// File generated by Flax Materials Editor // Version: @0 #define MATERIAL 1 #define MATERIAL_TEXCOORDS 4 #define USE_PER_VIEW_CONSTANTS 1 #define USE_PER_DRAW_CONSTANTS 1 @3 #include "./Flax/Common.hlsl" #include "./Flax/MaterialCommon.hlsl" #include "./Flax/GBufferCommon.hlsl" @7 // Primary constant buffer (with additional material parameters) META_CB_BEGIN(0, Data) @1META_CB_END // Shader resources @2 Buffer ObjectsBuffer : register(t0); #if USE_SKINNING // The skeletal bones matrix buffer (stored as 4x3, 3 float4 behind each other) Buffer BoneMatrices : register(t1); #if PER_BONE_MOTION_BLUR // The skeletal bones matrix buffer from the previous frame Buffer PrevBoneMatrices : register(t2); #endif #endif // Geometry data passed though the graphics rendering stages up to the pixel shader struct GeometryData { float3 WorldPosition : TEXCOORD0; float4 TexCoords01 : TEXCOORD1; float4 TexCoords23 : TEXCOORD2; float2 LightmapUV : TEXCOORD3; #if USE_VERTEX_COLOR half4 VertexColor : COLOR; #endif float3 WorldNormal : TEXCOORD4; float4 WorldTangent : TEXCOORD5; float3 PrevWorldPosition : TEXCOORD7; nointerpolation uint ObjectIndex : TEXCOORD8; }; float3 DecodeNormal(float4 normalMap) { float2 xy = normalMap.rg * 2.0 - 1.0; return float3(xy, sqrt(1.0 - saturate(dot(xy, xy)))); } // Interpolants passed from the vertex shader struct VertexOutput { float4 Position : SV_Position; GeometryData Geometry; #if USE_CUSTOM_VERTEX_INTERPOLATORS float4 CustomVSToPS[CUSTOM_VERTEX_INTERPOLATORS_COUNT] : TEXCOORD11; #endif #if USE_TESSELLATION float TessellationMultiplier : TESS; #endif }; // Interpolants passed to the pixel shader struct PixelInput { float4 Position : SV_Position; GeometryData Geometry; #if USE_CUSTOM_VERTEX_INTERPOLATORS float4 CustomVSToPS[CUSTOM_VERTEX_INTERPOLATORS_COUNT] : TEXCOORD11; #endif bool IsFrontFace : SV_IsFrontFace; }; // Material properties generation input struct MaterialInput { float3 WorldPosition; float TwoSidedSign; float2 TexCoords[MATERIAL_TEXCOORDS]; #if USE_LIGHTMAP float2 LightmapUV; #endif #if USE_VERTEX_COLOR half4 VertexColor; #endif float3x3 TBN; float4 SvPosition; float3 PreSkinnedPosition; float3 PreSkinnedNormal; uint ObjectIndex; ObjectData Object; #if USE_CUSTOM_VERTEX_INTERPOLATORS float4 CustomVSToPS[CUSTOM_VERTEX_INTERPOLATORS_COUNT]; #endif }; // Map access to the main texure coordinate channel as UV0 #define TexCoord TexCoords[0] // Extracts geometry data to the material input MaterialInput GetGeometryMaterialInput(GeometryData geometry) { MaterialInput output = (MaterialInput)0; output.WorldPosition = geometry.WorldPosition; output.TexCoords[0] = geometry.TexCoords01.xy; output.TexCoords[1] = geometry.TexCoords01.zw; output.TexCoords[2] = geometry.TexCoords23.xy; output.TexCoords[3] = geometry.TexCoords23.zw; #if USE_LIGHTMAP output.LightmapUV = geometry.LightmapUV; #endif #if USE_VERTEX_COLOR output.VertexColor = geometry.VertexColor; #endif output.TBN = CalcTangentBasis(geometry.WorldNormal, geometry.WorldTangent); output.ObjectIndex = geometry.ObjectIndex; return output; } #if USE_TESSELLATION // Interpolates the geometry positions data only (used by the tessallation when generating vertices) #define InterpolateGeometryPositions(output, p0, w0, p1, w1, p2, w2, offset) output.WorldPosition = p0.WorldPosition * w0 + p1.WorldPosition * w1 + p2.WorldPosition * w2 + offset; output.PrevWorldPosition = p0.PrevWorldPosition * w0 + p1.PrevWorldPosition * w1 + p2.PrevWorldPosition * w2 + offset // Offsets the geometry positions data only (used by the tessallation when generating