Add variable rate update for shadow maps atlas based on distance to light

This commit is contained in:
Wojtek Figat
2024-04-08 00:04:57 +02:00
parent 7d92779e99
commit 708fba5136
11 changed files with 328 additions and 151 deletions

View File

@@ -18,7 +18,8 @@
#include "Engine/Renderer/Lightmaps.h"
#endif
#define MaxTiles 6
#define SHADOWS_MAX_TILES 6
#define SHADOWS_MIN_RESOLUTION 16
#define NormalOffsetScaleTweak 100.0f
#define LocalLightNearPlane 10.0f
@@ -33,10 +34,10 @@ PACK_STRUCT(struct Data{
float ContactShadowsLength;
});
struct ShadowsAtlasTile : RectPack<ShadowsAtlasTile, uint16>
struct ShadowsAtlasRectTile : RectPack<ShadowsAtlasRectTile, uint16>
{
ShadowsAtlasTile(uint16 x, uint16 y, uint16 width, uint16 height)
: RectPack<ShadowsAtlasTile, uint16>(x, y, width, height)
ShadowsAtlasRectTile(uint16 x, uint16 y, uint16 width, uint16 height)
: RectPack<ShadowsAtlasRectTile, uint16>(x, y, width, height)
{
}
@@ -56,26 +57,25 @@ uint16 QuantizeResolution(float input)
return output;
}
struct ShadowAtlasLight
// State for shadow projection
struct ShadowAtlasLightTile
{
uint64 LastFrameUsed;
int32 ContextIndex;
int32 ContextCount;
uint16 Resolution;
uint16 TilesNeeded;
float Sharpness, Fade, NormalOffsetScale, Bias, FadeDistance;
Float4 CascadeSplits;
ShadowsAtlasTile* Tiles[MaxTiles];
Matrix WorldToShadow[MaxTiles];
ShadowsAtlasRectTile* RectTile;
Matrix WorldToShadow;
float FramesToUpdate; // Amount of frames (with fraction) until the next shadow update can happen
bool SkipUpdate;
Viewport CachedViewport; // The viewport used the last time to render shadow to the atlas
ShadowAtlasLight()
void Free(ShadowsCustomBuffer* buffer)
{
Platform::MemoryClear(this, sizeof(ShadowAtlasLight));
if (RectTile)
{
RectTile->Free(buffer);
RectTile = nullptr;
}
}
POD_COPYABLE(ShadowAtlasLight);
void SetWorldToShadow(int32 index, const Matrix& shadowViewProjection)
void SetWorldToShadow(const Matrix& shadowViewProjection)
{
// Transform Clip Space [-1,+1]^2 to UV Space [0,1]^2 (saves MAD instruction in shader)
const Matrix ClipToUV(
@@ -85,7 +85,120 @@ struct ShadowAtlasLight
0.5f, 0.5f, 0.0f, 1.0f);
Matrix m;
Matrix::Multiply(shadowViewProjection, ClipToUV, m);
Matrix::Transpose(m, WorldToShadow[index]);
Matrix::Transpose(m, WorldToShadow);
}
};
// State for shadow cache sed to invalidate any prerendered shadow depths
struct ShadowAtlasLightCache
{
bool Valid;
float ShadowsUpdateRate;
float ShadowsUpdateRateAtDistance;
Float3 Position;
float Radius;
Float3 Direction;
float Distance;
Float4 CascadeSplits;
void Set(const RenderView& view, const RenderLightData& light, const Float4& cascadeSplits = Float4::Zero)
{
Valid = true;
Distance = light.ShadowsDistance;
ShadowsUpdateRate = light.ShadowsUpdateRate;
ShadowsUpdateRateAtDistance = light.ShadowsUpdateRateAtDistance;
if (light.IsDirectionalLight)
{
// Sun
Position = view.Position;
Direction = light.Direction;
CascadeSplits = cascadeSplits;
}
else
{
// Local light
const auto& localLight = (const RenderLocalLightData&)light;
Position = light.Position;
Radius = localLight.Radius;
}
}
};
// State for light's shadows rendering
struct ShadowAtlasLight
{
uint64 LastFrameUsed;
int32 ContextIndex;
int32 ContextCount;
uint16 Resolution;
uint8 TilesNeeded;
uint8 TilesCount;
float Sharpness, Fade, NormalOffsetScale, Bias, FadeDistance, Distance;
Float4 CascadeSplits;
ShadowAtlasLightTile Tiles[SHADOWS_MAX_TILES];
ShadowAtlasLightCache Cache;
ShadowAtlasLight()
{
Platform::MemoryClear(this, sizeof(ShadowAtlasLight));
}
POD_COPYABLE(ShadowAtlasLight);
float CalculateUpdateRateInv(const RenderLightData& light, float distanceFromView, bool& freezeUpdate) const
