You're breathtaking!

This commit is contained in:
Wojtek Figat
2020-12-07 23:40:54 +01:00
commit 6fb9eee74c
5143 changed files with 1153594 additions and 0 deletions

1539
Source/ThirdParty/fmt/core.h vendored Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,9 @@
Copyright (c) 2012 - 2015, Victor Zverovich
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

27
Source/ThirdParty/fmt/fmt.Build.cs vendored Normal file
View File

@@ -0,0 +1,27 @@
// Copyright (c) 2012-2020 Wojciech Figat. All rights reserved.
using System.Collections.Generic;
using System.IO;
using Flax.Build;
/// <summary>
/// https://fmt.dev/
/// </summary>
public class fmt : ThirdPartyModule
{
/// <inheritdoc />
public override void Init()
{
base.Init();
LicenseType = LicenseTypes.BSD2Clause;
}
/// <inheritdoc />
public override void GetFilesToDeploy(List<string> files)
{
base.GetFilesToDeploy(files);
files.AddRange(Directory.GetFiles(FolderPath, "*.h", SearchOption.AllDirectories));
}
}

882
Source/ThirdParty/fmt/format-inl.h vendored Normal file
View File

@@ -0,0 +1,882 @@
// Formatting library for C++
//
// Copyright (c) 2012 - 2016, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_FORMAT_INL_H_
#define FMT_FORMAT_INL_H_
#include "format.h"
#include <string.h>
#include <cctype>
#include <cerrno>
#include <climits>
#include <math.h>
#include <cstdarg>
#include <cstddef> // for std::ptrdiff_t
#if !defined(FMT_STATIC_THOUSANDS_SEPARATOR)
# include <locale>
#endif
#if FMT_USE_WINDOWS_H
# if !defined(FMT_HEADER_ONLY) && !defined(WIN32_LEAN_AND_MEAN)
# define WIN32_LEAN_AND_MEAN
# endif
# if defined(NOMINMAX) || defined(FMT_WIN_MINMAX)
# include <windows.h>
# else
# define NOMINMAX
# include <windows.h>
# undef NOMINMAX
# endif
#endif
#if FMT_EXCEPTIONS
# define FMT_TRY try
# define FMT_CATCH(x) catch (x)
#else
# define FMT_TRY if (true)
# define FMT_CATCH(x) if (false)
#endif
#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable: 4127) // conditional expression is constant
# pragma warning(disable: 4702) // unreachable code
// Disable deprecation warning for strerror. The latter is not called but
// MSVC fails to detect it.
# pragma warning(disable: 4996)
#endif
// Dummy implementations of strerror_r and strerror_s called if corresponding
// system functions are not available.
inline fmt::internal::null<> strerror_r(int, char *, ...) {
return fmt::internal::null<>();
}
inline fmt::internal::null<> strerror_s(char *, std::size_t, ...) {
return fmt::internal::null<>();
}
FMT_BEGIN_NAMESPACE
namespace {
#ifndef _MSC_VER
# define FMT_SNPRINTF snprintf
#else // _MSC_VER
inline int fmt_snprintf(char *buffer, size_t size, const char *format, ...) {
va_list args;
va_start(args, format);
int result = vsnprintf_s(buffer, size, _TRUNCATE, format, args);
va_end(args);
return result;
}
# define FMT_SNPRINTF fmt_snprintf
#endif // _MSC_VER
#if defined(_WIN32) && defined(__MINGW32__) && !defined(__NO_ISOCEXT)
# define FMT_SWPRINTF snwprintf
#else
# define FMT_SWPRINTF swprintf
#endif // defined(_WIN32) && defined(__MINGW32__) && !defined(__NO_ISOCEXT)
typedef void (*FormatFunc)(internal::buffer &, int, string_view);
// Portable thread-safe version of strerror.
// Sets buffer to point to a string describing the error code.
// This can be either a pointer to a string stored in buffer,
// or a pointer to some static immutable string.
// Returns one of the following values:
// 0 - success
// ERANGE - buffer is not large enough to store the error message
// other - failure
// Buffer should be at least of size 1.
int safe_strerror(
int error_code, char *&buffer, std::size_t buffer_size) FMT_NOEXCEPT {
FMT_ASSERT(buffer != FMT_NULL && buffer_size != 0, "invalid buffer");
class dispatcher {
private:
int error_code_;
char *&buffer_;
std::size_t buffer_size_;
// A noop assignment operator to avoid bogus warnings.
void operator=(const dispatcher &) {}
// Handle the result of XSI-compliant version of strerror_r.
int handle(int result) {
// glibc versions before 2.13 return result in errno.
return result == -1 ? errno : result;
}
// Handle the result of GNU-specific version of strerror_r.
int handle(char *message) {
// If the buffer is full then the message is probably truncated.
if (message == buffer_ && strlen(buffer_) == buffer_size_ - 1)
return ERANGE;
buffer_ = message;
return 0;
}
// Handle the case when strerror_r is not available.
int handle(internal::null<>) {
return fallback(strerror_s(buffer_, buffer_size_, error_code_));
}
// Fallback to strerror_s when strerror_r is not available.
int fallback(int result) {
// If the buffer is full then the message is probably truncated.
return result == 0 && strlen(buffer_) == buffer_size_ - 1 ?