vertices) #define OffsetGeometryPositions(geometry, offset) geometry.WorldPosition += offset; geometry.PrevWorldPosition += offset // Applies the Phong tessallation to the geometry positions (used by the tessallation when doing Phong tess) #define ApplyGeometryPositionsPhongTess(geometry, p0, p1, p2, U, V, W) \ float3 posProjectedU = TessalationProjectOntoPlane(p0.WorldNormal, p0.WorldPosition, geometry.WorldPosition); \ float3 posProjectedV = TessalationProjectOntoPlane(p1.WorldNormal, p1.WorldPosition, geometry.WorldPosition); \ float3 posProjectedW = TessalationProjectOntoPlane(p2.WorldNormal, p2.WorldPosition, geometry.WorldPosition); \ geometry.WorldPosition = U * posProjectedU + V * posProjectedV + W * posProjectedW; \ posProjectedU = TessalationProjectOntoPlane(p0.WorldNormal, p0.PrevWorldPosition, geometry.PrevWorldPosition); \ posProjectedV = TessalationProjectOntoPlane(p1.WorldNormal, p1.PrevWorldPosition, geometry.PrevWorldPosition); \ posProjectedW = TessalationProjectOntoPlane(p2.WorldNormal, p2.PrevWorldPosition, geometry.PrevWorldPosition); \ geometry.PrevWorldPosition = U * posProjectedU + V * posProjectedV + W * posProjectedW // Interpolates the geometry data except positions (used by the tessallation when generating vertices) GeometryData InterpolateGeometry(GeometryData p0, float w0, GeometryData p1, float w1, GeometryData p2, float w2) { GeometryData output = (GeometryData)0; output.TexCoords01 = p0.TexCoords01 * w0 + p1.TexCoords01 * w1 + p2.TexCoords01 * w2; output.TexCoords23 = p0.TexCoords23 * w0 + p1.TexCoords23 * w1 + p2.TexCoords23 * w2; #if USE_VERTEX_COLOR output.VertexColor = p0.VertexColor * w0 + p1.VertexColor * w1 + p2.VertexColor * w2; #endif output.WorldNormal = p0.WorldNormal * w0 + p1.WorldNormal * w1 + p2.WorldNormal * w2; output.WorldNormal = normalize(output.WorldNormal); output.WorldTangent = p0.WorldTangent * w0 + p1.WorldTangent * w1 + p2.WorldTangent * w2; output.WorldTangent.xyz = normalize(output.WorldTangent.xyz); output.ObjectIndex = p0.ObjectIndex; return output; } #endif MaterialInput GetMaterialInput(PixelInput input) { MaterialInput output = GetGeometryMaterialInput(input.Geometry); output.Object = LoadObject(ObjectsBuffer, input.Geometry.ObjectIndex); output.TwoSidedSign = output.Object.WorldDeterminantSign * (input.IsFrontFace ? 1.0 : -1.0); output.SvPosition = input.Position; #if USE_CUSTOM_VERTEX_INTERPOLATORS output.CustomVSToPS = input.CustomVSToPS; #endif return output; } // Removes the scale vector from the local to world transformation matrix (supports instancing) float3x3 RemoveScaleFromLocalToWorld(float3x3 localToWorld) { // Extract per axis scales from localToWorld transform float scaleX = length(localToWorld[0]); float scaleY = length(localToWorld[1]); float scaleZ = length(localToWorld[2]); float3 invScale = float3( scaleX > 0.00001f ? 1.0f / scaleX : 0.0f, scaleY > 0.00001f ? 1.0f / scaleY : 0.0f, scaleZ > 0.00001f ? 1.0f / scaleZ : 0.0f); localToWorld[0] *= invScale.x; localToWorld[1] *= invScale.y; localToWorld[2] *= invScale.z; return localToWorld; } // Transforms a vector from tangent space to world space float3 TransformTangentVectorToWorld(MaterialInput input, float3 tangentVector) { return mul(tangentVector, input.TBN); } // Transforms a vector from world space to tangent space float3 TransformWorldVectorToTangent(MaterialInput input, float3 worldVector) { return mul(input.TBN, worldVector); } // Transforms a vector from world space to view space float3 TransformWorldVectorToView(MaterialInput input, float3 worldVector) { return