Introduce separate GI directory

This commit is contained in:
Wojciech Figat
2022-05-02 12:09:53 +02:00
parent 4b6fce7e5d
commit acd064c364
10 changed files with 14 additions and 14 deletions

View File

@@ -0,0 +1,238 @@
// Copyright (c) 2012-2022 Wojciech Figat. All rights reserved.
#include "./Flax/Common.hlsl"
#include "./Flax/Collisions.hlsl"
// This must match C++
#define GLOBAL_SURFACE_ATLAS_CHUNKS_RESOLUTION 40 // Amount of chunks (in each direction) to split atlas draw distance for objects culling
#define GLOBAL_SURFACE_ATLAS_CHUNKS_GROUP_SIZE 4
#define GLOBAL_SURFACE_ATLAS_TILE_DATA_STRIDE 5 // Amount of float4s per-tile
#define GLOBAL_SURFACE_ATLAS_TILE_NORMAL_THRESHOLD 0.1f // Cut-off value for tiles transitions blending during sampling
#define GLOBAL_SURFACE_ATLAS_TILE_PROJ_PLANE_OFFSET 0.1f // Small offset to prevent clipping with the closest triangles (shifts near and far planes)
struct GlobalSurfaceTile
{
float4 AtlasRectUV;
float4x4 WorldToLocal;
float3 ViewBoundsSize;
};
struct GlobalSurfaceObject
{
float3 BoundsPosition;
float BoundsRadius;
float4x4 WorldToLocal;
float3 Extent;
uint TileOffsets[6];
uint DataSize; // count of float4s for object+tiles
};
float4 LoadGlobalSurfaceAtlasObjectBounds(Buffer<float4> objects, uint objectAddress)
{
// This must match C++
return objects.Load(objectAddress + 0);
}
uint LoadGlobalSurfaceAtlasObjectDataSize(Buffer<float4> objects, uint objectAddress)
{
// This must match C++
return asuint(objects.Load(objectAddress + 1).w);
}
GlobalSurfaceObject LoadGlobalSurfaceAtlasObject(Buffer<float4> objects, uint objectAddress)
{
// This must match C++
float4 vector0 = objects.Load(objectAddress + 0);
float4 vector1 = objects.Load(objectAddress + 1);
float4 vector2 = objects.Load(objectAddress + 2);
float4 vector3 = objects.Load(objectAddress + 3);
float4 vector4 = objects.Load(objectAddress + 4);
float4 vector5 = objects.Load(objectAddress + 5); // w unused
GlobalSurfaceObject object = (GlobalSurfaceObject)0;
object.BoundsPosition = vector0.xyz;
object.BoundsRadius = vector0.w;
object.WorldToLocal[0] = float4(vector2.xyz, 0.0f);
object.WorldToLocal[1] = float4(vector3.xyz, 0.0f);
object.WorldToLocal[2] = float4(vector4.xyz, 0.0f);
object.WorldToLocal[3] = float4(vector2.w, vector3.w, vector4.w, 1.0f);
object.Extent = vector5.xyz;
uint vector1x = asuint(vector1.x);
uint vector1y = asuint(vector1.y);
uint vector1z = asuint(vector1.z);
object.DataSize = asuint(vector1.w);
object.TileOffsets[0] = vector1x & 0xffff;
object.TileOffsets[1] = vector1x >> 16;
object.TileOffsets[2] = vector1y & 0xffff;
object.TileOffsets[3] = vector1y >> 16;
object.TileOffsets[4] = vector1z & 0xffff;
object.TileOffsets[5] = vector1z >> 16;
return object;
}
GlobalSurfaceTile LoadGlobalSurfaceAtlasTile(Buffer<float4> objects, uint tileAddress)
{
// This must match C++
float4 vector0 = objects.Load(tileAddress + 0);
float4 vector1 = objects.Load(tileAddress + 1);
float4 vector2 = objects.Load(tileAddress + 2);
float4 vector3 = objects.Load(tileAddress + 3);
float4 vector4 = objects.Load(tileAddress + 4); // w unused
GlobalSurfaceTile tile = (GlobalSurfaceTile)0;
tile.AtlasRectUV = vector0.xyzw;