ERANGE : result;
}
#if !FMT_MSC_VER
// Fallback to strerror if strerror_r and strerror_s are not available.
int fallback(internal::null<>) {
errno = 0;
buffer_ = strerror(error_code_);
return errno;
}
#endif
public:
dispatcher(int err_code, char *&buf, std::size_t buf_size)
: error_code_(err_code), buffer_(buf), buffer_size_(buf_size) {}
int run() {
return handle(strerror_r(error_code_, buffer_, buffer_size_));
}
};
return dispatcher(error_code, buffer, buffer_size).run();
}
void format_error_code(internal::buffer &out, int error_code,
string_view message) FMT_NOEXCEPT {
// Report error code making sure that the output fits into
// inline_buffer_size to avoid dynamic memory allocation and potential
// bad_alloc.
out.resize(0);
static const char SEP[] = ": ";
static const char ERROR_STR[] = "error ";
// Subtract 2 to account for terminating null characters in SEP and ERROR_STR.
std::size_t error_code_size = sizeof(SEP) + sizeof(ERROR_STR) - 2;
typedef internal::int_traits<int>::main_type main_type;
main_type abs_value = static_cast<main_type>(error_code);
if (internal::is_negative(error_code)) {
abs_value = 0 - abs_value;
++error_code_size;
}
error_code_size += internal::to_unsigned(internal::count_digits(abs_value));
writer w(out);
if (message.size() <= inline_buffer_size - error_code_size) {
w.write(message);
w.write(SEP);
}
w.write(ERROR_STR);
w.write(error_code);
FMT_ASSERT(out.size() <= inline_buffer_size, "invalid buffer size");
}
void report_error(FormatFunc func, int error_code,
string_view message) FMT_NOEXCEPT {
memory_buffer full_message;
func(full_message, error_code, message);
// Use Writer::data instead of Writer::c_str to avoid potential memory
// allocation.
std::fwrite(full_message.data(), full_message.size(), 1, stderr);
std::fputc('\n', stderr);
}
} // namespace
FMT_FUNC size_t internal::count_code_points(basic_string_view<char8_t> s) {
const char8_t *data = s.data();
size_t num_code_points = 0;
for (size_t i = 0, size = s.size(); i != size; ++i) {
if ((data[i] & 0xc0) != 0x80)
++num_code_points;
}
return num_code_points;
}
#if !defined(FMT_STATIC_THOUSANDS_SEPARATOR)
namespace internal {
template <typename Locale>
locale_ref::locale_ref(const Locale &loc) : locale_(&loc) {
static_assert(std::is_same<Locale, std::locale>::value, "");
}
template <typename Locale>
Locale locale_ref::get() const {
static_assert(std::is_same<Locale, std::locale>::value, "");
return locale_ ? *static_cast<const std::locale*>(locale_) : std::locale();
}
template <typename Char>
FMT_FUNC Char thousands_sep_impl(locale_ref loc) {
return std::use_facet<std::numpunct<Char> >(
loc.get<std::locale>()).thousands_sep();
}
}
#else
template <typename Char>
FMT_FUNC Char internal::thousands_sep_impl(locale_ref) {
return FMT_STATIC_THOUSANDS_SEPARATOR;
}
#endif
namespace internal {
template <typename T>
int char_traits<char>::format_float(
char *buf, std::size_t size, const char *format, int precision, T value) {
return precision < 0 ?
FMT_SNPRINTF(buf, size, format, value) :
FMT_SNPRINTF(buf, size, format, precision, value);
}
template <typename T>
int char_traits<wchar_t>::format_float(
wchar_t *buf, std::size_t size, const wchar_t *format, int precision,
T value) {
return precision < 0 ?
FMT_SWPRINTF(buf, size, format, value) :
FMT_SWPRINTF(buf, size, format, precision, value);
}
const char basic_data::DIGITS[] =
"0001020304050607080910111213141516171819"
"2021222324252627282930313233343536373839"
"4041424344454647484950515253545556575859"
"6061626364656667686970717273747576777879"
"8081828384858687888990919293949596979899";
#define FMT_POWERS_OF_10(factor) \
factor * 10, \
factor * 100, \
factor * 1000, \
factor * 10000, \
factor * 100000, \
factor * 1000000, \
factor * 10000000, \
factor * 100000000, \
factor * 1000000000
const uint32_t basic_data::POWERS_OF_10_32[] = {
1, FMT_POWERS_OF_10(1)
};
const uint32_t basic_data::ZERO_OR_POWERS_OF_10_32[] = {
0, FMT_POWERS_OF_10(1)
};
const uint64_t basic_data::ZERO_OR_POWERS_OF_10_64[] = {
0,
FMT_POWERS_OF_10(1),
FMT_POWERS_OF_10(1000000000ull),
10000000000000000000ull
};
// Normalized 64-bit significands of pow(10, k), for k = -348, -340, ..., 340.