mul(worldVector, (float3x3)ViewMatrix); } // Transforms a vector from view space to world space float3 TransformViewVectorToWorld(MaterialInput input, float3 viewVector) { return mul((float3x3)ViewMatrix, viewVector); } // Transforms a vector from local space to world space float3 TransformLocalVectorToWorld(MaterialInput input, float3 localVector) { float3x3 localToWorld = (float3x3)input.Object.WorldMatrix; //localToWorld = RemoveScaleFromLocalToWorld(localToWorld); return mul(localVector, localToWorld); } // Transforms a vector from local space to world space float3 TransformWorldVectorToLocal(MaterialInput input, float3 worldVector) { float3x3 localToWorld = (float3x3)input.Object.WorldMatrix; //localToWorld = RemoveScaleFromLocalToWorld(localToWorld); return mul(localToWorld, worldVector); } // Gets the current object position (supports instancing) float3 GetObjectPosition(MaterialInput input) { return input.Object.WorldMatrix[3].xyz; } // Gets the current object size (supports instancing) float3 GetObjectSize(MaterialInput input) { float4x4 world = input.Object.WorldMatrix; return input.Object.GeometrySize * float3(world._m00, world._m11, world._m22); } // Gets the current object scale (supports instancing) float3 GetObjectScale(MaterialInput input) { float4x4 world = input.Object.WorldMatrix; // Get the squares of the scale factors float scaleXSquared = dot(world[0].xyz, world[0].xyz); float scaleYSquared = dot(world[1].xyz, world[1].xyz); float scaleZSquared = dot(world[2].xyz, world[2].xyz); // Take square root to get actual scales return float3( sqrt(scaleXSquared), sqrt(scaleYSquared), sqrt(scaleZSquared) ); } // Get the current object random value (supports instancing) float GetPerInstanceRandom(MaterialInput input) { return input.Object.PerInstanceRandom; } // Get the current object LOD transition dither factor (supports instancing) float GetLODDitherFactor(MaterialInput input) { return input.Object.LODDitherFactor; } // Gets the interpolated vertex color (in linear space) float4 GetVertexColor(MaterialInput input) { #if USE_VERTEX_COLOR return input.VertexColor; #else return 1; #endif } @8 // Get material properties function (for vertex shader) Material GetMaterialVS(MaterialInput input) { @5 } // Get material properties function (for domain shader) Material GetMaterialDS(MaterialInput input) { @6 } // Get material properties function (for pixel shader) Material GetMaterialPS(MaterialInput input) { @4 } // Calculates the transform matrix from mesh tangent space to local space float3x3 CalcTangentToLocal(ModelInput input) { float bitangentSign = input.Tangent.w ? -1.0f : +1.0f; float3 normal = input.Normal.xyz * 2.0 - 1.0; float3 tangent = input.Tangent.xyz * 2.0 - 1.0; float3 bitangent = cross(normal, tangent) * bitangentSign; return float3x3(tangent, bitangent, normal); } float3x3 CalcTangentToWorld(float4x4 world, float3x3 tangentToLocal) { float3x3 localToWorld = RemoveScaleFromLocalToWorld((float3x3)world); return mul(tangentToLocal, localToWorld); } // Vertex Shader function for GBuffer Pass and Depth Pass (with full vertex data) META_VS(true, FEATURE_LEVEL_ES2) META_PERMUTATION_1(USE_INSTANCING=0) META_PERMUTATION_1(USE_INSTANCING=1) META_VS_IN_ELEMENT(POSITION, 0, R32G32B32_FLOAT, 0, 0, PER_VERTEX, 0, true) META_VS_IN_ELEMENT(TEXCOORD, 0, R16G16_FLOAT, 1, 0, PER_VERTEX, 0, true) META_VS_IN_ELEMENT(NORMAL, 0, R10G10B10A2_UNORM, 1, ALIGN, PER_VERTEX, 0, true) META_VS_IN_ELEMENT(TANGENT, 0, R10G10B10A2_UNORM, 1, ALIGN, PER_VERTEX, 0, true) META_VS_IN_ELEMENT(TEXCOORD, 1, R16G16_FLOAT, 1, ALIGN, PER_VERTEX, 