// Copyright (c) 2012-2024 Wojciech Figat. All rights reserved.
#pragma once
#include "Math.h"
#include "Mathd.h"
#include "Engine/Core/Formatting.h"
#include "Engine/Core/Templates.h"
///
/// Represents a two dimensional mathematical vector.
///
template
API_STRUCT(Template) struct Vector2Base
{
typedef T Real;
static FLAXENGINE_API struct ScriptingTypeInitializer TypeInitializer;
union
{
struct
{
///
/// The X component of the vector.
///
API_FIELD() T X;
///
/// The Y component of the vector.
///
API_FIELD() T Y;
};
///
/// The raw vector values (in XY order).
///
T Raw[2];
};
public:
// Vector with all components equal 0
static FLAXENGINE_API const Vector2Base Zero;
// Vector with all components equal 1
static FLAXENGINE_API const Vector2Base One;
// Vector with all components equal 0.5
static FLAXENGINE_API const Vector2Base Half;
// Vector X=1, Y=0
static FLAXENGINE_API const Vector2Base UnitX;
// Vector X=0, Y=1
static FLAXENGINE_API const Vector2Base UnitY;
// Vector with all components equal maximum value.
static FLAXENGINE_API const Vector2Base Minimum;
// Vector with all components equal minimum value.
static FLAXENGINE_API const Vector2Base Maximum;
public:
///
/// Empty constructor.
///
Vector2Base() = default;
FORCE_INLINE Vector2Base(T xy)
: X(xy)
, Y(xy)
{
}
FORCE_INLINE explicit Vector2Base(const T* xy)
: X(xy[0])
, Y(xy[1])
{
}
FORCE_INLINE Vector2Base(T x, T y)
: X(x)
, Y(y)
{
}
template>::Value>::Type...>
FORCE_INLINE Vector2Base(const Vector2Base& xy)
: X((T)xy.X)
, Y((T)xy.Y)
{
}
FLAXENGINE_API explicit Vector2Base(const Int3& xy);
FLAXENGINE_API explicit Vector2Base(const Int4& xy);
FLAXENGINE_API explicit Vector2Base(const Float3& xy);
FLAXENGINE_API explicit Vector2Base(const Float4& xy);
FLAXENGINE_API explicit Vector2Base(const Double3& xy);
FLAXENGINE_API explicit Vector2Base(const Double4& xy);
FLAXENGINE_API explicit Vector2Base(const Color& color);
public:
FLAXENGINE_API String ToString() const;
public:
// Gets a value indicting whether this instance is normalized.
bool IsNormalized() const
{
return Math::Abs((X * X + Y * Y) - 1.0f) < 1e-4f;
}
// Gets a value indicting whether this vector is zero.
bool IsZero() const
{
return Math::IsZero(X) && Math::IsZero(Y);
}
// Gets a value indicting whether any vector component is zero.
bool IsAnyZero() const
{
return Math::IsZero(X) || Math::IsZero(Y);
}
// Gets a value indicting whether this vector is zero.
bool IsOne() const
{
return Math::IsOne(X) && Math::IsOne(Y);
}
// Calculates the length of the vector.
T Length() const
{
return Math::Sqrt(X * X + Y * Y);
}
// Calculates the squared length of the vector.
T LengthSquared() const
{
return X * X + Y * Y;
}
// Calculates inverted length of the vector (1 / length).
T InvLength() const
{
return 1.0f / Length();
}
///
/// Returns the average arithmetic of all the components.
///
T AverageArithmetic() const
{
return (X + Y) * 0.5f;
}
///
/// Gets the sum of all vector components values.
///
T SumValues() const
{
return X + Y;
}
///
/// Gets the multiplication result of all vector components values.
///
T MulValues() const
{
return X * Y;
}
///
/// Returns the minimum value of all the components.
///
T MinValue() const
{
return Math::Min(X, Y);
}
///
/// Returns the maximum value of all the components.
///
T MaxValue() const
{
return Math::Max(X, Y);
}
///
/// Returns true if vector has one or more components is not a number (NaN).
///
bool IsNaN() const
{
return isnan(X) || isnan(Y);
}
///
/// Returns true if vector has one or more components equal to +/- infinity.
///
bool IsInfinity() const
{
return isinf(X) || isinf(Y);
}
///
/// Returns true if vector has one or more components equal to +/- infinity or NaN.
