
{
ogg_stream_packetin(&_oggState, &packet);
// If new page, write it to the internal buffer
ogg_page page;
while (ogg_stream_flush(&_oggState, &page) > 0)
{
WRITE_TO_BUFFER(page.header, page.header_len);
WRITE_TO_BUFFER(page.body, page.body_len);
}
}
}
}
struct EncodedBlock
{
uint8* data;
uint32 size;
};
struct ConvertWriteCallbackData
{
Array<EncodedBlock> Blocks;
uint32 TotalEncodedSize = 0;
};
void ConvertWriteCallback(uint8* buffer, uint32 size, void* userData)
{
EncodedBlock newBlock;
newBlock.data = (uint8*)Allocator::Allocate(size);
newBlock.size = size;
Platform::MemoryCopy(newBlock.data, buffer, size);
auto data = (ConvertWriteCallbackData*)userData;
data->Blocks.Add(newBlock);
data->TotalEncodedSize += size;
};
bool OggVorbisEncoder::Convert(byte* samples, AudioDataInfo& info, BytesContainer& result, float quality)
{
ConvertWriteCallbackData data;
if (Open(ConvertWriteCallback, info.SampleRate, info.BitDepth, info.NumChannels, quality, &data))
return true;
Write(samples, info.NumSamples);
Close();
result.Allocate(data.TotalEncodedSize);
uint32 offset = 0;
for (auto& block : data.Blocks)
{
Platform::MemoryCopy(result.Get() + offset, block.data, block.size);
offset += block.size;
Allocator::Free(block.data);
}
return false;
}
void OggVorbisEncoder::Flush()
{
if (_bufferOffset > 0 && _writeCallback != nullptr)
_writeCallback(_buffer, _bufferOffset, _userData);
_bufferOffset = 0;
}
void OggVorbisEncoder::Close()
{
if (_closed)
return;
// Mark end of data and flush any remaining data in the buffers
vorbis_analysis_wrote(&_vorbisState, 0);
WriteBlocks();
Flush();
ogg_stream_clear(&_oggState);
vorbis_block_clear(&_vorbisBlock);
vorbis_dsp_clear(&_vorbisState);
vorbis_info_clear(&_vorbisInfo);
_closed = true;
}
#endif

View File

@@ -0,0 +1,95 @@
// Copyright (c) 2012-2020 Wojciech Figat. All rights reserved.
#pragma once
#include "AudioEncoder.h"
#include "Engine/Audio/Config.h"
#if COMPILE_WITH_AUDIO_TOOL && COMPILE_WITH_OGG_VORBIS
#include <ThirdParty/vorbis/vorbisfile.h>
/// <summary>
/// Raw PCM data encoder to Ogg Vorbis audio format.
/// </summary>
/// <seealso cref="AudioEncoder" />
class OggVorbisEncoder : public AudioEncoder
{
public:
typedef void (*WriteCallback)(byte*, uint32, void*);
private:
static const uint32 BUFFER_SIZE = 4096;
WriteCallback _writeCallback;
void* _userData;
byte _buffer[BUFFER_SIZE];
uint32 _bufferOffset;
uint32 _numChannels;
uint32 _bitDepth;
bool _closed;
ogg_stream_state _oggState;
vorbis_info _vorbisInfo;
vorbis_dsp_state _vorbisState;
vorbis_block _vorbisBlock;
public:
/// <summary>
/// Initializes a new instance of the <see cref="OggVorbisEncoder"/> class.
/// </summary>
OggVorbisEncoder();
/// <summary>
/// Finalizes an instance of the <see cref="OggVorbisEncoder"/> class.
/// </summary>
~OggVorbisEncoder();
public:
/// <summary>
/// Sets up the writer. Should be called before calling Write().
/// </summary>
/// <param name="writeCallback">Callback that will be triggered when the writer is ready to output some data. The callback should copy the provided data into its own buffer.</param>
/// <param name="sampleRate">Determines how many samples per second the written data will have.</param>
/// <param name="bitDepth">Determines the size of a single sample, in bits.</param>
/// <param name="numChannels">Determines the number of audio channels. Channel data will be output interleaved in the output buffer.</param>
/// <param name="quality">The output data compression quality (normalized in range [0;1]).</param>
/// <param name="userData">The custom used data passed to the write callback.</param>
/// <returns>True if failed to open the data, otherwise false.</returns>
bool Open(WriteCallback writeCallback, uint32 sampleRate, uint32 bitDepth, uint32 numChannels, float quality, void* userData = nullptr);
/// <summary>
/// Writes a new set of samples and converts them to Ogg Vorbis.
/// </summary>
/// <param name="samples">The samples in PCM format. 8-bit samples should be unsigned, but higher bit depths signed. Each sample is assumed to be the bit depth that was provided to the Open() method.</param>
/// <param name="numSamples">The number of samples to encode.</param>
void Write(byte* samples, uint32 numSamples);
/// <summary>
/// Flushes the last of the data into the write buffer (triggers the write callback). This is called automatically when the writer is closed or goes out of scope.
/// </summary>
void Flush();
/// <summary>
/// Closes the encoder and flushes the last of the data into the write buffer (triggers the write callback). This is called automatically when the writer goes out of scope.
/// </summary>
void Close();
private:
/// <summary>
/// Writes Vorbis blocks into Ogg packets.
/// </summary>
void WriteBlocks();
public:
// [AudioEncoder]
bool Convert(byte* samples, AudioDataInfo& info, BytesContainer& result, float quality = 0.5f) override;
};
#endif