{
const float shadowsUpdateRate = light.ShadowsUpdateRate;
const float shadowsUpdateRateAtDistance = shadowsUpdateRate * light.ShadowsUpdateRateAtDistance;
float updateRate = Math::Lerp(shadowsUpdateRate, shadowsUpdateRateAtDistance, Math::Saturate(distanceFromView / Distance));
// TODO: add global shadows update rate scale to be adjusted per-platform
freezeUpdate = updateRate <= ZeroTolerance;
if (freezeUpdate)
return 0.0f;
return 1.0f / updateRate;
}
void ValidateCache(const RenderView& view, const RenderLightData& light)
{
if (!Cache.Valid)
return;
if (!Math::NearEqual(Cache.Distance, light.ShadowsDistance) ||
!Math::NearEqual(Cache.ShadowsUpdateRate, light.ShadowsUpdateRate) ||
!Math::NearEqual(Cache.ShadowsUpdateRateAtDistance, light.ShadowsUpdateRateAtDistance))
{
// Invalidate
Cache.Valid = false;
}
if (light.IsDirectionalLight)
{
// Sun
if (Float3::Dot(Cache.Direction, light.Direction) < 0.999999f ||
!Float3::NearEqual(Cache.Position, view.Position, 1.0f) ||
!Float4::NearEqual(Cache.CascadeSplits, CascadeSplits))
{
// Invalidate
Cache.Valid = false;
}
}
else
{
// Local light
const auto& localLight = (const RenderLocalLightData&)light;
if (!Float3::NearEqual(Cache.Position, light.Position, 1.0f) ||
!Math::NearEqual(Cache.Radius, localLight.Radius))
{
// Invalidate
Cache.Valid = false;
}
}
for (int32 i = 0; i < TilesCount && Cache.Valid; i++)
{
auto& tile = Tiles[i];
if (tile.CachedViewport != Viewport(tile.RectTile->X, tile.RectTile->Y, tile.RectTile->Width, tile.RectTile->Height))
{
// Invalidate
Cache.Valid = false;
}
}
}
};
@@ -99,7 +212,7 @@ public:
GPUTexture* ShadowMapAtlas = nullptr;
DynamicTypedBuffer ShadowsBuffer;
GPUBufferView* ShadowsBufferView = nullptr;
ShadowsAtlasTile* AtlasTiles = nullptr; // TODO: optimize with a single allocation for atlas tiles
ShadowsAtlasRectTile* AtlasTiles = nullptr; // TODO: optimize with a single allocation for atlas tiles
Dictionary<Guid, ShadowAtlasLight> Lights;
ShadowsCustomBuffer()
@@ -117,6 +230,7 @@ public:
{
auto& atlasLight = it->Value;
Platform::MemoryClear(atlasLight.Tiles, sizeof(atlasLight.Tiles));
Platform::MemoryClear(&atlasLight.Cache, sizeof(atlasLight.Cache));
}
}
@@ -134,12 +248,12 @@ public:
}
};
void ShadowsAtlasTile::OnInsert(ShadowsCustomBuffer* buffer)
void ShadowsAtlasRectTile::OnInsert(ShadowsCustomBuffer* buffer)
{
buffer->AtlasPixelsUsed += (int32)Width * (int32)Height;
}
void ShadowsAtlasTile::OnFree(ShadowsCustomBuffer* buffer)
void ShadowsAtlasRectTile::OnFree(ShadowsCustomBuffer* buffer)
{
buffer->AtlasPixelsUsed -= (int32)Width * (int32)Height;
}
@@ -262,6 +376,7 @@ void ShadowsPass::SetupRenderContext(RenderContext& renderContext, RenderContext
shadowContext.List = RenderList::GetFromPool();
shadowContext.Buffers = renderContext.Buffers;
shadowContext.Task = renderContext.Task;
shadowContext.List->Clear();
}
void ShadowsPass::SetupLight(RenderContext& renderContext, RenderContextBatch& renderContextBatch, RenderLightData& light, ShadowAtlasLight& atlasLight)
@@ -272,17 +387,47 @@ void ShadowsPass::SetupLight(RenderContext& renderContext, RenderContextBatch& r
atlasLight.NormalOffsetScale = light.ShadowsNormalOffsetScale * NormalOffsetScaleTweak * (1.0f / (float)atlasLight.Resolution);
atlasLight.Bias = light.ShadowsDepthBias;
atlasLight.FadeDistance = Math::Max(light.ShadowsFadeDistance, 0.1f);
atlasLight.Distance = Math::Min(renderContext.View.Far, light.ShadowsDistance);
}
void ShadowsPass::SetupLight(RenderContext& renderContext, RenderContextBatch& renderContextBatch, RenderLocalLightData& light, ShadowAtlasLight& atlasLight)