// These are generated by support/compute-powers.py.
const uint64_t basic_data::POW10_SIGNIFICANDS[] = {
0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76,
0xcf42894a5dce35ea, 0x9a6bb0aa55653b2d, 0xe61acf033d1a45df,
0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f, 0xbe5691ef416bd60c,
0x8dd01fad907ffc3c, 0xd3515c2831559a83, 0x9d71ac8fada6c9b5,
0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57,
0xc21094364dfb5637, 0x9096ea6f3848984f, 0xd77485cb25823ac7,
0xa086cfcd97bf97f4, 0xef340a98172aace5, 0xb23867fb2a35b28e,
0x84c8d4dfd2c63f3b, 0xc5dd44271ad3cdba, 0x936b9fcebb25c996,
0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126,
0xb5b5ada8aaff80b8, 0x87625f056c7c4a8b, 0xc9bcff6034c13053,
0x964e858c91ba2655, 0xdff9772470297ebd, 0xa6dfbd9fb8e5b88f,
0xf8a95fcf88747d94, 0xb94470938fa89bcf, 0x8a08f0f8bf0f156b,
0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06,
0xaa242499697392d3, 0xfd87b5f28300ca0e, 0xbce5086492111aeb,
0x8cbccc096f5088cc, 0xd1b71758e219652c, 0x9c40000000000000,
0xe8d4a51000000000, 0xad78ebc5ac620000, 0x813f3978f8940984,
0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068,
0x9f4f2726179a2245, 0xed63a231d4c4fb27, 0xb0de65388cc8ada8,
0x83c7088e1aab65db, 0xc45d1df942711d9a, 0x924d692ca61be758,
0xda01ee641a708dea, 0xa26da3999aef774a, 0xf209787bb47d6b85,
0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d,
0x952ab45cfa97a0b3, 0xde469fbd99a05fe3, 0xa59bc234db398c25,
0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece, 0x88fcf317f22241e2,
0xcc20ce9bd35c78a5, 0x98165af37b2153df, 0xe2a0b5dc971f303a,
0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410,
0x8bab8eefb6409c1a, 0xd01fef10a657842c, 0x9b10a4e5e9913129,
0xe7109bfba19c0c9d, 0xac2820d9623bf429, 0x80444b5e7aa7cf85,
0xbf21e44003acdd2d, 0x8e679c2f5e44ff8f, 0xd433179d9c8cb841,
0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b,
};
// Binary exponents of pow(10, k), for k = -348, -340, ..., 340, corresponding
// to significands above.
const int16_t basic_data::POW10_EXPONENTS[] = {
-1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954,
-927, -901, -874, -847, -821, -794, -768, -741, -715, -688, -661,
-635, -608, -582, -555, -529, -502, -475, -449, -422, -396, -369,
-343, -316, -289, -263, -236, -210, -183, -157, -130, -103, -77,
-50, -24, 3, 30, 56, 83, 109, 136, 162, 189, 216,
242, 269, 295, 322, 348, 375, 402, 428, 455, 481, 508,
534, 561, 588, 614, 641, 667, 694, 720, 747, 774, 800,
827, 853, 880, 907, 933, 960, 986, 1013, 1039, 1066
};
const char basic_data::FOREGROUND_COLOR[] = "\x1b[38;2;";
const char basic_data::BACKGROUND_COLOR[] = "\x1b[48;2;";
const char basic_data::RESET_COLOR[] = "\x1b[0m";
const wchar_t basic_data::WRESET_COLOR[] = L"\x1b[0m";
// A handmade floating-point number f * pow(2, e).
class fp {
private:
typedef uint64_t significand_type;
// All sizes are in bits.
static FMT_CONSTEXPR_DECL const int char_size =
std::numeric_limits<unsigned char>::digits;
// Subtract 1 to account for an implicit most significant bit in the
// normalized form.
static FMT_CONSTEXPR_DECL const int double_significand_size =
std::numeric_limits<double>::digits - 1;
static FMT_CONSTEXPR_DECL const uint64_t implicit_bit =
1ull << double_significand_size;
public:
significand_type f;
int e;
static FMT_CONSTEXPR_DECL const int significand_size =
sizeof(significand_type) * char_size;
fp(): f(0), e(0) {}
fp(uint64_t f_val, int e_val): f(f_val), e(e_val) {}
// Constructs fp from an IEEE754 double. It is a template to prevent compile
// errors on platforms where double is not IEEE754.
template <typename Double>
explicit fp(Double d) {
// Assume double is in the format [sign][exponent][significand].