View File

@@ -0,0 +1,168 @@
// Copyright (c) 2012-2020 Wojciech Figat. All rights reserved.
#include "WaveDecoder.h"
#include "Engine/Core/Log.h"
#include "AudioTool.h"
#define WAVE_FORMAT_PCM 0x0001
#define WAVE_FORMAT_IEEE_FLOAT 0x0003
#define WAVE_FORMAT_ALAW 0x0006
#define WAVE_FORMAT_MULAW 0x0007
#define WAVE_FORMAT_EXTENDED 0xFFFE
#define MAIN_CHUNK_SIZE 12
bool WaveDecoder::ParseHeader(AudioDataInfo& info)
{
bool foundData = false;
while (!foundData)
{
// Get sub-chunk ID and size
uint8 subChunkId[4];
mStream->Read(subChunkId, sizeof(subChunkId));
uint32 subChunkSize = 0;
mStream->ReadUint32(&subChunkSize);
// FMT chunk
if (subChunkId[0] == 'f' && subChunkId[1] == 'm' && subChunkId[2] == 't' && subChunkId[3] == ' ')
{
uint16 format;
mStream->ReadUint16(&format);
if (format != WAVE_FORMAT_PCM && format != WAVE_FORMAT_IEEE_FLOAT && format != WAVE_FORMAT_EXTENDED)
{
LOG(Warning, "Wave file doesn't contain raw PCM data. Not supported.");
return false;
}
uint16 numChannels = 0;
mStream->ReadUint16(&numChannels);
uint32 sampleRate = 0;
mStream->ReadUint32(&sampleRate);
uint32 byteRate = 0;
mStream->ReadUint32(&byteRate);
uint16 blockAlign = 0;
mStream->ReadUint16(&blockAlign);
uint16 bitDepth = 0;
mStream->ReadUint16(&bitDepth);
if (bitDepth != 8 && bitDepth != 16 && bitDepth != 24 && bitDepth != 32)
{
LOG(Warning, "Unsupported number of bits per sample: {0}", bitDepth);
return false;
}
info.NumChannels = numChannels;
info.SampleRate = sampleRate;
info.BitDepth = bitDepth;
// Read extension data, and get the actual format
if (format == WAVE_FORMAT_EXTENDED)
{
uint16 extensionSize = 0;
mStream->ReadUint16(&extensionSize);
if (extensionSize != 22)
{
LOG(Warning, "Wave file doesn't contain raw PCM data. Not supported.");
return false;
}
uint16 validBitDepth = 0;
mStream->ReadUint16(&validBitDepth);
uint32 channelMask = 0;
mStream->ReadUint32(&channelMask);
uint8 subFormat[16];
mStream->Read(subFormat, sizeof(subFormat));
Platform::MemoryCopy(&format, subFormat, sizeof(format));
if (format != WAVE_FORMAT_PCM)
{
LOG(Warning, "Wave file doesn't contain raw PCM data. Not supported.");
return false;
}
}
mBytesPerSample = bitDepth / 8;
mFormat = format;
}
// DATA chunk
else if (subChunkId[0] == 'd' && subChunkId[1] == 'a' && subChunkId[2] == 't' && subChunkId[3] == 'a')
{
info.NumSamples = subChunkSize / mBytesPerSample;
mDataOffset = (uint32)mStream->GetPosition();
foundData = true;
}
// Unsupported chunk type
else
{
if (mStream->GetPosition() + subChunkSize >= mStream->GetLength())
return false;
mStream->SetPosition(mStream->GetPosition() + subChunkSize);