tile.WorldToLocal[0] = float4(vector1.xyz, 0.0f);
tile.WorldToLocal[1] = float4(vector2.xyz, 0.0f);
tile.WorldToLocal[2] = float4(vector3.xyz, 0.0f);
tile.WorldToLocal[3] = float4(vector1.w, vector2.w, vector3.w, 1.0f);
tile.ViewBoundsSize = vector4.xyz;
return tile;
}
// Global Surface Atlas data for a constant buffer
struct GlobalSurfaceAtlasData
{
float3 ViewPos;
float Padding0;
float Padding1;
float Resolution;
float ChunkSize;
uint ObjectsCount;
};
float3 SampleGlobalSurfaceAtlasTex(Texture2D atlas, float2 atlasUV, float4 bilinearWeights)
{
float4 sampleX = atlas.GatherRed(SamplerLinearClamp, atlasUV);
float4 sampleY = atlas.GatherGreen(SamplerLinearClamp, atlasUV);
float4 sampleZ = atlas.GatherBlue(SamplerLinearClamp, atlasUV);
return float3(dot(sampleX, bilinearWeights), dot(sampleY, bilinearWeights), dot(sampleZ, bilinearWeights));
}
float4 SampleGlobalSurfaceAtlasTile(const GlobalSurfaceAtlasData data, GlobalSurfaceTile tile, Texture2D depth, Texture2D atlas, float3 worldPosition, float3 worldNormal, float surfaceThreshold)
{
// Tile normal weight based on the sampling angle
float3 tileNormal = normalize(mul(worldNormal, (float3x3)tile.WorldToLocal));
float normalWeight = saturate(dot(float3(0, 0, -1), tileNormal));
normalWeight = (normalWeight - GLOBAL_SURFACE_ATLAS_TILE_NORMAL_THRESHOLD) / (1.0f - GLOBAL_SURFACE_ATLAS_TILE_NORMAL_THRESHOLD);
if (normalWeight <= 0.0f)
return 0;
// Get tile UV and depth at the world position
float3 tilePosition = mul(float4(worldPosition, 1), tile.WorldToLocal).xyz;
float tileDepth = tilePosition.z / tile.ViewBoundsSize.z;
float2 tileUV = saturate((tilePosition.xy / tile.ViewBoundsSize.xy) + 0.5f);
tileUV.y = 1.0 - tileUV.y;
float2 atlasUV = tileUV * tile.AtlasRectUV.zw + tile.AtlasRectUV.xy;
// Calculate bilinear weights
float2 bilinearWeightsUV = frac(atlasUV * data.Resolution + 0.5f);
float4 bilinearWeights;
bilinearWeights.x = (1.0 - bilinearWeightsUV.x) * (bilinearWeightsUV.y);
bilinearWeights.y = (bilinearWeightsUV.x) * (bilinearWeightsUV.y);
bilinearWeights.z = (bilinearWeightsUV.x) * (1 - bilinearWeightsUV.y);
bilinearWeights.w = (1 - bilinearWeightsUV.x) * (1 - bilinearWeightsUV.y);
// Tile depth weight based on sample position occlusion
float4 tileZ = depth.Gather(SamplerLinearClamp, atlasUV, 0.0f);
float depthThreshold = 2.0f * surfaceThreshold / tile.ViewBoundsSize.z;
float4 depthVisibility = 1.0f;
UNROLL
for (uint i = 0; i < 4; i++)
{
depthVisibility[i] = 1.0f - saturate((abs(tileDepth - tileZ[i]) - depthThreshold) / (0.5f * depthThreshold));
if (tileZ[i] >= 1.0f)
depthVisibility[i] = 0.0f;
}
float sampleWeight = normalWeight * dot(depthVisibility, bilinearWeights);
if (sampleWeight <= 0.0f)
return 0;
bilinearWeights = depthVisibility * bilinearWeights;
//bilinearWeights = normalize(bilinearWeights);
// Sample atlas texture
float3 sampleColor = SampleGlobalSurfaceAtlasTex(atlas, atlasUV, bilinearWeights);
//return float4(sampleWeight.xxx, sampleWeight);
return float4(sampleColor.rgb * sampleWeight, sampleWeight);
//return float4(normalWeight.xxx, sampleWeight);
}
// Samples the Global Surface Atlas and returns the lighting (with opacity) at the given world location (and direction).
