// Copyright (c) Wojciech Figat. All rights reserved. #ifndef __COLLISIONS__ #define __COLLISIONS__ bool RayHitSphere(float3 r, float3 sphereCenter, float sphereRadius) { float3 closestPointOnRay = max(0, dot(sphereCenter, r)) * r; float3 centerToRay = closestPointOnRay - sphereCenter; return dot(centerToRay, centerToRay) <= (sphereRadius * sphereRadius); } bool RayHitRect(float3 r, float3 rectCenter, float3 rectX, float3 rectY, float3 rectZ, float rectExtentX, float rectExtentY) { float3 pointOnPlane = r * max(0, dot(rectZ, rectCenter) / dot(rectZ, r)); bool inExtentX = abs(dot(rectX, pointOnPlane - rectCenter)) <= rectExtentX; bool inExtentY = abs(dot(rectY, pointOnPlane - rectCenter)) <= rectExtentY; return inExtentX && inExtentY; } // Determines whether there is an intersection between a ray (rPos and rDir) and a triangle (v0, v1, v2). // Returns true on intersection and outputs the distance along the ray to the intersection point. // This method tests if the ray intersects either the front or back of the triangle. bool RayIntersectsTriangle(float3 rPos, float3 rDir, float3 v0, float3 v1, float3 v2, out float distance) { // [https://stackoverflow.com/a/42752998] float3 edgeAB = v1 - v0; float3 edgeAC = v2 - v0; float3 triFaceVector = cross(edgeAB, edgeAC); float3 vertRayOffset = rPos - v0; float3 rayOffsetPerp = cross(vertRayOffset, rDir); float determinant = -dot(rDir, triFaceVector); float invDet = 1.0f / determinant; distance = dot(vertRayOffset, triFaceVector) * invDet; float u = dot(edgeAC, rayOffsetPerp) * invDet; float v = -dot(edgeAB, rayOffsetPerp) * invDet; float w = 1.0f - u - v; return abs(determinant) >= 1E-8 && distance > 0 && u >= 0 && v >= 0 && w >= 0; } // Hits axis-aligned box (boxMin, boxMax) with a line (lineStart, lineEnd). // Returns the intersections on the line (x - closest, y - furthest). // Line hits the box if: intersections.x < intersections.y. // Hit point is: hitPoint = lineStart + (lineEnd - lineStart) * intersections.x/y. float2 LineHitBox(float3 lineStart, float3 lineEnd, float3 boxMin, float3 boxMax) { float3 invDirection = 1.0f / (lineEnd - lineStart); float3 enterIntersection = (boxMin - lineStart) * invDirection; float3 exitIntersection = (boxMax - lineStart) * invDirection; float3 minIntersections = min(enterIntersection, exitIntersection); float3 maxIntersections = max(enterIntersection, exitIntersection); float2 intersections; intersections.x = max(minIntersections.x, max(minIntersections.y, minIntersections.z)); intersections.y = min(maxIntersections.x, min(maxIntersections.y, maxIntersections.z)); return saturate(intersections); } // Determines whether there is an intersection between a box and a sphere. bool BoxIntersectsSphere(float3 boxMin, float3 boxMax, float3 sphereCenter, float sphereRadius) { const float3 clampedCenter = clamp(sphereCenter, boxMin, boxMax); return distance(sphereCenter, clampedCenter) <= sphereRadius; } // Calculates unsigned distance from point to the AABB. If point is inside it, returns 0. float PointDistanceBox(float3 boxMin, float3 boxMax, float3 pos) { float3 clampedPos = clamp(pos, boxMin, boxMax); return length(clampedPos - pos); } float dot2(float3 v) { return dot(v, v); } // Calculates squared distance from point to the triangle. float DistancePointToTriangle2(float3 p, float3 v1, float3 v2, float3 v3) { // [Inigo Quilez, https://iquilezles.org/articles/triangledistance/] float3 v21 = v2 - v1; float3 p1 = p - v1; float3 v32 = v3 - v2; float3 p2 = p - v2; float3 v13 = v1 - v3; float3 p3 = p - v3; float3 nor = cross(v21, v13); return // inside/outside test (sign(dot(cross(v21, nor), p1)) + sign(dot(cross(v32, nor), p2)) + sign(dot(cross(v13, nor), p3)) < 2.0) ? // 3 edges min(min( dot2(v21 * saturate(dot(v21, p1) / dot2(v21)) - p1), dot2(v32 * saturate(dot(v32, p2) / dot2(v32)) - p2)), dot2(v13 * saturate(dot(v13, p3) / dot2(v13)) - p3)) : // 1 face dot(nor, p1) * dot(nor, p1) / dot2(nor); } #endif