// Copyright (c) Wojciech Figat. All rights reserved. // Implementation based on: // "Dynamic Diffuse Global Illumination with Ray-Traced Irradiance Probes", Journal of Computer Graphics Tools, April 2019 // Zander Majercik, Jean-Philippe Guertin, Derek Nowrouzezahrai, and Morgan McGuire // https://morgan3d.github.io/articles/2019-04-01-ddgi/index.html and https://gdcvault.com/play/1026182/ // // Additional references: // "Scaling Probe-Based Real-Time Dynamic Global Illumination for Production", https://jcgt.org/published/0010/02/01/ // "Dynamic Diffuse Global Illumination with Ray-Traced Irradiance Fields", https://jcgt.org/published/0008/02/01/ #include "./Flax/Common.hlsl" #include "./Flax/Math.hlsl" #include "./Flax/Octahedral.hlsl" #define DDGI_PROBE_STATE_INACTIVE 0 #define DDGI_PROBE_STATE_ACTIVATED 1 #define DDGI_PROBE_STATE_ACTIVE 2 #define DDGI_PROBE_ATTENTION_MIN 0.02f // Minimum probe attention value that still makes it active. #define DDGI_PROBE_ATTENTION_MAX 0.98f // Maximum probe attention value that still makes it active (but not activated which is 1.0f). #define DDGI_PROBE_RESOLUTION_IRRADIANCE 6 // Resolution (in texels) for probe irradiance data (excluding 1px padding on each side) #define DDGI_PROBE_RESOLUTION_DISTANCE 14 // Resolution (in texels) for probe distance data (excluding 1px padding on each side) #define DDGI_CASCADE_BLEND_SIZE 2.0f // Distance in probes over which cascades blending happens #ifndef DDGI_CASCADE_BLEND_SMOOTH #define DDGI_CASCADE_BLEND_SMOOTH 0 // Enables smooth cascade blending, otherwise dithering will be used #endif #define DDGI_SRGB_BLENDING 1 // Enables blending in sRGB color space, otherwise irradiance blending is done in linear space #define DDGI_DEFAULT_BIAS 0.2f // Default value for DDGI sampling bias #define DDGI_FALLBACK_COORDS_ENCODE(coord) ((float3)(coord + 1) / 128.0f) #define DDGI_FALLBACK_COORDS_DECODE(data) (uint3)(data.xyz * 128.0f - 1) #define DDGI_FALLBACK_COORDS_VALID(data) (length(data.xyz) > 0) //#define DDGI_DEBUG_CASCADE 0 // Forces a specific cascade to be only in use (for debugging) // DDGI data for a constant buffer struct DDGIData { float4 ProbesOriginAndSpacing[4]; float4 BlendOrigin[4]; // w is unused int4 ProbesScrollOffsets[4]; // w is unused uint3 ProbesCounts; uint CascadesCount; float IrradianceGamma; float ProbeHistoryWeight; float RayMaxDistance; float IndirectLightingIntensity; float3 ViewPos; uint RaysCount; float4 FallbackIrradiance; }; uint GetDDGIProbeIndex(DDGIData data, uint3 probeCoords) { uint probesPerPlane = data.ProbesCounts.x * data.ProbesCounts.z; uint planeIndex = probeCoords.y; uint probeIndexInPlane = probeCoords.x + (data.ProbesCounts.x * probeCoords.z); return planeIndex * probesPerPlane + probeIndexInPlane; } uint GetDDGIProbeIndex(DDGIData data, uint2 texCoords, uint texResolution) { uint probesPerPlane = data.ProbesCounts.x * data.ProbesCounts.z; uint planeIndex = texCoords.x / (data.ProbesCounts.x * texResolution); uint probeIndexInPlane = (texCoords.x / texResolution) - (planeIndex * data.ProbesCounts.x) + (data.ProbesCounts.x * (texCoords.y / texResolution)); return planeIndex * probesPerPlane + probeIndexInPlane; } uint3 GetDDGIProbeCoords(DDGIData data, uint probeIndex) { uint3 probeCoords; probeCoords.x = probeIndex % data.ProbesCounts.x; probeCoords.y = probeIndex / (data.ProbesCounts.x * data.ProbesCounts.z); probeCoords.z = (probeIndex / data.ProbesCounts.x) % data.ProbesCounts.z; return probeCoords; } uint2 GetDDGIProbeTexelCoords(DDGIData data, uint cascadeIndex, uint probeIndex) { uint probesPerPlane = data.ProbesCounts.x * data.ProbesCounts.z; uint planeIndex = probeIndex / probesPerPlane; uint gridSpaceX = probeIndex % data.ProbesCounts.x; uint gridSpaceY = probeIndex / data.ProbesCounts.x; uint x = gridSpaceX + (planeIndex * data.ProbesCounts.x); uint y = gridSpaceY % data.ProbesCounts.z + cascadeIndex * data.ProbesCounts.z; return