// surfaceThreshold - Additional threshold (in world-units) between object or tile size compared with input data (error due to SDF or LOD incorrect appearance)
float4 SampleGlobalSurfaceAtlas(const GlobalSurfaceAtlasData data, ByteAddressBuffer chunks, Buffer<float4> culledObjects, Texture2D depth, Texture2D atlas, float3 worldPosition, float3 worldNormal, float surfaceThreshold = 20.0f)
{
float4 result = float4(0, 0, 0, 0);
// Snap to the closest chunk to get culled objects
uint3 chunkCoord = (uint3)clamp(floor((worldPosition - data.ViewPos) / data.ChunkSize + (GLOBAL_SURFACE_ATLAS_CHUNKS_RESOLUTION * 0.5f)), 0, GLOBAL_SURFACE_ATLAS_CHUNKS_RESOLUTION - 1);
uint chunkAddress = (chunkCoord.z * (GLOBAL_SURFACE_ATLAS_CHUNKS_RESOLUTION * GLOBAL_SURFACE_ATLAS_CHUNKS_RESOLUTION) + chunkCoord.y * GLOBAL_SURFACE_ATLAS_CHUNKS_RESOLUTION + chunkCoord.x) * 4;
uint objectsStart = chunks.Load(chunkAddress);
if (objectsStart == 0)
{
// Empty chunk
return result;
}
// Read objects counter
float4 chunkHeader = culledObjects[objectsStart];
objectsStart++;
uint objectsCount = asuint(chunkHeader.x);
if (objectsCount > data.ObjectsCount) // Prevents crashing - don't know why the data is invalid here (rare issue when moving fast though scene with terrain)
return result;
// Loop over culled objects inside the chunk
LOOP
for (uint objectIndex = 0; objectIndex < objectsCount; objectIndex++)
{
// Cull point vs sphere
uint objectAddress = objectsStart;
float4 objectBounds = LoadGlobalSurfaceAtlasObjectBounds(culledObjects, objectAddress);
uint objectSize = LoadGlobalSurfaceAtlasObjectDataSize(culledObjects, objectAddress);
objectsStart += objectSize;
if (distance(objectBounds.xyz, worldPosition) > objectBounds.w)
continue;
GlobalSurfaceObject object = LoadGlobalSurfaceAtlasObject(culledObjects, objectAddress);
float3 localPosition = mul(float4(worldPosition, 1), object.WorldToLocal).xyz;
float3 localExtent = object.Extent + surfaceThreshold;
if (any(localPosition > localExtent) || any(localPosition < -localExtent))
continue;
// Remove the scale vector from the transformation matrix
float3x3 worldToLocal = (float3x3)object.WorldToLocal;
float scaleX = length(worldToLocal[0]);
float scaleY = length(worldToLocal[1]);
float scaleZ = length(worldToLocal[2]);
float3 invScale = float3(
scaleX > 0.00001f ? 1.0f / scaleX : 0.0f,
scaleY > 0.00001f ? 1.0f / scaleY : 0.0f,
scaleZ > 0.00001f ? 1.0f / scaleZ : 0.0f);
worldToLocal[0] *= invScale.x;
worldToLocal[1] *= invScale.y;
worldToLocal[2] *= invScale.z;
// Sample tiles based on the directionality