typedef std::numeric_limits<Double> limits;
const int double_size = static_cast<int>(sizeof(Double) * char_size);
const int exponent_size =
double_size - double_significand_size - 1; // -1 for sign
const uint64_t significand_mask = implicit_bit - 1;
const uint64_t exponent_mask = (~0ull >> 1) & ~significand_mask;
const int exponent_bias = (1 << exponent_size) - limits::max_exponent - 1;
auto u = bit_cast<uint64_t>(d);
auto biased_e = (u & exponent_mask) >> double_significand_size;
f = u & significand_mask;
if (biased_e != 0)
f += implicit_bit;
else
biased_e = 1; // Subnormals use biased exponent 1 (min exponent).
e = static_cast<int>(biased_e - exponent_bias - double_significand_size);
}
// Normalizes the value converted from double and multiplied by (1 << SHIFT).
template <int SHIFT = 0>
void normalize() {
// Handle subnormals.
auto shifted_implicit_bit = implicit_bit << SHIFT;
while ((f & shifted_implicit_bit) == 0) {
f <<= 1;
--e;
}
// Subtract 1 to account for hidden bit.
auto offset = significand_size - double_significand_size - SHIFT - 1;
f <<= offset;
e -= offset;
}
// Compute lower and upper boundaries (m^- and m^+ in the Grisu paper), where
// a boundary is a value half way between the number and its predecessor
// (lower) or successor (upper). The upper boundary is normalized and lower
// has the same exponent but may be not normalized.
void compute_boundaries(fp &lower, fp &upper) const {
lower = f == implicit_bit ?
fp((f << 2) - 1, e - 2) : fp((f << 1) - 1, e - 1);
upper = fp((f << 1) + 1, e - 1);
upper.normalize<1>(); // 1 is to account for the exponent shift above.
lower.f <<= lower.e - upper.e;
lower.e = upper.e;
}
};
// Returns an fp number representing x - y. Result may not be normalized.
inline fp operator-(fp x, fp y) {
FMT_ASSERT(x.f >= y.f && x.e == y.e, "invalid operands");
return fp(x.f - y.f, x.e);
}
// Computes an fp number r with r.f = x.f * y.f / pow(2, 64) rounded to nearest
// with half-up tie breaking, r.e = x.e + y.e + 64. Result may not be normalized.
FMT_API fp operator*(fp x, fp y);
// Returns cached power (of 10) c_k = c_k.f * pow(2, c_k.e) such that its
// (binary) exponent satisfies min_exponent <= c_k.e <= min_exponent + 3.
FMT_API fp get_cached_power(int min_exponent, int &pow10_exponent);
FMT_FUNC fp operator*(fp x, fp y) {
// Multiply 32-bit parts of significands.
uint64_t mask = (1ULL << 32) - 1;
uint64_t a = x.f >> 32, b = x.f & mask;
uint64_t c = y.f >> 32, d = y.f & mask;
uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d;
// Compute mid 64-bit of result and round.
uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31);
return fp(ac + (ad >> 32) + (bc >> 32) + (mid >> 32), x.e + y.e + 64);
}
FMT_FUNC fp get_cached_power(int min_exponent, int &pow10_exponent) {
const double one_over_log2_10 = 0.30102999566398114; // 1 / log2(10)
int index = static_cast<int>(ceil(
(min_exponent + fp::significand_size - 1) * one_over_log2_10));
// Decimal exponent of the first (smallest) cached power of 10.
const int first_dec_exp = -348;
// Difference between 2 consecutive decimal exponents in cached powers of 10.
const int dec_exp_step = 8;
index = (index - first_dec_exp - 1) / dec_exp_step + 1;
pow10_exponent = first_dec_exp + index * dec_exp_step;
return fp(data::POW10_SIGNIFICANDS[index], data::POW10_EXPONENTS[index]);
}
FMT_FUNC bool grisu2_round(
char *buf, int &size, int max_digits, uint64_t delta,
uint64_t remainder, uint64_t exp, uint64_t diff, int &exp10) {
while (remainder < diff && delta - remainder >= exp &&
(remainder + exp < diff || diff - remainder > remainder + exp - diff)) {
--buf[size - 1];
remainder += exp;
}
if (size > max_digits) {
--size;
++exp10;
if (buf[size] >= '5')
return false;
}
return true;
}
// Generates output using Grisu2 digit-gen algorithm.
FMT_FUNC bool grisu2_gen_digits(
char *buf, int &size, uint32_t hi, uint64_t lo, int &exp,
uint64_t delta, const fp &one, const fp &diff, int max_digits) {
// Generate digits for the most significant part (hi).
while (exp > 0) {
uint32_t digit = 0;
// This optimization by miloyip reduces the number of integer divisions by
// one per iteration.