0, true) META_VS_IN_ELEMENT(COLOR, 0, R8G8B8A8_UNORM, 2, 0, PER_VERTEX, 0, USE_VERTEX_COLOR) META_VS_IN_ELEMENT(ATTRIBUTE,0, R32_UINT, 3, 0, PER_INSTANCE, 1, USE_INSTANCING) VertexOutput VS(ModelInput input) { VertexOutput output; // Load object data #if USE_INSTANCING output.Geometry.ObjectIndex = input.ObjectIndex; #else output.Geometry.ObjectIndex = DrawObjectIndex; #endif ObjectData object = LoadObject(ObjectsBuffer, output.Geometry.ObjectIndex); // Compute world space vertex position output.Geometry.WorldPosition = mul(float4(input.Position.xyz, 1), object.WorldMatrix).xyz; output.Geometry.PrevWorldPosition = mul(float4(input.Position.xyz, 1), object.PrevWorldMatrix).xyz; // Compute clip space position output.Position = mul(float4(output.Geometry.WorldPosition, 1), ViewProjectionMatrix); // Pass vertex attributes output.Geometry.TexCoords01 = float4(input.TexCoord0, input.TexCoord1); output.Geometry.TexCoords23 = float4(input.TexCoord2, input.TexCoord3); #if USE_VERTEX_COLOR output.Geometry.VertexColor = input.Color; #endif #if CAN_USE_LIGHTMAP output.Geometry.LightmapUV = input.LightmapUV * object.LightmapArea.zw + object.LightmapArea.xy; #else output.Geometry.LightmapUV = float2(0, 0); #endif // Calculate tanget space to world space transformation matrix for unit vectors float3x3 tangentToLocal = CalcTangentToLocal(input); float3x3 tangentToWorld = CalcTangentToWorld(object.WorldMatrix, tangentToLocal); output.Geometry.WorldNormal = tangentToWorld[2]; output.Geometry.WorldTangent.xyz = tangentToWorld[0]; output.Geometry.WorldTangent.w = input.Tangent.w ? -1.0f : +1.0f; // Get material input params if need to evaluate any material property #if USE_POSITION_OFFSET || USE_TESSELLATION || USE_CUSTOM_VERTEX_INTERPOLATORS MaterialInput materialInput = GetGeometryMaterialInput(output.Geometry); materialInput.TwoSidedSign = object.WorldDeterminantSign; materialInput.SvPosition = output.Position; materialInput.PreSkinnedPosition = input.Position.xyz; materialInput.PreSkinnedNormal = tangentToLocal[2].xyz; materialInput.Object = object; Material material = GetMaterialVS(materialInput); #endif // Apply world position offset per-vertex #if USE_POSITION_OFFSET output.Geometry.WorldPosition += material.PositionOffset; output.Geometry.PrevWorldPosition += material.PositionOffset; output.Position = mul(float4(output.Geometry.WorldPosition, 1), ViewProjectionMatrix); #endif // Get tessalation multiplier (per vertex) #if USE_TESSELLATION output.TessellationMultiplier = material.TessellationMultiplier; #endif // Copy interpolants for other shader stages #if USE_CUSTOM_VERTEX_INTERPOLATORS output.CustomVSToPS = material.CustomVSToPS; #endif return output; } // Vertex Shader function for Depth Pass META_VS(true, FEATURE_LEVEL_ES2) META_PERMUTATION_1(USE_INSTANCING=0) META_PERMUTATION_1(USE_INSTANCING=1) META_VS_IN_ELEMENT(POSITION, 0, R32G32B32_FLOAT, 0, 0, PER_VERTEX, 0, true) META_VS_IN_ELEMENT(ATTRIBUTE,0, R32_UINT, 3, 0, PER_INSTANCE, 1, USE_INSTANCING) float4 VS_Depth(ModelInput_PosOnly input) : SV_Position { // Load object data #if USE_INSTANCING uint objectIndex = input.ObjectIndex; #else uint objectIndex = DrawObjectIndex; #endif ObjectData object = LoadObject(ObjectsBuffer, objectIndex); // Transform vertex position into the screen float3 worldPosition = mul(float4(input.Position.xyz, 1), object.WorldMatrix).xyz; float4 position = mul(float4(worldPosition, 1), ViewProjectionMatrix); return position; } #if USE_SKINNING #if PER_BONE_MOTION_BLUR float3x4 GetPrevBoneMatrix(int index) { float4 a = PrevBoneMatrices[index * 3]; float4 b = PrevBoneMatrices[index * 3 + 1]; float4 c = PrevBoneMatrices[index * 3 + 2]; return float3x4(a, b, c); } float3 SkinPrevPosition(ModelInput_Skinned input) { float4 position = float4(input.Position.xyz, 1); float weightsSum = input.BlendWeights.x + input.BlendWeights.y + input.BlendWeights.z + input.BlendWeights.w; float mainWeight = input.BlendWeights.x + (1.0f - weightsSum); // Re-normalize to account for 16-bit weights encoding erros float3x4 boneMatrix = mainWeight * GetPrevBoneMatrix(input.BlendIndices.x); boneMatrix += input.BlendWeights.y * GetPrevBoneMatrix(input.BlendIndices.y); boneMatrix += input.BlendWeights.z * GetPrevBoneMatrix(input.BlendIndices.z); boneMatrix += input.BlendWeights.w * GetPrevBoneMatrix(input.BlendIndices.w); return mul(boneMatrix, position); } #endif // Calculates the transposed transform matrix for the given bone index float3x4 GetBoneMatrix(int index) { float4 a = BoneMatrices[index * 3]; float4 b = BoneMatrices[index * 3 + 1]; float4 c = BoneMatrices[index * 3 + 2]; return float3x4(a, b, c); } // Calculates the transposed transform matrix for the given vertex (uses blending) float3x4 GetBoneMatrix(ModelInput_Skinned input) { float weightsSum = input.BlendWeights.x + input.BlendWeights.y + input.BlendWeights.z + input.BlendWeights.w; float mainWeight = input.BlendWeights.x + (1.0f - weightsSum); // Re-normalize to account for 16-bit weights encoding erros float3x4 boneMatrix = mainWeight * GetBoneMatrix(input.BlendIndices.x); boneMatrix += input.BlendWeights.y * GetBoneMatrix(input.BlendIndices.y); boneMatrix += input.BlendWeights.z * GetBoneMatrix(input.BlendIndices.z); boneMatrix += input.BlendWeights.w * GetBoneMatrix(input.BlendIndices.w); return boneMatrix; } // Transforms the vertex position by weighted sum of the skinning matrices float3 SkinPosition(ModelInput_Skinned input, float3x4 boneMatrix) { return mul(boneMatrix, float4(input.Position.xyz, 1)); } // Transforms the vertex position by weighted sum of the skinning matrices float3x3 SkinTangents(ModelInput_Skinned input, float3x4 boneMatrix) { // Unpack vertex tangent frame float bitangentSign = input.Tangent.w ? -1.0f : +1.0f; float3 normal = input.Normal.xyz * 2.0 - 1.0; float3 tangent = input.Tangent.xyz * 2.0 - 1.0; // Apply skinning tangent = normalize(mul(boneMatrix, float4(tangent, 0))); normal = normalize(mul(boneMatrix, float4(normal, 0))); float3 bitangent = normalize(cross(normal, tangent) * bitangentSign); return float3x3(tangent, bitangent, normal); } // Vertex Shader function for GBuffers/Depth Pass (skinned mesh rendering) META_VS(true, FEATURE_LEVEL_ES2) META_PERMUTATION_1(USE_SKINNING=1) META_PERMUTATION_2(USE_SKINNING=1, PER_BONE_MOTION_BLUR=1) META_VS_IN_ELEMENT(POSITION, 0, R32G32B32_FLOAT, 0, 0, PER_VERTEX, 0, true) META_VS_IN_ELEMENT(TEXCOORD, 0, R16G16_FLOAT, 0, ALIGN, PER_VERTEX, 0, true) META_VS_IN_ELEMENT(NORMAL, 0, R10G10B10A2_UNORM, 0, ALIGN, PER_VERTEX, 0, true) META_VS_IN_ELEMENT(TANGENT, 0, R10G10B10A2_UNORM, 0, ALIGN, PER_VERTEX, 0, true) META_VS_IN_ELEMENT(BLENDINDICES, 0, R8G8B8A8_UINT, 0, ALIGN, PER_VERTEX, 0, true) META_VS_IN_ELEMENT(BLENDWEIGHTS, 0, R16G16B16A16_FLOAT,0, ALIGN, PER_VERTEX, 0, true) VertexOutput VS_Skinned(ModelInput_Skinned input) { VertexOutput output; // Load object data output.Geometry.ObjectIndex = DrawObjectIndex; ObjectData object = LoadObject(ObjectsBuffer, output.Geometry.ObjectIndex); // Perform skinning float3x4 boneMatrix = GetBoneMatrix(input); float3 position = SkinPosition(input, boneMatrix); float3x3 tangentToLocal = SkinTangents(input, boneMatrix); // Compute world space vertex position output.Geometry.WorldPosition = mul(float4(position, 1), object.WorldMatrix).xyz; #if PER_BONE_MOTION_BLUR float3 prevPosition = SkinPrevPosition(input); output.Geometry.PrevWorldPosition = mul(float4(prevPosition, 1), object.PrevWorldMatrix).xyz; #else output.Geometry.PrevWorldPosition = mul(float4(position, 1), object.PrevWorldMatrix).xyz; #endif // Compute clip space position output.Position = mul(float4(output.Geometry.WorldPosition, 1), ViewProjectionMatrix); // Pass vertex attributes output.Geometry.TexCoords01 = float4(input.TexCoord0, input.TexCoord1); output.Geometry.TexCoords23 = float4(input.TexCoord2, input.TexCoord3); #if USE_VERTEX_COLOR output.Geometry.VertexColor = input.Color; #endif output.Geometry.LightmapUV = float2(0, 0); // Calculate tanget space to world space transformation matrix for unit vectors float3x3 tangentToWorld = CalcTangentToWorld(object.WorldMatrix, tangentToLocal); output.Geometry.WorldNormal = tangentToWorld[2]; output.Geometry.WorldTangent.xyz = tangentToWorld[0]; output.Geometry.WorldTangent.w = input.Tangent.w ? -1.0f : +1.0f; // Get material input params if need to evaluate any material property #if USE_POSITION_OFFSET || USE_TESSELLATION || USE_CUSTOM_VERTEX_INTERPOLATORS MaterialInput materialInput = GetGeometryMaterialInput(output.Geometry); materialInput.TwoSidedSign = object.WorldDeterminantSign; materialInput.SvPosition = output.Position; materialInput.PreSkinnedPosition = input.Position.xyz; materialInput.PreSkinnedNormal = tangentToLocal[2].xyz; materialInput.Object = object; Material material = GetMaterialVS(materialInput); #endif // Apply world position offset per-vertex #if USE_POSITION_OFFSET output.Geometry.WorldPosition += material.PositionOffset; output.Geometry.PrevWorldPosition += material.PositionOffset; output.Position = mul(float4(output.Geometry.WorldPosition, 1), ViewProjectionMatrix); #endif // Get tessalation multiplier (per vertex) #if USE_TESSELLATION output.TessellationMultiplier = material.TessellationMultiplier; #endif // Copy interpolants for other shader stages #if USE_CUSTOM_VERTEX_INTERPOLATORS output.CustomVSToPS = material.CustomVSToPS; #endif return output; } #endif #if USE_DITHERED_LOD_TRANSITION void ClipLODTransition(MaterialInput input) { float ditherFactor = input.Object.LODDitherFactor; if (abs(ditherFactor) > 0.001) { float randGrid = cos(dot(floor(input.SvPosition.xy), float2(347.83452793, 3343.28371863))); float randGridFrac = frac(randGrid * 1000.0); half mask = (ditherFactor < 0.0) ? (ditherFactor + 1.0 > randGridFrac) : (ditherFactor < randGridFrac); clip(mask - 0.001); } } #endif // Pixel Shader function for Depth Pass META_PS(true, FEATURE_LEVEL_ES2) void PS_Depth(PixelInput input) { MaterialInput materialInput = GetMaterialInput(input); #if USE_DITHERED_LOD_TRANSITION ClipLODTransition(materialInput); #endif #if MATERIAL_MASKED || MATERIAL_BLEND != MATERIAL_BLEND_OPAQUE // Get material parameters Material material = GetMaterialPS(materialInput); // Perform per pixel clipping #if MATERIAL_MASKED clip(material.Mask - MATERIAL_MASK_THRESHOLD); #endif #if MATERIAL_BLEND != MATERIAL_BLEND_OPAQUE clip(material.Opacity - MATERIAL_OPACITY_THRESHOLD); #endif #endif } #if _PS_QuadOverdraw #include "./Flax/Editor/QuadOverdraw.hlsl" // Pixel Shader function for Quad Overdraw Pass (editor-only) [earlydepthstencil] META_PS(USE_EDITOR, FEATURE_LEVEL_SM5) void PS_QuadOverdraw(float4 svPos : SV_Position, uint primId : SV_PrimitiveID) { DoQuadOverdraw(svPos, primId); } #endif @9