float3 localNormal = normalize(mul(worldNormal, worldToLocal));
float3 localNormalSq = localNormal * localNormal;
uint tileOffset = object.TileOffsets[localNormal.x > 0.0f ? 0 : 1];
if (localNormalSq.x > GLOBAL_SURFACE_ATLAS_TILE_NORMAL_THRESHOLD * GLOBAL_SURFACE_ATLAS_TILE_NORMAL_THRESHOLD && tileOffset != 0)
{
GlobalSurfaceTile tile = LoadGlobalSurfaceAtlasTile(culledObjects, objectAddress + tileOffset);
result += SampleGlobalSurfaceAtlasTile(data, tile, depth, atlas, worldPosition, worldNormal, surfaceThreshold);
}
tileOffset = object.TileOffsets[localNormal.y > 0.0f ? 2 : 3];
if (localNormalSq.y > GLOBAL_SURFACE_ATLAS_TILE_NORMAL_THRESHOLD * GLOBAL_SURFACE_ATLAS_TILE_NORMAL_THRESHOLD && tileOffset != 0)
{
GlobalSurfaceTile tile = LoadGlobalSurfaceAtlasTile(culledObjects, objectAddress + tileOffset);
result += SampleGlobalSurfaceAtlasTile(data, tile, depth, atlas, worldPosition, worldNormal, surfaceThreshold);
}
tileOffset = object.TileOffsets[localNormal.z > 0.0f ? 4 : 5];
if (localNormalSq.z > GLOBAL_SURFACE_ATLAS_TILE_NORMAL_THRESHOLD * GLOBAL_SURFACE_ATLAS_TILE_NORMAL_THRESHOLD && tileOffset != 0)
{
GlobalSurfaceTile tile = LoadGlobalSurfaceAtlasTile(culledObjects, objectAddress + tileOffset);
result += SampleGlobalSurfaceAtlasTile(data, tile, depth, atlas, worldPosition, worldNormal, surfaceThreshold);
}
}
// Normalize result
result.rgb /= max(result.a, 0.0001f);
return result;
}

View File

@@ -0,0 +1,275 @@
// Copyright (c) 2012-2022 Wojciech Figat. All rights reserved.
// Diffuse-only lighting
#define NO_SPECULAR
#include "./Flax/Common.hlsl"
#include "./Flax/Math.hlsl"
#include "./Flax/LightingCommon.hlsl"
#include "./Flax/GlobalSignDistanceField.hlsl"
#include "./Flax/GI/GlobalSurfaceAtlas.hlsl"
META_CB_BEGIN(0, Data)
float3 ViewWorldPos;
float ViewNearPlane;
float Padding00;
uint CulledObjectsCapacity;
float LightShadowsStrength;
float ViewFarPlane;
float4 ViewFrustumWorldRays[4];
GlobalSDFData GlobalSDF;
GlobalSurfaceAtlasData GlobalSurfaceAtlas;
LightData Light;
META_CB_END
struct AtlasVertexIput
{
float2 Position : POSITION0;
float2 TileUV : TEXCOORD0;
uint TileAddress : TEXCOORD1;
};
struct AtlasVertexOutput
{
float4 Position : SV_Position;
float2 TileUV : TEXCOORD0;
nointerpolation uint TileAddress : TEXCOORD1;
};
// Vertex shader for Global Surface Atlas rendering (custom vertex buffer to render per-tile)
META_VS(true, FEATURE_LEVEL_SM5)
META_VS_IN_ELEMENT(POSITION, 0, R16G16_FLOAT, 0, ALIGN, PER_VERTEX, 0, true)
META_VS_IN_ELEMENT(TEXCOORD, 0, R16G16_FLOAT, 0, ALIGN, PER_VERTEX, 0, true)