bool ShadowsPass::SetupLight(RenderContext& renderContext, RenderContextBatch& renderContextBatch, RenderLocalLightData& light, ShadowAtlasLight& atlasLight)
{
SetupLight(renderContext, renderContextBatch, (RenderLightData&)light, atlasLight);
// Fade shadow on distance
const float fadeDistance = Math::Max(light.ShadowsFadeDistance, 0.1f);
const float dstLightToView = Float3::Distance(light.Position, renderContext.View.Position);
const float fade = 1 - Math::Saturate((dstLightToView - light.Radius - light.ShadowsDistance + fadeDistance) / fadeDistance);
const float dstLightToView = Float3::Distance(light.Position, renderContext.View.Position) - light.Radius;
const float fade = 1 - Math::Saturate((dstLightToView - atlasLight.Distance + fadeDistance) / fadeDistance);
atlasLight.Fade *= fade;
// Update cached state (invalidate it if the light changed)
atlasLight.ValidateCache(renderContext.View, light);
// Calculate update rate based on the distance to the view
bool freezeUpdate;
const float updateRateInv = atlasLight.CalculateUpdateRateInv(light, dstLightToView, freezeUpdate);
float& framesToUpdate = atlasLight.Tiles[0].FramesToUpdate; // Use the first tile for all local light projections to be in sync
if ((framesToUpdate > 0.0f || freezeUpdate) && atlasLight.Cache.Valid)
{
// Light state matches the cached state and the update rate allows us to reuse the cached shadow map so skip update
if (!freezeUpdate)
framesToUpdate -= 1.0f;
for (auto& tile : atlasLight.Tiles)
tile.SkipUpdate = true;
return true;
}
framesToUpdate += updateRateInv - 1.0f;
// Cache the current state
atlasLight.Cache.Set(renderContext.View, light);
for (int32 i = 0; i < atlasLight.TilesCount; i++)
{
auto& tile = atlasLight.Tiles[i];
tile.SkipUpdate = false;
tile.CachedViewport = Viewport(tile.RectTile->X, tile.RectTile->Y, tile.RectTile->Width, tile.RectTile->Height);
}
return false;
}
void ShadowsPass::SetupLight(RenderContext& renderContext, RenderContextBatch& renderContextBatch, RenderDirectionalLightData& light, ShadowAtlasLight& atlasLight)
@@ -290,29 +435,16 @@ void ShadowsPass::SetupLight(RenderContext& renderContext, RenderContextBatch& r
SetupLight(renderContext, renderContextBatch, (RenderLightData&)light, atlasLight);
const RenderView& view = renderContext.View;
auto mainCache = renderContext.List;
Float3 lightDirection = light.Direction;
float shadowsDistance = Math::Min(view.Far, light.ShadowsDistance);
int32 csmCount = Math::Clamp(light.CascadeCount, 0, MAX_CSM_CASCADES);
const int32 csmCount = atlasLight.TilesCount;
const auto shadowMapsSize = (float)atlasLight.Resolution;
// Views with orthographic cameras cannot use cascades, we force it to 1 shadow map here
if (view.Projection.M44 == 1.0f)
csmCount = 1;
// Calculate cascade splits
auto cameraNear = view.Near;
auto cameraFar = view.Far;
auto cameraRange = cameraFar - cameraNear;
float minDistance;
float maxDistance;
const float minDistance = view.Near;
const float maxDistance = view.Near + atlasLight.Distance;
const float viewRange = view.Far - view.Near;
float cascadeSplits[MAX_CSM_CASCADES];
{
minDistance = cameraNear;
maxDistance = cameraNear + shadowsDistance;
PartitionMode partitionMode = light.PartitionMode;
float pssmFactor = 0.5f;
float splitDistance0 = light.Cascade1Spacing;
float splitDistance1 = Math::Max(splitDistance0, light.Cascade2Spacing);
float splitDistance2 = Math::Max(splitDistance1, light.Cascade3Spacing);
@@ -346,8 +478,8 @@ void ShadowsPass::SetupLight(RenderContext& renderContext, RenderContextBatch& r
}
else if (partitionMode == PartitionMode::Logarithmic || partitionMode == PartitionMode::PSSM)
{
const float pssmFactor = 0.5f;