uint2(x, y); } uint GetDDGIScrollingProbeIndex(DDGIData data, uint cascadeIndex, uint3 probeCoords) { // Probes are scrolled on edges to stabilize GI when camera moves int3 probeCoordsOffset = (int3)data.ProbesCounts + data.ProbesScrollOffsets[cascadeIndex].xyz; return GetDDGIProbeIndex(data, (probeCoords + (uint3)probeCoordsOffset) % data.ProbesCounts); } float3 GetDDGIProbeWorldPosition(DDGIData data, uint cascadeIndex, uint3 probeCoords) { float3 probesOrigin = data.ProbesOriginAndSpacing[cascadeIndex].xyz; float probesSpacing = data.ProbesOriginAndSpacing[cascadeIndex].w; float3 probePosition = probeCoords * probesSpacing; float3 probeGridOffset = (probesSpacing * (data.ProbesCounts - 1)) * 0.5f; float3 probeScrollOffset = data.ProbesScrollOffsets[cascadeIndex].xyz * probesSpacing; return probesOrigin + probePosition - probeGridOffset + probeScrollOffset; } // Loads probe probe data (encoded) float4 LoadDDGIProbeData(DDGIData data, Texture2D probesData, uint cascadeIndex, uint probeIndex) { int2 probeDataCoords = GetDDGIProbeTexelCoords(data, cascadeIndex, probeIndex); return probesData.Load(int3(probeDataCoords, 0)); } // Encodes probe probe data float4 EncodeDDGIProbeData(float3 offset, uint state, float attention) { // [0;1] -> [-1;1] attention = saturate(attention) * 2.0f - 1.0f; if (state == DDGI_PROBE_STATE_INACTIVE) attention = -1.0f; else if (state == DDGI_PROBE_STATE_ACTIVATED) attention = 1.0f; return float4(offset, attention); } // Decodes probe attention value from the encoded state float DecodeDDGIProbeAttention(float4 probeData) { // [-1;1] -> [0;1] if (probeData.w <= -1.0f) return 0.0f; if (probeData.w >= 1.0f) return 1.0f; return probeData.w * 0.5f + 0.5f; } // Decodes probe state from the encoded state uint DecodeDDGIProbeState(float4 probeData) { if (probeData.w <= -1.0f) return DDGI_PROBE_STATE_INACTIVE; if (probeData.w >= 1.0f) return DDGI_PROBE_STATE_ACTIVATED; return DDGI_PROBE_STATE_ACTIVE; } // Decodes probe world-space position (XYZ) from the encoded state float3 DecodeDDGIProbePosition(DDGIData data, float4 probeData, uint cascadeIndex, uint probeIndex, uint3 probeCoords) { float3 probePosition = probeData.xyz; probePosition *= data.ProbesOriginAndSpacing[cascadeIndex].w; // Probe offset is [-1;1] within probes spacing probePosition += GetDDGIProbeWorldPosition(data, cascadeIndex, probeCoords); // Place probe on a grid return probePosition; } // Calculates texture UVs for sampling probes atlas texture (irradiance or distance) float2 GetDDGIProbeUV(DDGIData data, uint cascadeIndex, uint probeIndex, float2 octahedralCoords, uint resolution) { uint2 coords = GetDDGIProbeTexelCoords(data, cascadeIndex, probeIndex); float probeTexelSize = resolution + 2.0f; float2 textureSize = float2(data.ProbesCounts.x * data.ProbesCounts.y, data.ProbesCounts.z * data.CascadesCount) * probeTexelSize; float2 uv = float2(coords.x * probeTexelSize, coords.y * probeTexelSize) + (probeTexelSize * 0.5f); uv += octahedralCoords.xy * (resolution * 0.5f); uv /= textureSize; return uv; } float3 SampleDDGIIrradianceCascade(DDGIData data, Texture2D probesData, Texture2D probesDistance, Texture2D probesIrradiance, float3 worldPosition, float3 worldNormal, uint cascadeIndex, float3 probesOrigin, float3 probesExtent, float probesSpacing, float3 biasedWorldPosition) { bool invalidCascade = cascadeIndex >= data.CascadesCount; cascadeIndex = min(cascadeIndex, data.CascadesCount - 1); uint3 probeCoordsEnd = data.ProbesCounts - uint3(1, 1, 1); uint3 baseProbeCoords = clamp(uint3((worldPosition - probesOrigin + probesExtent) / probesSpacing), uint3(0, 0, 0), probeCoordsEnd); // Get the grid coordinates of the probe nearest the biased world position float3 baseProbeWorldPosition = GetDDGIProbeWorldPosition(data, cascadeIndex, baseProbeCoords); float3 biasAlpha = saturate((biasedWorldPosition - baseProbeWorldPosition) / probesSpacing); // Loop over the closest probes to