///
bool IsNanOrInfinity() const
{
return IsInfinity() || IsNaN();
}
///
/// Calculates a vector with values being absolute values of that vector.
///
Vector2Base GetAbsolute() const
{
return Vector2Base(Math::Abs(X), Math::Abs(Y));
}
///
/// Calculates a vector with values being opposite to values of that vector.
///
Vector2Base GetNegative() const
{
return Vector2Base(-X, -Y);
}
///
/// Calculates a normalized vector that has length equal to 1.
///
Vector2Base GetNormalized() const
{
Vector2Base result(X, Y);
result.Normalize();
return result;
}
public:
///
/// Performs vector normalization (scales vector up to unit length).
///
void Normalize()
{
const T length = Math::Sqrt(X * X + Y * Y);
if (length >= ZeroTolerance)
{
const T invLength = (T)1.0f / length;
X *= invLength;
Y *= invLength;
}
}
public:
Vector2Base operator+(const Vector2Base& b) const
{
return Vector2Base(X + b.X, Y + b.Y);
}
Vector2Base operator-(const Vector2Base& b) const
{
return Vector2Base(X - b.X, Y - b.Y);
}
Vector2Base operator*(const Vector2Base& b) const
{
return Vector2Base(X * b.X, Y * b.Y);
}
Vector2Base operator/(const Vector2Base& b) const
{
return Vector2Base(X / b.X, Y / b.Y);
}
Vector2Base operator-() const
{
return Vector2Base(-X, -Y);
}
Vector2Base operator+(T b) const
{
return Vector2Base(X + b, Y + b);
}
Vector2Base operator-(T b) const
{
return Vector2Base(X - b, Y - b);
}
Vector2Base operator*(T b) const
{
return Vector2Base(X * b, Y * b);
}
Vector2Base operator/(T b) const
{
return Vector2Base(X / b, Y / b);
}
Vector2Base operator+(typename TOtherFloat::Type a) const
{
T b = (T)a;
return Vector2Base(X + b, Y + b);
}
Vector2Base operator-(typename TOtherFloat::Type a) const
{
T b = (T)a;
return Vector2Base(X - b, Y - b);
}
Vector2Base operator*(typename TOtherFloat::Type a) const
{
T b = (T)a;
return Vector2Base(X * b, Y * b);
}
Vector2Base operator/(typename TOtherFloat::Type a) const
{
T b = (T)a;
return Vector2Base(X / b, Y / b);
}
Vector2Base& operator+=(const Vector2Base& b)
{
X += b.X;
Y += b.Y;
return *this;
}
Vector2Base& operator-=(const Vector2Base& b)
{
X -= b.X;
Y -= b.Y;
return *this;
}
Vector2Base& operator*=(const Vector2Base& b)
{
X *= b.X;
Y *= b.Y;
return *this;
}
Vector2Base& operator/=(const Vector2Base& b)
{
X /= b.X;
Y /= b.Y;
return *this;
}
Vector2Base& operator+=(T b)
{
X += b;
Y += b;
return *this;
}
Vector2Base& operator-=(T b)
{
X -= b;
Y -= b;
return *this;
}
Vector2Base& operator*=(T b)
{
X *= b;
Y *= b;
return *this;
}
Vector2Base& operator/=(T b)
{
X /= b;
Y /= b;
return *this;
}
bool operator==(const Vector2Base& b) const
{
return X == b.X && Y == b.Y;
}
bool operator!=(const Vector2Base& b) const
{
return X != b.X || Y != b.Y;
}
bool operator>(const Vector2Base& b) const
{
return X > b.X && Y > b.Y;
}
bool operator>=(const Vector2Base& b) const
{
return X >= b.X && Y >= b.Y;
}
bool operator<(const Vector2Base& b) const
{
return X < b.X && Y < b.Y;
}
bool operator<=(const Vector2Base& b) const
{
return X <= b.X && Y <= b.Y;
}
public:
static bool NearEqual(const Vector2Base& a, const Vector2Base& b)
{
return Math::NearEqual(a.X, b.X) && Math::NearEqual(a.Y, b.Y);
}
static bool NearEqual(const Vector2Base& a, const Vector2Base& b, T epsilon)
{
return Math::NearEqual(a.X, b.X, epsilon) && Math::NearEqual(a.Y, b.Y, epsilon);
}
public:
static T Dot(const Vector2Base& a, const Vector2Base& b)
{
return a.X * b.X + a.Y * b.Y;
}
static T Cross(const Vector2Base& a, const Vector2Base& b)
{
return a.X * b.Y - a.Y * b.X;