}
}
return true;
}
bool WaveDecoder::Open(ReadStream* stream, AudioDataInfo& info, uint32 offset)
{
ASSERT(stream);
mStream = stream;
mStream->SetPosition(offset + MAIN_CHUNK_SIZE);
if (!ParseHeader(info))
{
LOG(Warning, "Provided file is not a valid WAVE file.");
return false;
}
return true;
}
void WaveDecoder::Seek(uint32 offset)
{
mStream->SetPosition(mDataOffset + offset * mBytesPerSample);
}
void WaveDecoder::Read(byte* samples, uint32 numSamples)
{
const uint32 numRead = numSamples * mBytesPerSample;
mStream->Read(samples, numRead);
// 8-bit samples are stored as unsigned, but engine convention is to store all bit depths as signed
if (mBytesPerSample == 1)
{
for (uint32 i = 0; i < numRead; i++)
{
int8 val = samples[i] - 128;
samples[i] = *((uint8*)&val);
}
}
// IEEE float need to be converted into signed PCM data
else if (mFormat == WAVE_FORMAT_IEEE_FLOAT)
{
AudioTool::ConvertFromFloat((const float*)samples, (int32*)samples, numSamples);
}
}
bool WaveDecoder::IsValid(ReadStream* stream, uint32 offset)
{
ASSERT(stream);
stream->SetPosition(offset);
byte header[MAIN_CHUNK_SIZE];
stream->ReadBytes(header, sizeof(header));
return (header[0] == 'R') && (header[1] == 'I') && (header[2] == 'F') && (header[3] == 'F')
&& (header[8] == 'W') && (header[9] == 'A') && (header[10] == 'V') && (header[11] == 'E');
}

View File

@@ -0,0 +1,54 @@
// Copyright (c) 2012-2020 Wojciech Figat. All rights reserved.
#pragma once
#if COMPILE_WITH_AUDIO_TOOL
#include "AudioDecoder.h"
#include "Engine/Serialization/ReadStream.h"
/// <summary>
/// Decodes .wav audio data into raw PCM format.
/// </summary>
/// <seealso cref="AudioDecoder" />
class WaveDecoder : public AudioDecoder
{
private:
ReadStream* mStream;
uint16 mFormat;
uint32 mDataOffset;
uint32 mBytesPerSample;
public:
/// <summary>
/// Initializes a new instance of the <see cref="WaveDecoder"/> class.
/// </summary>
WaveDecoder()
{
mStream = nullptr;
mFormat = 0;
mDataOffset = 0;
mBytesPerSample = 0;
}
private:
/// <summary>
/// Parses the WAVE header and output audio file meta-data. Returns false if the header is not valid.
/// </summary>
/// <param name="info">The output information.</param>
/// <returns>True if header is valid, otherwise false.</returns>
bool ParseHeader(AudioDataInfo& info);
public:
// [AudioDecoder]
bool Open(ReadStream* stream, AudioDataInfo& info, uint32 offset = 0) override;
void Seek(uint32 offset) override;
void Read(byte* samples, uint32 numSamples) override;
bool IsValid(ReadStream* stream, uint32 offset = 0) override;
};
#endif