META_VS_IN_ELEMENT(TEXCOORD, 1, R32_UINT, 0, ALIGN, PER_VERTEX, 0, true)
AtlasVertexOutput VS_Atlas(AtlasVertexIput input)
{
AtlasVertexOutput output;
output.Position = float4(input.Position, 1, 1);
output.TileUV = input.TileUV;
output.TileAddress = input.TileAddress;
return output;
}
// Pixel shader for Global Surface Atlas software clearing
META_PS(true, FEATURE_LEVEL_SM5)
void PS_Clear(out float4 Light : SV_Target0, out float4 RT0 : SV_Target1, out float4 RT1 : SV_Target2, out float4 RT2 : SV_Target3)
{
Light = float4(0, 0, 0, 0);
RT0 = float4(0, 0, 0, 0);
RT1 = float4(0, 0, 0, 0);
RT2 = float4(1, 0, 0, 0);
}
#ifdef _PS_DirectLighting
#include "./Flax/GBuffer.hlsl"
#include "./Flax/Matrix.hlsl"
#include "./Flax/Lighting.hlsl"
// GBuffer+Depth at 0-3 slots
Buffer<float4> GlobalSurfaceAtlasObjects : register(t4);
Texture3D<float> GlobalSDFTex[4] : register(t5);
Texture3D<float> GlobalSDFMip[4] : register(t9);
// Pixel shader for Global Surface Atlas shading with direct light contribution
META_PS(true, FEATURE_LEVEL_SM5)
META_PERMUTATION_1(RADIAL_LIGHT=0)
META_PERMUTATION_1(RADIAL_LIGHT=1)
float4 PS_DirectLighting(AtlasVertexOutput input) : SV_Target
{
// Load current tile info
GlobalSurfaceTile tile = LoadGlobalSurfaceAtlasTile(GlobalSurfaceAtlasObjects, input.TileAddress);
float2 atlasUV = input.TileUV * tile.AtlasRectUV.zw + tile.AtlasRectUV.xy;
// Load GBuffer sample from atlas
GBufferData gBufferData = (GBufferData)0;
GBufferSample gBuffer = SampleGBuffer(gBufferData, atlasUV);
BRANCH
if (gBuffer.ShadingModel == SHADING_MODEL_UNLIT)
{
// Skip unlit pixels
discard;
return 0;
}
// Reconstruct world-space position manually (from uv+depth within a tile)
float tileDepth = SampleZ(atlasUV);
//float tileNear = -GLOBAL_SURFACE_ATLAS_TILE_PROJ_PLANE_OFFSET;
//float tileFar = tile.ViewBoundsSize.z + 2 * GLOBAL_SURFACE_ATLAS_TILE_PROJ_PLANE_OFFSET;
//gBufferData.ViewInfo.zw = float2(tileFar / (tileFar - tileNear), (-tileFar * tileNear) / (tileFar - tileNear) / tileFar);
//gBufferData.ViewInfo.zw = float2(1, 0);
//float tileLinearDepth = LinearizeZ(gBufferData, tileDepth);
float3 tileSpacePos = float3(input.TileUV.x - 0.5f, 0.5f - input.TileUV.y, tileDepth);
float3 gBufferTilePos = tileSpacePos * tile.ViewBoundsSize;
float4x4 tileLocalToWorld = Inverse(tile.WorldToLocal);
gBuffer.WorldPos = mul(float4(gBufferTilePos, 1), tileLocalToWorld).xyz;
// Calculate shadowing
float3 L = Light.Direction;
#if RADIAL_LIGHT
float3 toLight = Light.Position - gBuffer.WorldPos;
float toLightDst = length(toLight);