const float lambda = partitionMode == PartitionMode::PSSM ? pssmFactor : 1.0f;
const auto range = maxDistance - minDistance;
const auto ratio = maxDistance / minDistance;
const auto logRatio = Math::Clamp(1.0f - lambda, 0.0f, 1.0f);
@@ -355,7 +487,7 @@ void ShadowsPass::SetupLight(RenderContext& renderContext, RenderContextBatch& r
{
// Compute cascade split (between znear and zfar)
const float distribute = static_cast<float>(cascadeLevel + 1) / csmCount;
float logZ = static_cast<float>(minDistance * powf(ratio, distribute));
float logZ = minDistance * Math::Pow(ratio, distribute);
float uniformZ = minDistance + range * distribute;
cascadeSplits[cascadeLevel] = Math::Lerp(uniformZ, logZ, logRatio);
}
@@ -363,9 +495,44 @@ void ShadowsPass::SetupLight(RenderContext& renderContext, RenderContextBatch& r
// Convert distance splits to ratios cascade in the range [0, 1]
for (int32 i = 0; i < MAX_CSM_CASCADES; i++)
cascadeSplits[i] = (cascadeSplits[i] - cameraNear) / cameraRange;
cascadeSplits[i] = (cascadeSplits[i] - view.Near) / viewRange;
}
atlasLight.CascadeSplits = view.Near + Float4(cascadeSplits) * cameraRange;
atlasLight.CascadeSplits = view.Near + Float4(cascadeSplits) * viewRange;
// Update cached state (invalidate it if the light changed)
atlasLight.ValidateCache(renderContext.View, light);
// Update cascades to check which should be updated this frame
atlasLight.ContextIndex = renderContextBatch.Contexts.Count();
atlasLight.ContextCount = 0;
for (int32 cascadeIndex = 0; cascadeIndex < csmCount; cascadeIndex++)
{
const float dstToCascade = atlasLight.CascadeSplits.Raw[cascadeIndex];
bool freezeUpdate;
const float updateRateInv = atlasLight.CalculateUpdateRateInv(light, dstToCascade, freezeUpdate);
auto& tile = atlasLight.Tiles[cascadeIndex];
if ((tile.FramesToUpdate > 0.0f || freezeUpdate) && atlasLight.Cache.Valid)
{
// Light state matches the cached state and the update rate allows us to reuse the cached shadow map so skip update
if (!freezeUpdate)
tile.FramesToUpdate -= 1.0f;
tile.SkipUpdate = true;
continue;
}
tile.FramesToUpdate += updateRateInv - 1.0f;
// Cache the current state
tile.SkipUpdate = false;
tile.CachedViewport = Viewport(tile.RectTile->X, tile.RectTile->Y, tile.RectTile->Width, tile.RectTile->Height);
atlasLight.ContextCount++;
}
// Init shadow data
atlasLight.ContextIndex = renderContextBatch.Contexts.Count();
if (atlasLight.ContextCount == 0)
return;
renderContextBatch.Contexts.AddDefault(atlasLight.ContextCount);
atlasLight.Cache.Set(renderContext.View, light, atlasLight.CascadeSplits);
// Select best Up vector
Float3 side = Float3::UnitX;
@@ -374,37 +541,34 @@ void ShadowsPass::SetupLight(RenderContext& renderContext, RenderContextBatch& r
for (int32 i = 0; i < ARRAY_COUNT(vectorUps); i++)
{
const Float3 vectorUp = vectorUps[i];
if (Math::Abs(Float3::Dot(lightDirection, vectorUp)) < (1.0f - 0.0001f))
if (Math::Abs(Float3::Dot(light.Direction, vectorUp)) < (1.0f - 0.0001f))
{
side = Float3::Normalize(Float3::Cross(vectorUp, lightDirection));
upDirection = Float3::Normalize(Float3::Cross(lightDirection, side));
side = Float3::Normalize(Float3::Cross(vectorUp, light.Direction));
upDirection = Float3::Normalize(Float3::Cross(light.Direction, side));
break;
}
}
// Temporary data
Float3 frustumCorners[8];
Matrix shadowView, shadowProjection, shadowVP;
// Init shadow data
atlasLight.ContextIndex = renderContextBatch.Contexts.Count();
atlasLight.ContextCount = csmCount;
renderContextBatch.Contexts.AddDefault(atlasLight.ContextCount);
// Create the different view and projection matrices for each split
float splitMinRatio = 0;