switch (exp) {
case 10: digit = hi / 1000000000; hi %= 1000000000; break;
case 9: digit = hi / 100000000; hi %= 100000000; break;
case 8: digit = hi / 10000000; hi %= 10000000; break;
case 7: digit = hi / 1000000; hi %= 1000000; break;
case 6: digit = hi / 100000; hi %= 100000; break;
case 5: digit = hi / 10000; hi %= 10000; break;
case 4: digit = hi / 1000; hi %= 1000; break;
case 3: digit = hi / 100; hi %= 100; break;
case 2: digit = hi / 10; hi %= 10; break;
case 1: digit = hi; hi = 0; break;
default:
FMT_ASSERT(false, "invalid number of digits");
}
if (digit != 0 || size != 0)
buf[size++] = static_cast<char>('0' + digit);
--exp;
uint64_t remainder = (static_cast<uint64_t>(hi) << -one.e) + lo;
if (remainder <= delta || size > max_digits) {
return grisu2_round(
buf, size, max_digits, delta, remainder,
static_cast<uint64_t>(data::POWERS_OF_10_32[exp]) << -one.e,
diff.f, exp);
}
}
// Generate digits for the least significant part (lo).
for (;;) {
lo *= 10;
delta *= 10;
char digit = static_cast<char>(lo >> -one.e);
if (digit != 0 || size != 0)
buf[size++] = static_cast<char>('0' + digit);
lo &= one.f - 1;
--exp;
if (lo < delta || size > max_digits) {
return grisu2_round(buf, size, max_digits, delta, lo, one.f,
diff.f * data::POWERS_OF_10_32[-exp], exp);
}
}
}
#if FMT_CLANG_VERSION
# define FMT_FALLTHROUGH [[clang::fallthrough]];
#elif FMT_GCC_VERSION >= 700
# define FMT_FALLTHROUGH [[gnu::fallthrough]];
#else
# define FMT_FALLTHROUGH
#endif
struct gen_digits_params {
int num_digits;
bool fixed;
bool upper;
bool trailing_zeros;
};
struct prettify_handler {
char *data;
ptrdiff_t size;
buffer &buf;
explicit prettify_handler(buffer &b, ptrdiff_t n)
: data(b.data()), size(n), buf(b) {}
~prettify_handler() {
FMT_ASSERT(buf.size() >= to_unsigned(size), "invalid buffer size");
buf.resize(to_unsigned(size));
}
template <typename F>
void insert(ptrdiff_t pos, ptrdiff_t n, F f) {
memmove(data + pos + n, data + pos, to_unsigned(size - pos));
f(data + pos);
size += n;
}
void insert(ptrdiff_t pos, char c) {
memmove(data + pos + 1, data + pos, to_unsigned(size - pos));
data[pos] = c;
++size;
}
void append(ptrdiff_t n, char c) {
char* ptr = data + size;
for (; n > 0; ++ptr, --n)
*ptr = c;
size += n;
}
void append(char c) { data[size++] = c; }
void remove_trailing(char c) {
while (data[size - 1] == c) --size;
}
};
// Writes the exponent exp in the form "[+-]d{2,3}" to buffer.
template <typename Handler>
FMT_FUNC void write_exponent(int exp, Handler &&h) {
FMT_ASSERT(-1000 < exp && exp < 1000, "exponent out of range");
if (exp < 0) {
h.append('-');
exp = -exp;
} else {
h.append('+');
}
if (exp >= 100) {
h.append(static_cast<char>('0' + exp / 100));
exp %= 100;
const char *d = data::DIGITS + exp * 2;
h.append(d[0]);
h.append(d[1]);
} else {
const char *d = data::DIGITS + exp * 2;
h.append(d[0]);
h.append(d[1]);
}
}
struct fill {
size_t n;
void operator()(char *buf) const {
buf[0] = '0';
buf[1] = '.';
char* ptr = buf + 2;
size_t cnt = n;
for (; cnt > 0; ++ptr, --cnt)
*ptr = '0';
}
};
// The number is given as v = f * pow(10, exp), where f has size digits.
template <typename Handler>
FMT_FUNC void grisu2_prettify(const gen_digits_params &params,
int size, int exp, Handler &&handler) {
if (!params.fixed) {
// Insert a decimal point after the first digit and add an exponent.
handler.insert(1, '.');
exp += size - 1;
if (size < params.num_digits)
handler.append(params.num_digits - size, '0');
handler.append(params.upper ? 'E' : 'e');
write_exponent(exp, handler);
return;
}
// pow(10, full_exp - 1) <= v <= pow(10, full_exp).
int full_exp = size + exp;
const int exp_threshold = 21;
if (size <= full_exp && full_exp <= exp_threshold) {
// 1234e7 -> 12340000000[.0+]
handler.append(full_exp - size, '0');
int num_zeros = params.num_digits - full_exp;
if (num_zeros > 0 && params.trailing_zeros) {
handler.append('.');
handler.append(num_zeros, '0');
}
} else if (full_exp > 0) {
// 1234e-2 -> 12.34[0+]
handler.insert(full_exp, '.');
if (!params.trailing_zeros) {
// Remove trailing zeros.
handler.remove_trailing('0');
} else if (params.num_digits > size) {
// Add trailing zeros.
ptrdiff_t num_zeros = params.num_digits - size;
handler.append(num_zeros, '0');
}
} else {
// 1234e-6 -> 0.001234
handler.insert(0, 2 - full_exp, fill{to_unsigned(-full_exp)});
}
}
struct char_counter {
ptrdiff_t size;
template <typename F>
void insert(ptrdiff_t, ptrdiff_t n, F) { size += n; }
void insert(ptrdiff_t, char) { ++size; }
void append(ptrdiff_t n, char) { size += n; }
void append(char) { ++size; }
void remove_trailing(char) {}
};
// Converts format specifiers into parameters for digit generation and computes
// output buffer size for a number in the range [pow(10, exp - 1), pow(10, exp)
// or 0 if exp == 1.