if (toLightDst >= Light.Radius)
{
// Skip texels outside the light influence range
discard;
return 0;
}
L = toLight / toLightDst;
#else
float toLightDst = GLOBAL_SDF_WORLD_SIZE;
#endif
float4 shadowMask = 1;
if (Light.CastShadows > 0)
{
float NoL = dot(gBuffer.Normal, L);
float shadowBias = 10.0f;
float bias = 2 * shadowBias * saturate(1 - NoL) + shadowBias;
BRANCH
if (NoL > 0)
{
// TODO: try using shadow map for on-screen pixels
// TODO: try using cone trace with Global SDF for smoother shadow (eg. for sun shadows or for area lights)
// Shot a ray from texel into the light to see if there is any occluder
GlobalSDFTrace trace;
trace.Init(gBuffer.WorldPos + gBuffer.Normal * shadowBias, L, bias, toLightDst - bias);
GlobalSDFHit hit = RayTraceGlobalSDF(GlobalSDF, GlobalSDFTex, GlobalSDFMip, trace);
shadowMask = hit.IsHit() ? LightShadowsStrength : 1;
}
else
{
shadowMask = 0;
}
}
// Calculate lighting
#if RADIAL_LIGHT
bool isSpotLight = Light.SpotAngles.x > -2.0f;
#else
bool isSpotLight = false;
#endif
float4 light = GetLighting(ViewWorldPos, Light, gBuffer, shadowMask, RADIAL_LIGHT, isSpotLight);
return light;
}
#endif
#if defined(_CS_CullObjects)
#include "./Flax/Collisions.hlsl"
RWByteAddressBuffer RWGlobalSurfaceAtlasChunks : register(u0);
RWBuffer<float4> RWGlobalSurfaceAtlasCulledObjects : register(u1);
Buffer<float4> GlobalSurfaceAtlasObjects : register(t0);
// Compute shader for culling objects into chunks
META_CS(true, FEATURE_LEVEL_SM5)
[numthreads(GLOBAL_SURFACE_ATLAS_CHUNKS_GROUP_SIZE, GLOBAL_SURFACE_ATLAS_CHUNKS_GROUP_SIZE, GLOBAL_SURFACE_ATLAS_CHUNKS_GROUP_SIZE)]
void CS_CullObjects(uint3 GroupId : SV_GroupID, uint3 DispatchThreadId : SV_DispatchThreadID, uint3 GroupThreadId : SV_GroupThreadID)
{
uint3 chunkCoord = DispatchThreadId;
uint chunkAddress = (chunkCoord.z * (GLOBAL_SURFACE_ATLAS_CHUNKS_RESOLUTION * GLOBAL_SURFACE_ATLAS_CHUNKS_RESOLUTION) + chunkCoord.y * GLOBAL_SURFACE_ATLAS_CHUNKS_RESOLUTION + chunkCoord.x) * 4;
if (chunkAddress == 0)
return; // Skip chunk at 0,0,0 (used for counter)
float3 chunkMin = GlobalSurfaceAtlas.ViewPos + (chunkCoord - (GLOBAL_SURFACE_ATLAS_CHUNKS_RESOLUTION * 0.5f)) * GlobalSurfaceAtlas.ChunkSize;
float3 chunkMax = chunkMin + GlobalSurfaceAtlas.ChunkSize;
// Count objects data size in this chunk (amount of float4s)
uint objectsSize = 0, objectAddress = 0, objectsCount = 0;
// TODO: maybe cache 20-30 culled object indices in thread memory to skip culling them again when copying data (maybe reude chunk size to get smaller objects count per chunk)?