float splitMaxRatio = (minDistance - cameraNear) / cameraRange;
float splitMaxRatio = (minDistance - view.Near) / viewRange;
int32 contextIndex = 0;
for (int32 cascadeIndex = 0; cascadeIndex < csmCount; cascadeIndex++)
{
// Cascade splits
const auto oldSplitMinRatio = splitMinRatio;
splitMinRatio = splitMaxRatio;
splitMaxRatio = cascadeSplits[cascadeIndex];
auto& tile = atlasLight.Tiles[cascadeIndex];
if (tile.SkipUpdate)
continue;
// Calculate cascade split frustum corners in view space
Float3 frustumCorners[8];
for (int32 j = 0; j < 4; j++)
{
float overlap = 0.1f * (splitMinRatio - oldSplitMinRatio); // CSM blending overlap
const RenderList* mainCache = renderContext.List;
const auto frustumRangeVS = mainCache->FrustumCornersVs[j + 4] - mainCache->FrustumCornersVs[j];
frustumCorners[j] = mainCache->FrustumCornersVs[j] + frustumRangeVS * (splitMinRatio - overlap);
frustumCorners[j + 4] = mainCache->FrustumCornersVs[j] + frustumRangeVS * splitMaxRatio;
@@ -438,8 +602,8 @@ void ShadowsPass::SetupLight(RenderContext& renderContext, RenderContextBatch& r
float shadowMapHalfSize = shadowMapsSize * 0.5f;
float x = Math::Ceil(Float3::Dot(target, upDirection) * shadowMapHalfSize / boundingVSRadius) * boundingVSRadius / shadowMapHalfSize;
float y = Math::Ceil(Float3::Dot(target, side) * shadowMapHalfSize / boundingVSRadius) * boundingVSRadius / shadowMapHalfSize;
float z = Float3::Dot(target, lightDirection);
target = upDirection * x + side * y + lightDirection * z;
float z = Float3::Dot(target, light.Direction);
target = upDirection * x + side * y + light.Direction * z;
}
}
@@ -447,7 +611,8 @@ void ShadowsPass::SetupLight(RenderContext& renderContext, RenderContextBatch& r
const auto farClip = cascadeMaxBoundLS.Z - cascadeMinBoundLS.Z;
// Create shadow view matrix
Matrix::LookAt(target - lightDirection * cascadeMaxBoundLS.Z, target, upDirection, shadowView);
Matrix shadowView, shadowProjection, shadowVP;
Matrix::LookAt(target - light.Direction * cascadeMaxBoundLS.Z, target, upDirection, shadowView);
// Create viewport for culling with extended near/far planes due to culling issues
Matrix cullingVP;
@@ -474,14 +639,13 @@ void ShadowsPass::SetupLight(RenderContext& renderContext, RenderContextBatch& r
Matrix::Multiply(shadowView, shadowProjection, shadowVP);
}
atlasLight.SetWorldToShadow(cascadeIndex, shadowVP);
tile.SetWorldToShadow(shadowVP);
// Setup context for cascade
auto& shadowContext = renderContextBatch.Contexts[atlasLight.ContextIndex + cascadeIndex];
auto& shadowContext = renderContextBatch.Contexts[atlasLight.ContextIndex + contextIndex++];
SetupRenderContext(renderContext, shadowContext);
shadowContext.List->Clear();
shadowContext.View.Position = -lightDirection * shadowsDistance + view.Position;
shadowContext.View.Direction = lightDirection;
shadowContext.View.Position = light.Direction * -atlasLight.Distance + view.Position;
shadowContext.View.Direction = light.Direction;
shadowContext.View.SetUp(shadowView, shadowProjection);
shadowContext.View.CullingFrustum.SetMatrix(cullingVP);
shadowContext.View.PrepareCache(shadowContext, shadowMapsSize, shadowMapsSize, Float2::Zero, &view);
@@ -490,54 +654,40 @@ void ShadowsPass::SetupLight(RenderContext& renderContext, RenderContextBatch& r
void ShadowsPass::SetupLight(RenderContext& renderContext, RenderContextBatch& renderContextBatch, RenderPointLightData& light, ShadowAtlasLight& atlasLight)
{
SetupLight(renderContext, renderContextBatch, (RenderLocalLightData&)light, atlasLight);
if (SetupLight(renderContext, renderContextBatch, (RenderLocalLightData&)light, atlasLight))
return;
// Init shadow data