FMT_FUNC gen_digits_params process_specs(const core_format_specs &specs,
int exp, buffer &buf) {
auto params = gen_digits_params();
int num_digits = specs.precision >= 0 ? specs.precision : 6;
switch (specs.type) {
case 'G':
params.upper = true;
FMT_FALLTHROUGH
case '\0': case 'g':
params.trailing_zeros = (specs.flags & HASH_FLAG) != 0;
if (-4 <= exp && exp < num_digits + 1) {
params.fixed = true;
if (!specs.type && params.trailing_zeros && exp >= 0)
num_digits = exp + 1;
}
break;
case 'F':
params.upper = true;
FMT_FALLTHROUGH
case 'f': {
params.fixed = true;
params.trailing_zeros = true;
int adjusted_min_digits = num_digits + exp;
if (adjusted_min_digits > 0)
num_digits = adjusted_min_digits;
break;
}
case 'E':
params.upper = true;
FMT_FALLTHROUGH
case 'e':
++num_digits;
break;
}
params.num_digits = num_digits;
char_counter counter{num_digits};
grisu2_prettify(params, params.num_digits, exp - num_digits, counter);
buf.resize(to_unsigned(counter.size));
return params;
}
template <typename Double>
FMT_FUNC typename std::enable_if<sizeof(Double) == sizeof(uint64_t), bool>::type
grisu2_format(Double value, buffer &buf, core_format_specs specs) {
FMT_ASSERT(value >= 0, "value is negative");
if (value == 0) {
gen_digits_params params = process_specs(specs, 1, buf);
const size_t size = 1;
buf[0] = '0';
grisu2_prettify(params, size, 0, prettify_handler(buf, size));
return true;
}
fp fp_value(value);
fp lower, upper; // w^- and w^+ in the Grisu paper.
fp_value.compute_boundaries(lower, upper);
// Find a cached power of 10 close to 1 / upper and use it to scale upper.
const int min_exp = -60; // alpha in Grisu.
int cached_exp = 0; // K in Grisu.
auto cached_pow = get_cached_power( // \tilde{c}_{-k} in Grisu.
min_exp - (upper.e + fp::significand_size), cached_exp);
cached_exp = -cached_exp;
upper = upper * cached_pow; // \tilde{M}^+ in Grisu.
--upper.f; // \tilde{M}^+ - 1 ulp -> M^+_{\downarrow}.
fp one(1ull << -upper.e, upper.e);
// hi (p1 in Grisu) contains the most significant digits of scaled_upper.
// hi = floor(upper / one).
uint32_t hi = static_cast<uint32_t>(upper.f >> -one.e);
int exp = count_digits(hi); // kappa in Grisu.
gen_digits_params params = process_specs(specs, cached_exp + exp, buf);
fp_value.normalize();
fp scaled_value = fp_value * cached_pow;
lower = lower * cached_pow; // \tilde{M}^- in Grisu.
++lower.f; // \tilde{M}^- + 1 ulp -> M^-_{\uparrow}.
uint64_t delta = upper.f - lower.f;
fp diff = upper - scaled_value; // wp_w in Grisu.
// lo (p2 in Grisu) contains the least significants digits of scaled_upper.
// lo = supper % one.
uint64_t lo = upper.f & (one.f - 1);
int size = 0;
if (!grisu2_gen_digits(buf.data(), size, hi, lo, exp, delta, one, diff,
params.num_digits)) {
buf.clear();
return false;
}
grisu2_prettify(params, size, cached_exp + exp, prettify_handler(buf, size));
return true;
}
template <typename Double>
void sprintf_format(Double value, internal::buffer &buf,
core_format_specs spec) {
// Buffer capacity must be non-zero, otherwise MSVC's vsnprintf_s will fail.
FMT_ASSERT(buf.capacity() != 0, "empty buffer");
// Build format string.
enum { MAX_FORMAT_SIZE = 10}; // longest format: %#-*.*Lg
char format[MAX_FORMAT_SIZE];
char *format_ptr = format;
*format_ptr++ = '%';
if (spec.has(HASH_FLAG))
*format_ptr++ = '#';
if (spec.precision >= 0) {
*format_ptr++ = '.';
*format_ptr++ = '*';
}
if (std::is_same<Double, long double>::value)
*format_ptr++ = 'L';
*format_ptr++ = spec.type;
*format_ptr = '\0';
// Format using snprintf.
char *start = FMT_NULL;
for (;;) {
std::size_t buffer_size = buf.capacity();
start = &buf[0];
int result = internal::char_traits<char>::format_float(
start, buffer_size, format, spec.precision, value);
if (result >= 0) {
unsigned n = internal::to_unsigned(result);
if (n < buf.capacity()) {
buf.resize(n);
break; // The buffer is large enough - continue with formatting.