accumulate their contributions float4 irradiance = float4(0, 0, 0, 0); for (uint i = 0; i < 8; i++) { uint3 probeCoordsOffset = uint3(i, i >> 1, i >> 2) & 1; uint3 probeCoords = clamp(baseProbeCoords + probeCoordsOffset, uint3(0, 0, 0), probeCoordsEnd); uint probeIndex = GetDDGIScrollingProbeIndex(data, cascadeIndex, probeCoords); // Load probe position and state float4 probeData = LoadDDGIProbeData(data, probesData, cascadeIndex, probeIndex); uint probeState = DecodeDDGIProbeState(probeData); uint useVisibility = true; float minWight = 0.000001f; if (probeState == DDGI_PROBE_STATE_INACTIVE) { // Use fallback probe that is closest to this one uint3 fallbackCoords = DDGI_FALLBACK_COORDS_DECODE(probeData); float fallbackToProbeDist = length((float3)probeCoords - (float3)fallbackCoords); useVisibility = fallbackToProbeDist <= 1.0f; // Skip visibility test that blocks too far probes due to limiting max distance to 1.5 of probe spacing if (fallbackToProbeDist > 2.0f) minWight = 1.0f; probeCoords = fallbackCoords; probeIndex = GetDDGIScrollingProbeIndex(data, cascadeIndex, fallbackCoords); probeData = LoadDDGIProbeData(data, probesData, cascadeIndex, probeIndex); //if (DecodeDDGIProbeState(probeData) == DDGI_PROBE_STATE_INACTIVE) continue; } // Calculate probe position float3 probePosition = baseProbeWorldPosition + (((float3)probeCoords - (float3)baseProbeCoords) * probesSpacing) + probeData.xyz * probesSpacing; // Calculate the distance and direction from the (biased and non-biased) shading point and the probe float3 worldPosToProbe = normalize(probePosition - worldPosition); float3 biasedPosToProbe = normalize(probePosition - biasedWorldPosition); float biasedPosToProbeDist = length(probePosition - biasedWorldPosition) * 0.95f; // Smooth backface test float weight = Square(dot(worldPosToProbe, worldNormal) * 0.5f + 0.5f); weight = max(weight, 0.1f); // Sample distance texture float2 octahedralCoords = GetOctahedralCoords(-biasedPosToProbe); float2 uv = GetDDGIProbeUV(data, cascadeIndex, probeIndex, octahedralCoords, DDGI_PROBE_RESOLUTION_DISTANCE); float2 probeDistance = probesDistance.SampleLevel(SamplerLinearClamp, uv, 0).rg * 2.0f; // Visibility weight (Chebyshev) if (biasedPosToProbeDist > probeDistance.x && useVisibility) { float variance = abs(Square(probeDistance.x) - probeDistance.y); float visibilityWeight = variance / (variance + Square(biasedPosToProbeDist - probeDistance.x)); weight *= max(visibilityWeight * visibilityWeight * visibilityWeight, 0.0f); } // Avoid a weight of zero weight = max(weight, minWight); // Adjust weight curve to inject a small portion of light const float minWeightThreshold = 0.2f; if (weight < minWeightThreshold) weight *= (weight * weight) * (1.0f / (minWeightThreshold * minWeightThreshold)); // Calculate trilinear weights based on the distance to each probe to smoothly transition between grid of 8 probes float3 trilinear = lerp(1.0f - biasAlpha, biasAlpha, (float3)probeCoordsOffset); weight *= saturate(trilinear.x * trilinear.y * trilinear.z * 2.0f); // Sample irradiance texture octahedralCoords = GetOctahedralCoords(worldNormal); uv = GetDDGIProbeUV(data, cascadeIndex, probeIndex, octahedralCoords, DDGI_PROBE_RESOLUTION_IRRADIANCE); float3 probeIrradiance = probesIrradiance.SampleLevel(SamplerLinearClamp, uv, 0).rgb; #if DDGI_SRGB_BLENDING probeIrradiance = pow(probeIrradiance, data.IrradianceGamma * 0.5f); #endif // Debug probe offset visualization //probeIrradiance = float3(max(frac(probeData.xyz) * 2, 0.1f)); // Accumulate weighted irradiance irradiance += float4(probeIrradiance * weight, weight); } #if 0 // Debug DDGI cascades with colors if (cascadeIndex == 0) irradiance = float4(1, 0, 0, 1); else if (cascadeIndex == 1) irradiance = float4(0, 1, 0, 1); else if (cascadeIndex == 2) irradiance = float4(0, 0, 1, 1); else irradiance = float4(1, 0, 1, 1); #endif if (irradiance.a > 0.0f) { // Normalize irradiance //irradiance.rgb /= irradiance.a; //irradiance.rgb /= lerp(1, irradiance.a, saturate(irradiance.a * irradiance.a + 0.9f)); irradiance.rgb /= invalidCascade ? irradiance.a : lerp(1, irradiance.a, saturate(irradiance.a * irradiance.a + 0.9f)); #if DDGI_SRGB_BLENDING irradiance.rgb *= irradiance.rgb; #endif irradiance.rgb *= 2.0f * PI; } return irradiance.rgb; } float3 GetDDGISurfaceBias(float3 viewDir, float probesSpacing, float3 worldNormal, float bias) { // Bias the world-space position to reduce artifacts return (worldNormal * 0.2f + viewDir * 0.8f) * (0.6f * probesSpacing * bias); } // [Inigo Quilez, https://iquilezles.org/articles/distfunctions/] float sdRoundBox(float3 p, float3 b, float r) { float3 q = abs(p) - b + r; return length(max(q, 0.0f)) + min(max(q.x, max(q.y, q.z)), 0.0f) - r; } // Samples DDGI probes volume at the given world-space position and returns the irradiance. // bias - scales the bias vector to the initial sample point to reduce self-shading artifacts // dither - randomized per-pixel value in range 0-1, used to smooth dithering for cascades blending float3 SampleDDGIIrradiance(DDGIData data, Texture2D probesData, Texture2D probesDistance, Texture2D probesIrradiance, float3 worldPosition, float3 worldNormal, float bias = DDGI_DEFAULT_BIAS, float dither = 0.0f) { // Select the highest cascade that contains the sample location float probesSpacing = 0, cascadeWeight = 0; float3 probesOrigin = (float3)0, probesExtent = (float3)0, biasedWorldPosition = (float3)0; float3 viewDir = normalize(data.ViewPos - worldPosition); #if DDGI_CASCADE_BLEND_SMOOTH dither = 0.0f; #endif #ifdef DDGI_DEBUG_CASCADE uint cascadeIndex = DDGI_DEBUG_CASCADE; #else uint cascadeIndex = 0; if (data.CascadesCount == 0) return float3(0, 0, 0); for (; cascadeIndex < data.CascadesCount; cascadeIndex++) { // Get cascade data probesSpacing = data.ProbesOriginAndSpacing[cascadeIndex].w; probesOrigin = data.ProbesScrollOffsets[cascadeIndex].xyz * probesSpacing + data.ProbesOriginAndSpacing[cascadeIndex].xyz; probesExtent = (data.ProbesCounts - 1) * (probesSpacing * 0.5f); biasedWorldPosition = worldPosition + GetDDGISurfaceBias(viewDir, probesSpacing, worldNormal, bias); // Calculate cascade blending weight (use input bias to smooth transition) float fadeDistance = probesSpacing * DDGI_CASCADE_BLEND_SIZE; float3 blendPos = worldPosition - data.BlendOrigin[cascadeIndex].xyz; cascadeWeight = sdRoundBox(blendPos, probesExtent - probesSpacing, probesSpacing * 2) + fadeDistance; cascadeWeight = 1 - saturate(cascadeWeight / fadeDistance); if (cascadeWeight > dither) break; } #endif // Sample cascade float3 result = SampleDDGIIrradianceCascade(data, probesData, probesDistance, probesIrradiance, worldPosition, worldNormal, cascadeIndex, probesOrigin, probesExtent, probesSpacing, biasedWorldPosition); // Blend with the next cascade (or fallback irradiance outside the volume) #if DDGI_CASCADE_BLEND_SMOOTH && !defined(DDGI_DEBUG_CASCADE) cascadeIndex++; if (cascadeIndex < data.CascadesCount && cascadeWeight < 0.99f) { probesSpacing = data.ProbesOriginAndSpacing[cascadeIndex].w; probesOrigin = data.ProbesScrollOffsets[cascadeIndex].xyz * probesSpacing + data.ProbesOriginAndSpacing[cascadeIndex].xyz; probesExtent = (data.ProbesCounts - 1) * (probesSpacing * 0.5f); biasedWorldPosition = worldPosition + GetDDGISurfaceBias(viewDir, probesSpacing, worldNormal, bias); float3 resultNext = SampleDDGIIrradianceCascade(data, probesData, probesDistance, probesIrradiance, worldPosition, worldNormal, cascadeIndex, probesOrigin, probesExtent, probesSpacing, biasedWorldPosition); result *= cascadeWeight; result += resultNext * (1 - cascadeWeight); } #endif if (cascadeIndex >= data.CascadesCount) { // Blend between the last cascade and the fallback irradiance float fallbackWeight = (1 - cascadeWeight) * data.FallbackIrradiance.a; result = lerp(result, data.FallbackIrradiance.rgb, fallbackWeight); } return result; }