}
static void Add(const Vector2Base& a, const Vector2Base& b, Vector2Base& result)
{
result = Vector2Base(a.X + b.X, a.Y + b.Y);
}
static void Subtract(const Vector2Base& a, const Vector2Base& b, Vector2Base& result)
{
result = Vector2Base(a.X - b.X, a.Y - b.Y);
}
static void Multiply(const Vector2Base& a, const Vector2Base& b, Vector2Base& result)
{
result = Vector2Base(a.X * b.X, a.Y * b.Y);
}
static void Divide(const Vector2Base& a, const Vector2Base& b, Vector2Base& result)
{
result = Vector2Base(a.X / b.X, a.Y / b.Y);
}
static void Min(const Vector2Base& a, const Vector2Base& b, Vector2Base& result)
{
result = Vector2Base(a.X < b.X ? a.X : b.X, a.Y < b.Y ? a.Y : b.Y);
}
static void Max(const Vector2Base& a, const Vector2Base& b, Vector2Base& result)
{
result = Vector2Base(a.X > b.X ? a.X : b.X, a.Y > b.Y ? a.Y : b.Y);
}
public:
static Vector2Base Min(const Vector2Base& a, const Vector2Base& b)
{
return Vector2Base(a.X < b.X ? a.X : b.X, a.Y < b.Y ? a.Y : b.Y);
}
static Vector2Base Max(const Vector2Base& a, const Vector2Base& b)
{
return Vector2Base(a.X > b.X ? a.X : b.X, a.Y > b.Y ? a.Y : b.Y);
}
static Vector2Base Mod(const Vector2Base& a, const Vector2Base& b)
{
return Vector2Base(Math::Mod(a.X, b.X), Math::Mod(a.Y, b.Y));
}
static Vector2Base Floor(const Vector2Base& v)
{
return Vector2Base(Math::Floor(v.X), Math::Floor(v.Y));
}
static Vector2Base Frac(const Vector2Base& v)
{
return Vector2Base(v.X - (int32)v.X, v.Y - (int32)v.Y);
}
static Vector2Base Round(const Vector2Base& v)
{
return Vector2Base(Math::Round(v.X), Math::Round(v.Y));
}
static Vector2Base Ceil(const Vector2Base& v)
{
return Vector2Base(Math::Ceil(v.X), Math::Ceil(v.Y));
}
static Vector2Base Abs(const Vector2Base& v)
{
return Vector2Base(Math::Abs(v.X), Math::Abs(v.Y));
}
public:
// Restricts a value to be within a specified range (inclusive min/max).
static Vector2Base Clamp(const Vector2Base& v, const Vector2Base& min, const Vector2Base& max)
{
Vector2Base result;
Clamp(v, min, max, result);
return result;
}
// Restricts a value to be within a specified range (inclusive min/max).
static void Clamp(const Vector2Base& v, const Vector2Base& min, const Vector2Base& max, Vector2Base& result)
{
result = Vector2Base(Math::Clamp(v.X, min.X, max.X), Math::Clamp(v.Y, min.Y, max.Y));
}
// Calculates distance between two points in 2D.
static T Distance(const Vector2Base& a, const Vector2Base& b)
{
const T x = a.X - b.X;
const T y = a.Y - b.Y;
return Math::Sqrt(x * x + y * y);
}
// Calculates the squared distance between two points in 2D.
static T DistanceSquared(const Vector2Base& a, const Vector2Base& b)
{
const T x = a.X - b.X;
const T y = a.Y - b.Y;
return x * x + y * y;
}
// Performs vector normalization (scales vector up to unit length).
static Vector2Base Normalize(const Vector2Base& v)
{
Vector2Base r = v;
const T length = Math::Sqrt(r.X * r.X + r.Y * r.Y);
if (length >= ZeroTolerance)
{
const T inv = (T)1.0f / length;
r.X *= inv;
r.Y *= inv;
}
return r;
}
// Performs a linear interpolation between two vectors.
static void Lerp(const Vector2Base& start, const Vector2Base& end, T amount, Vector2Base& result)
{
result.X = Math::Lerp(start.X, end.X, amount);
result.Y = Math::Lerp(start.Y, end.Y, amount);
}
// Performs a linear interpolation between two vectors.
static Vector2Base Lerp(const Vector2Base& start, const Vector2Base& end, T amount)
{
Vector2Base result;
Lerp(start, end, amount, result);
return result;
}
public:
///
/// Calculates the area of the triangle.