// Render depth to all 6 faces of the cube map
atlasLight.ContextIndex = renderContextBatch.Contexts.Count();
atlasLight.ContextCount = 6;
renderContextBatch.Contexts.AddDefault(atlasLight.ContextCount);
const auto& view = renderContext.View;
const auto shadowMapsSize = (float)atlasLight.Resolution;
// Fade shadow on distance
const float fadeDistance = Math::Max(light.ShadowsFadeDistance, 0.1f);
const float dstLightToView = Float3::Distance(light.Position, view.Position);
const float fade = 1 - Math::Saturate((dstLightToView - light.Radius - light.ShadowsDistance + fadeDistance) / fadeDistance);
atlasLight.Fade *= fade;
// Render depth to all 6 faces of the cube map
for (int32 faceIndex = 0; faceIndex < 6; faceIndex++)
{
auto& shadowContext = renderContextBatch.Contexts[atlasLight.ContextIndex + faceIndex];
SetupRenderContext(renderContext, shadowContext);
shadowContext.List->Clear();
shadowContext.View.SetUpCube(LocalLightNearPlane, light.Radius, light.Position);
shadowContext.View.SetFace(faceIndex);
shadowContext.View.PrepareCache(shadowContext, shadowMapsSize, shadowMapsSize, Float2::Zero, &view);
atlasLight.SetWorldToShadow(faceIndex, shadowContext.View.ViewProjection());
const auto shadowMapsSize = (float)atlasLight.Resolution;
shadowContext.View.PrepareCache(shadowContext, shadowMapsSize, shadowMapsSize, Float2::Zero, &renderContext.View);
atlasLight.Tiles[faceIndex].SetWorldToShadow(shadowContext.View.ViewProjection());
}
}
void ShadowsPass::SetupLight(RenderContext& renderContext, RenderContextBatch& renderContextBatch, RenderSpotLightData& light, ShadowAtlasLight& atlasLight)
{
SetupLight(renderContext, renderContextBatch, (RenderLocalLightData&)light, atlasLight);
if (SetupLight(renderContext, renderContextBatch, (RenderLocalLightData&)light, atlasLight))
return;
// Init shadow data
// Render depth to a single projection
atlasLight.ContextIndex = renderContextBatch.Contexts.Count();
atlasLight.ContextCount = 1;
renderContextBatch.Contexts.AddDefault(atlasLight.ContextCount);
const auto& view = renderContext.View;
const auto shadowMapsSize = (float)atlasLight.Resolution;
// Render depth to a single projection
auto& shadowContext = renderContextBatch.Contexts[atlasLight.ContextIndex];
SetupRenderContext(renderContext, shadowContext);
shadowContext.List->Clear();
shadowContext.View.SetProjector(LocalLightNearPlane, light.Radius, light.Position, light.Direction, light.UpVector, light.OuterConeAngle * 2.0f);
shadowContext.View.PrepareCache(shadowContext, shadowMapsSize, shadowMapsSize, Float2::Zero, &view);
atlasLight.SetWorldToShadow(0, shadowContext.View.ViewProjection());
const auto shadowMapsSize = (float)atlasLight.Resolution;
shadowContext.View.PrepareCache(shadowContext, shadowMapsSize, shadowMapsSize, Float2::Zero, &renderContext.View);
atlasLight.Tiles[0].SetWorldToShadow(shadowContext.View.ViewProjection());
}
void ShadowsPass::Dispose()
@@ -624,7 +774,7 @@ void ShadowsPass::SetupShadows(RenderContext& renderContext, RenderContextBatch&
shadows.ViewOrigin = renderContext.View.Origin;
}
if (!shadows.AtlasTiles)
shadows.AtlasTiles = New<ShadowsAtlasTile>(0, 0, atlasResolution, atlasResolution);
shadows.AtlasTiles = New<ShadowsAtlasRectTile>(0, 0, atlasResolution, atlasResolution);
// Update/add lights
for (const RenderLightData* light : shadowedLights)
@@ -637,12 +787,17 @@ void ShadowsPass::SetupShadows(RenderContext& renderContext, RenderContextBatch&
atlasLight.Resolution = QuantizeResolution(lightResolutionFloat);
// Cull too small lights
constexpr uint16 MinResolution = 16;
if (atlasLight.Resolution < MinResolution)
if (atlasLight.Resolution < SHADOWS_MIN_RESOLUTION)