}
buf.reserve(n + 1);
} else {
// If result is negative we ask to increase the capacity by at least 1,
// but as std::vector, the buffer grows exponentially.
buf.reserve(buf.capacity() + 1);
}
}
}
} // namespace internal
#if FMT_USE_WINDOWS_H
FMT_FUNC internal::utf8_to_utf16::utf8_to_utf16(string_view s) {
static const char ERROR_MSG[] = "cannot convert string from UTF-8 to UTF-16";
if (s.size() > INT_MAX)
FMT_THROW(windows_error(ERROR_INVALID_PARAMETER, ERROR_MSG));
int s_size = static_cast<int>(s.size());
if (s_size == 0) {
// MultiByteToWideChar does not support zero length, handle separately.
buffer_.resize(1);
buffer_[0] = 0;
return;
}
int length = MultiByteToWideChar(
CP_UTF8, MB_ERR_INVALID_CHARS, s.data(), s_size, FMT_NULL, 0);
if (length == 0)
FMT_THROW(windows_error(GetLastError(), ERROR_MSG));
buffer_.resize(length + 1);
length = MultiByteToWideChar(
CP_UTF8, MB_ERR_INVALID_CHARS, s.data(), s_size, &buffer_[0], length);
if (length == 0)
FMT_THROW(windows_error(GetLastError(), ERROR_MSG));
buffer_[length] = 0;
}
FMT_FUNC internal::utf16_to_utf8::utf16_to_utf8(wstring_view s) {
if (int error_code = convert(s)) {
FMT_THROW(windows_error(error_code,
"cannot convert string from UTF-16 to UTF-8"));
}
}
FMT_FUNC int internal::utf16_to_utf8::convert(wstring_view s) {
if (s.size() > INT_MAX)
return ERROR_INVALID_PARAMETER;
int s_size = static_cast<int>(s.size());
if (s_size == 0) {
// WideCharToMultiByte does not support zero length, handle separately.
buffer_.resize(1);
buffer_[0] = 0;
return 0;
}
int length = WideCharToMultiByte(
CP_UTF8, 0, s.data(), s_size, FMT_NULL, 0, FMT_NULL, FMT_NULL);
if (length == 0)
return GetLastError();
buffer_.resize(length + 1);
length = WideCharToMultiByte(
CP_UTF8, 0, s.data(), s_size, &buffer_[0], length, FMT_NULL, FMT_NULL);
if (length == 0)
return GetLastError();
buffer_[length] = 0;
return 0;
}
FMT_FUNC void windows_error::init(
int err_code, string_view format_str, format_args args) {
error_code_ = err_code;
memory_buffer buffer;
internal::format_windows_error(buffer, err_code, vformat(format_str, args));
std::runtime_error &base = *this;
base = std::runtime_error(to_string(buffer));
}
#endif // FMT_USE_WINDOWS_H
FMT_FUNC void internal::error_handler::on_error(const char *message) {
FMT_THROW_FORMAT_ERROR(message);
}
#if FMT_USE_WINDOWS_H
FMT_FUNC void report_windows_error(
int error_code, fmt::string_view message) FMT_NOEXCEPT {
report_error(internal::format_windows_error, error_code, message);
}
#endif
FMT_END_NAMESPACE
#ifdef _MSC_VER
# pragma warning(pop)
#endif
#endif // FMT_FORMAT_INL_H_

56
Source/ThirdParty/fmt/format.cpp vendored Normal file
View File

@@ -0,0 +1,56 @@
// Formatting library for C++
//
// Copyright (c) 2012 - 2016, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#include "fmt/format-inl.h"
FMT_BEGIN_NAMESPACE
template FMT_API internal::locale_ref::locale_ref(const std::locale &loc);
template FMT_API std::locale internal::locale_ref::get<std::locale>() const;
// Explicit instantiations for char.
template FMT_API char internal::thousands_sep_impl(locale_ref);
template FMT_API void internal::basic_buffer<char>::append(const char *, const char *);
template FMT_API int internal::char_traits<char>::format_float(
char *, std::size_t, const char *, int, double);
template FMT_API int internal::char_traits<char>::format_float(
char *, std::size_t, const char *, int, long double);
#if FMT_USE_STRING
template FMT_API std::string internal::vformat<char>(
string_view, basic_format_args<format_context>);
#endif
template FMT_API format_context::iterator internal::vformat_to(
internal::buffer &, string_view, basic_format_args<format_context>);
template FMT_API void internal::sprintf_format(
double, internal::buffer &, core_format_specs);
template FMT_API void internal::sprintf_format(
long double, internal::buffer &, core_format_specs);
// Explicit instantiations for wchar_t.