///
/// The first triangle vertex.
/// The second triangle vertex.
/// The third triangle vertex.
/// The triangle area.
FLAXENGINE_API static T TriangleArea(const Vector2Base& v0, const Vector2Base& v1, const Vector2Base& v2);
///
/// Calculates the angle (in radians) between from and to. This is always the smallest value.
///
/// The first vector.
/// The second vector.
/// The angle (in radians).
FLAXENGINE_API static T Angle(const Vector2Base& from, const Vector2Base& to);
};
template
inline Vector2Base operator+(T a, const Vector2Base& b)
{
return b + a;
}
template
inline Vector2Base operator-(T a, const Vector2Base& b)
{
return Vector2Base(a) - b;
}
template
inline Vector2Base operator*(T a, const Vector2Base& b)
{
return b * a;
}
template
inline Vector2Base operator/(T a, const Vector2Base& b)
{
return Vector2Base(a) / b;
}
template
inline Vector2Base operator+(typename TOtherFloat::Type a, const Vector2Base& b)
{
return b + a;
}
template
inline Vector2Base operator-(typename TOtherFloat::Type a, const Vector2Base& b)
{
return Vector2Base(a) - b;
}
template
inline Vector2Base operator*(typename TOtherFloat::Type a, const Vector2Base& b)
{
return b * a;
}
template
inline Vector2Base operator/(typename TOtherFloat::Type a, const Vector2Base& b)
{
return Vector2Base(a) / b;
}
template
inline uint32 GetHash(const Vector2Base& key)
{
return (*(uint32*)&key.X * 397) ^ *(uint32*)&key.Y;
}
namespace Math
{
template
FORCE_INLINE static bool NearEqual(const Vector2Base& a, const Vector2Base& b)
{
return Vector2Base::NearEqual(a, b);
}
}
template<>
struct TIsPODType
{
enum { Value = true };
};
DEFINE_DEFAULT_FORMATTING(Float2, "X:{0} Y:{1}", v.X, v.Y);
template<>
struct TIsPODType
{
enum { Value = true };
};
DEFINE_DEFAULT_FORMATTING(Double2, "X:{0} Y:{1}", v.X, v.Y);
template<>
struct TIsPODType
{
enum { Value = true };
};
DEFINE_DEFAULT_FORMATTING(Int2, "X:{0} Y:{1}", v.X, v.Y);
#if !defined(_MSC_VER) || defined(__clang__)
// Forward specializations for Clang
template<> FLAXENGINE_API const Float2 Float2::Zero;
template<> FLAXENGINE_API const Float2 Float2::One;
template<> FLAXENGINE_API const Float2 Float2::UnitX;
template<> FLAXENGINE_API const Float2 Float2::UnitY;
template<> FLAXENGINE_API const Float2 Float2::Minimum;
template<> FLAXENGINE_API const Float2 Float2::Maximum;
template<> FLAXENGINE_API ScriptingTypeInitializer Float2::TypeInitializer;
template<> FLAXENGINE_API const Double2 Double2::Zero;
template<> FLAXENGINE_API const Double2 Double2::One;
template<> FLAXENGINE_API const Double2 Double2::UnitX;
template<> FLAXENGINE_API const Double2 Double2::UnitY;
template<> FLAXENGINE_API const Double2 Double2::Minimum;
template<> FLAXENGINE_API const Double2 Double2::Maximum;
template<> FLAXENGINE_API ScriptingTypeInitializer Double2::TypeInitializer;
template<> FLAXENGINE_API const Int2 Int2::Zero;
template<> FLAXENGINE_API const Int2 Int2::One;
template<> FLAXENGINE_API const Int2 Int2::UnitX;
template<> FLAXENGINE_API const Int2 Int2::UnitY;
template<> FLAXENGINE_API const Int2 Int2::Minimum;
template<> FLAXENGINE_API const Int2 Int2::Maximum;
template<> FLAXENGINE_API ScriptingTypeInitializer Int2::TypeInitializer;
#endif