continue;
if (light->IsDirectionalLight)
atlasLight.TilesNeeded = Math::Clamp(((const RenderDirectionalLightData*)light)->CascadeCount, 0, MAX_CSM_CASCADES);
{
atlasLight.TilesNeeded = Math::Clamp(((const RenderDirectionalLightData*)light)->CascadeCount, 1, MAX_CSM_CASCADES);
// Views with orthographic cameras cannot use cascades, we force it to 1 shadow map here
if (renderContext.View.IsOrthographicProjection())
atlasLight.TilesNeeded = 1;
}
else if (light->IsPointLight)
atlasLight.TilesNeeded = 6;
else
@@ -655,11 +810,8 @@ void ShadowsPass::SetupShadows(RenderContext& renderContext, RenderContextBatch&
{
if (it->Value.LastFrameUsed != currentFrame)
{
for (auto& tile : it->Value.Tiles)
{
if (tile)
tile->Free(&shadows);
}
for (ShadowAtlasLightTile& tile : it->Value.Tiles)
tile.Free(&shadows);
shadows.Lights.Remove(it);
}
}
@@ -696,50 +848,41 @@ RETRY_ATLAS_SETUP:
}
// Macro checks if light has proper amount of tiles already assigned and the resolution is matching
#define IS_LIGHT_TILE_REUSABLE (atlasLight.ContextCount == atlasLight.TilesNeeded && atlasLight.Tiles[0] && atlasLight.Tiles[0]->Width == atlasLight.Resolution)
#define IS_LIGHT_TILE_REUSABLE (atlasLight.TilesCount == atlasLight.TilesNeeded && atlasLight.Tiles[0].RectTile && atlasLight.Tiles[0].RectTile->Width == atlasLight.Resolution)
// Remove incorrect tiles before allocating new ones
for (RenderLightData* light : shadowedLights)
{
auto& atlasLight = shadows.Lights[light->ID];
ShadowAtlasLight& atlasLight = shadows.Lights[light->ID];
if (IS_LIGHT_TILE_REUSABLE)
continue;
// Remove existing tiles
for (auto& tile : atlasLight.Tiles)
{
if (tile)
{
tile->Free(&shadows);
tile = nullptr;
}
}
for (ShadowAtlasLightTile& tile : atlasLight.Tiles)
tile.Free(&shadows);
}
// Insert tiles into the atlas (already sorted to favor the first ones)
for (RenderLightData* light : shadowedLights)
{
auto& atlasLight = shadows.Lights[light->ID];
if (IS_LIGHT_TILE_REUSABLE || atlasLight.Resolution < 16)
if (IS_LIGHT_TILE_REUSABLE || atlasLight.Resolution < SHADOWS_MIN_RESOLUTION)
continue;
// Try to insert tiles
bool failedToInsert = false;
for (int32 tileIndex = 0; tileIndex < atlasLight.TilesNeeded; tileIndex++)
{
auto tile = shadows.AtlasTiles->Insert(atlasLight.Resolution, atlasLight.Resolution, 0, &shadows);
if (!tile)
auto rectTile = shadows.AtlasTiles->Insert(atlasLight.Resolution, atlasLight.Resolution, 0, &shadows);
if (!rectTile)
{
// Free any previous tiles that were added
for (int32 i = 0; i < tileIndex; i++)
{
atlasLight.Tiles[i]->Free(&shadows);
atlasLight.Tiles[i] = nullptr;
}
atlasLight.Tiles[i].Free(&shadows);
failedToInsert = true;
break;
}
atlasLight.Tiles[tileIndex] = tile;
atlasLight.Tiles[tileIndex].RectTile = rectTile;
}
if (failedToInsert)
{
@@ -757,7 +900,7 @@ RETRY_ATLAS_SETUP:
// Rebuild atlas
shadows.ClearTiles();
shadows.AtlasTiles = New<ShadowsAtlasTile>(0, 0, atlasResolution, atlasResolution);
shadows.AtlasTiles = New<ShadowsAtlasRectTile>(0, 0, atlasResolution, atlasResolution);
goto RETRY_ATLAS_SETUP;
}
}
@@ -766,9 +909,14 @@ RETRY_ATLAS_SETUP:
for (RenderLightData* light : shadowedLights)
{
auto& atlasLight = shadows.Lights[light->ID];
if (atlasLight.Tiles[0] && atlasLight.Tiles[0]->Width == atlasLight.Resolution)
if (atlasLight.Tiles[0].RectTile && atlasLight.Tiles[0].RectTile->Width == atlasLight.Resolution)
{
// Invalidate cache when whole atlas will be cleared
if (shadows.ClearShadowMapAtlas)
atlasLight.Cache.Valid = false;
light->HasShadow = true;
atlasLight.TilesCount = atlasLight.TilesNeeded;
if (light->IsPointLight)
SetupLight(renderContext, renderContextBatch, *(RenderPointLightData*)light, atlasLight);