template FMT_API wchar_t internal::thousands_sep_impl(locale_ref);
template FMT_API void internal::basic_buffer<wchar_t>::append(
const wchar_t *, const wchar_t *);
template FMT_API int internal::char_traits<wchar_t>::format_float(
wchar_t *, std::size_t, const wchar_t *, int, double);
template FMT_API int internal::char_traits<wchar_t>::format_float(
wchar_t *, std::size_t, const wchar_t *, int, long double);
#if FMT_USE_STRING
template FMT_API std::wstring internal::vformat<wchar_t>(
wstring_view, basic_format_args<wformat_context>);
#endif
FMT_END_NAMESPACE

3430
Source/ThirdParty/fmt/format.h vendored Normal file

File diff suppressed because it is too large Load Diff

129
Source/ThirdParty/fmt/ostream.h vendored Normal file
View File

@@ -0,0 +1,129 @@
// Formatting library for C++ - std::ostream support
//
// Copyright (c) 2012 - present, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_OSTREAM_H_
#define FMT_OSTREAM_H_
#include "format.h"
#include <ostream>
FMT_BEGIN_NAMESPACE
namespace internal {
template <class Char>
class formatbuf : public std::basic_streambuf<Char> {
private:
typedef typename std::basic_streambuf<Char>::int_type int_type;
typedef typename std::basic_streambuf<Char>::traits_type traits_type;
basic_buffer<Char> &buffer_;
public:
formatbuf(basic_buffer<Char> &buffer) : buffer_(buffer) {}
protected:
// The put-area is actually always empty. This makes the implementation
// simpler and has the advantage that the streambuf and the buffer are always
// in sync and sputc never writes into uninitialized memory. The obvious
// disadvantage is that each call to sputc always results in a (virtual) call
// to overflow. There is no disadvantage here for sputn since this always
// results in a call to xsputn.
int_type overflow(int_type ch = traits_type::eof()) FMT_OVERRIDE {
if (!traits_type::eq_int_type(ch, traits_type::eof()))
buffer_.push_back(static_cast<Char>(ch));
return ch;
}
std::streamsize xsputn(const Char *s, std::streamsize count) FMT_OVERRIDE {
buffer_.append(s, s + count);
return count;
}
};
template <typename Char>
struct test_stream : std::basic_ostream<Char> {
private:
struct null;
// Hide all operator<< from std::basic_ostream<Char>.
void operator<<(null);
};
// Checks if T has a user-defined operator<< (e.g. not a member of std::ostream).
template <typename T, typename Char>
class is_streamable {
private:
template <typename U>
static decltype(
internal::declval<test_stream<Char>&>()
<< internal::declval<U>(), std::true_type()) test(int);
template <typename>
static std::false_type test(...);
typedef decltype(test<T>(0)) result;
public:
static const bool value = result::value;
};
// Write the content of buf to os.
template <typename Char>
void write(std::basic_ostream<Char> &os, basic_buffer<Char> &buf) {
const Char *data = buf.data();
typedef std::make_unsigned<std::streamsize>::type UnsignedStreamSize;
UnsignedStreamSize size = buf.size();
UnsignedStreamSize max_size =
internal::to_unsigned((std::numeric_limits<std::streamsize>::max)());
do {
UnsignedStreamSize n = size <= max_size ? size : max_size;
os.write(data, static_cast<std::streamsize>(n));
data += n;
size -= n;
} while (size != 0);
}
template <typename Char, typename T>
void format_value(basic_buffer<Char> &buffer, const T &value) {
internal::formatbuf<Char> format_buf(buffer);
std::basic_ostream<Char> output(&format_buf);
output.exceptions(std::ios_base::failbit | std::ios_base::badbit);
output << value;
buffer.resize(buffer.size());
}
} // namespace internal
// Disable conversion to int if T has an overloaded operator<< which is a free
// function (not a member of std::ostream).
template <typename T, typename Char>
struct convert_to_int<T, Char, void> {
static const bool value =
convert_to_int<T, Char, int>::value &&
!internal::is_streamable<T, Char>::value;
};
// Formats an object of type T that has an overloaded ostream operator<<.
template <typename T, typename Char>
struct formatter<T, Char,
typename std::enable_if<
internal::is_streamable<T, Char>::value &&
!internal::format_type<
typename buffer_context<Char>::type, T>::value>::type>
: formatter<basic_string_view<Char>, Char> {
template <typename Context>
auto format(const T &value, Context &ctx) -> decltype(ctx.out()) {
basic_memory_buffer<Char> buffer;
internal::format_value(buffer, value);
basic_string_view<Char> str(buffer.data(), buffer.size());
return formatter<basic_string_view<Char>, Char>::format(str, ctx);
}
};
FMT_END_NAMESPACE
#endif // FMT_OSTREAM_H_