LOOP
for (uint objectIndex = 0; objectIndex < GlobalSurfaceAtlas.ObjectsCount; objectIndex++)
{
float4 objectBounds = LoadGlobalSurfaceAtlasObjectBounds(GlobalSurfaceAtlasObjects, objectAddress);
uint objectSize = LoadGlobalSurfaceAtlasObjectDataSize(GlobalSurfaceAtlasObjects, objectAddress);
if (BoxIntersectsSphere(chunkMin, chunkMax, objectBounds.xyz, objectBounds.w))
{
objectsSize += objectSize;
objectsCount++;
}
objectAddress += objectSize;
}
if (objectsSize == 0)
{
// Empty chunk
RWGlobalSurfaceAtlasChunks.Store(chunkAddress, 0);
return;
}
objectsSize++; // Include objects count before actual objects data
// Allocate object data size in the buffer
uint objectsStart;
RWGlobalSurfaceAtlasChunks.InterlockedAdd(0, objectsSize, objectsStart);
if (objectsStart + objectsSize > CulledObjectsCapacity)
{
// Not enough space in the buffer
RWGlobalSurfaceAtlasChunks.Store(chunkAddress, 0);
return;
}
// Write object data start
RWGlobalSurfaceAtlasChunks.Store(chunkAddress, objectsStart);
// Write objects count before actual objects data
RWGlobalSurfaceAtlasCulledObjects[objectsStart] = float4(asfloat(objectsCount), 0, 0, 0);
objectsStart++;
// Copy objects data in this chunk
objectAddress = 0;
LOOP
for (uint objectIndex = 0; objectIndex < GlobalSurfaceAtlas.ObjectsCount; objectIndex++)
{
float4 objectBounds = LoadGlobalSurfaceAtlasObjectBounds(GlobalSurfaceAtlasObjects, objectAddress);
uint objectSize = LoadGlobalSurfaceAtlasObjectDataSize(GlobalSurfaceAtlasObjects, objectAddress);
if (BoxIntersectsSphere(chunkMin, chunkMax, objectBounds.xyz, objectBounds.w))
{
for (uint i = 0; i < objectSize; i++)
{
RWGlobalSurfaceAtlasCulledObjects[objectsStart + i] = GlobalSurfaceAtlasObjects[objectAddress + i];
}
objectsStart += objectSize;
}
objectAddress += objectSize;
}
}
#endif
#ifdef _PS_Debug
Texture3D<float> GlobalSDFTex[4] : register(t0);
Texture3D<float> GlobalSDFMip[4] : register(t4);
ByteAddressBuffer GlobalSurfaceAtlasChunks : register(t8);
Buffer<float4> GlobalSurfaceAtlasCulledObjects : register(t9);
Texture2D GlobalSurfaceAtlasDepth : register(t10);
Texture2D GlobalSurfaceAtlasTex : register(t11);
// Pixel shader for Global Surface Atlas debug drawing
META_PS(true, FEATURE_LEVEL_SM5)
float4 PS_Debug(Quad_VS2PS input) : SV_Target
{
#if 0
// Preview Global Surface Atlas texture
return float4(GlobalSurfaceAtlasTex.SampleLevel(SamplerLinearClamp, input.TexCoord, 0).rgb, 1);
#endif
// Shot a ray from camera into the Global SDF
GlobalSDFTrace trace;
float3 viewRay = lerp(lerp(ViewFrustumWorldRays[3], ViewFrustumWorldRays[0], input.TexCoord.x), lerp(ViewFrustumWorldRays[2], ViewFrustumWorldRays[1], input.TexCoord.x), 1 - input.TexCoord.y).xyz;
viewRay = normalize(viewRay - ViewWorldPos);
trace.Init(ViewWorldPos, viewRay, ViewNearPlane, ViewFarPlane);
trace.NeedsHitNormal = true;
GlobalSDFHit hit = RayTraceGlobalSDF(GlobalSDF, GlobalSDFTex, GlobalSDFMip, trace);
if (!hit.IsHit())
return float4(float3(0.4f, 0.4f, 1.0f) * saturate(hit.StepsCount / 80.0f), 1);
//return float4(hit.HitNormal * 0.5f + 0.5f, 1);
// Sample Global Surface Atlas at the hit location
float surfaceThreshold = hit.HitCascade * 10.0f + 20.0f; // Scale the threshold based on the hit cascade (less precision)
float4 surfaceColor = SampleGlobalSurfaceAtlas(GlobalSurfaceAtlas, GlobalSurfaceAtlasChunks, GlobalSurfaceAtlasCulledObjects, GlobalSurfaceAtlasDepth, GlobalSurfaceAtlasTex, hit.GetHitPosition(trace), -viewRay, surfaceThreshold);
return float4(surfaceColor.rgb, 1);
}
#endif