else if (light->IsSpotLight)
@@ -787,7 +935,7 @@ RETRY_ATLAS_SETUP:
for (RenderLightData* light : shadowedLights)
{
auto& atlasLight = shadows.Lights[light->ID];
if (atlasLight.Tiles[0] == nullptr)
if (atlasLight.Tiles[0].RectTile == nullptr)
{
light->ShadowsBufferAddress = 0; // Clear to indicate no shadow
continue;
@@ -797,26 +945,24 @@ RETRY_ATLAS_SETUP:
light->ShadowsBufferAddress = shadows.ShadowsBuffer.Data.Count() / sizeof(Float4);
// Write shadow data (this must match HLSL)
const int32 tilesCount = atlasLight.ContextCount;
{
// Shadow info
auto* packed = shadows.ShadowsBuffer.WriteReserve<Float4>(2);
Color32 packed0x((byte)(atlasLight.Sharpness * (255.0f / 10.0f)), (byte)(atlasLight.Fade * 255.0f), tilesCount, 0);
Color32 packed0x((byte)(atlasLight.Sharpness * (255.0f / 10.0f)), (byte)(atlasLight.Fade * 255.0f), (byte)atlasLight.TilesCount, 0);
packed[0] = Float4(*(const float*)&packed0x, atlasLight.FadeDistance, atlasLight.NormalOffsetScale, atlasLight.Bias);
packed[1] = atlasLight.CascadeSplits;
}
for (int32 tileIndex = 0; tileIndex < tilesCount; tileIndex++)
for (int32 tileIndex = 0; tileIndex < atlasLight.TilesCount; tileIndex++)
{
// Shadow projection info
const ShadowsAtlasTile* tile = atlasLight.Tiles[tileIndex];
ASSERT(tile);
const Matrix& worldToShadow = atlasLight.WorldToShadow[tileIndex];
const ShadowAtlasLightTile& tile = atlasLight.Tiles[tileIndex];
ASSERT(tile.RectTile);
auto* packed = shadows.ShadowsBuffer.WriteReserve<Float4>(5);
packed[0] = Float4(tile->Width, tile->Height, tile->X, tile->Y) * atlasResolutionInv; // UV to AtlasUV via a single MAD instruction
packed[1] = worldToShadow.GetColumn1();
packed[2] = worldToShadow.GetColumn2();
packed[3] = worldToShadow.GetColumn3();
packed[4] = worldToShadow.GetColumn4();
packed[0] = Float4(tile.RectTile->Width, tile.RectTile->Height, tile.RectTile->X, tile.RectTile->Y) * atlasResolutionInv; // UV to AtlasUV via a single MAD instruction
packed[1] = tile.WorldToShadow.GetColumn1();
packed[2] = tile.WorldToShadow.GetColumn2();
packed[3] = tile.WorldToShadow.GetColumn3();
packed[4] = tile.WorldToShadow.GetColumn4();
}
}
GPUContext* context = GPUDevice::Instance->GetMainContext();
@@ -852,14 +998,18 @@ void ShadowsPass::RenderShadowMaps(RenderContextBatch& renderContextBatch)
for (auto& e : shadows.Lights)
{
const ShadowAtlasLight& atlasLight = e.Value;
for (int32 tileIndex = 0; tileIndex < atlasLight.ContextCount; tileIndex++)
int32 contextIndex = 0;
for (int32 tileIndex = 0; tileIndex < atlasLight.TilesCount; tileIndex++)
{
const ShadowsAtlasTile* tile = atlasLight.Tiles[tileIndex];
if (!tile)
const ShadowAtlasLightTile& tile = atlasLight.Tiles[tileIndex];
if (!tile.RectTile)
break;
if (tile.SkipUpdate)
continue;
// Set viewport for tile
context->SetViewportAndScissors(Viewport(tile->X, tile->Y, tile->Width, tile->Height));
ASSERT_LOW_LAYER(tile.CachedViewport == Viewport(tile.RectTile->X, tile.RectTile->Y, tile.RectTile->Width, tile.RectTile->Height));
context->SetViewportAndScissors(tile.CachedViewport);
if (!shadows.ClearShadowMapAtlas)
{
@@ -870,7 +1020,7 @@ void ShadowsPass::RenderShadowMaps(RenderContextBatch& renderContextBatch)
}
// Draw objects depth
auto& shadowContext = renderContextBatch.Contexts[atlasLight.ContextIndex + tileIndex];
auto& shadowContext = renderContextBatch.Contexts[atlasLight.ContextIndex + contextIndex++];
shadowContext.List->ExecuteDrawCalls(shadowContext, DrawCallsListType::Depth);
shadowContext.List->ExecuteDrawCalls(shadowContext, shadowContext.List->ShadowDepthDrawCallsList, renderContext.List->DrawCalls, nullptr);
}