// Copyright (c) 2012-2023 Wojciech Figat. All rights reserved. #include "Mesh.h" #include "MeshDeformation.h" #include "ModelInstanceEntry.h" #include "Engine/Content/Assets/Material.h" #include "Engine/Content/Assets/Model.h" #include "Engine/Core/Log.h" #include "Engine/Core/Math/Transform.h" #include "Engine/Graphics/GPUContext.h" #include "Engine/Graphics/GPUDevice.h" #include "Engine/Graphics/RenderTask.h" #include "Engine/Graphics/RenderTools.h" #include "Engine/Profiler/ProfilerCPU.h" #include "Engine/Renderer/RenderList.h" #include "Engine/Scripting/ManagedCLR/MCore.h" #include "Engine/Serialization/MemoryReadStream.h" #include "Engine/Threading/Task.h" #include "Engine/Threading/Threading.h" #if USE_EDITOR #include "Engine/Renderer/GBufferPass.h" #endif namespace { template bool UpdateMesh(Mesh* mesh, uint32 vertexCount, uint32 triangleCount, Float3* vertices, IndexType* triangles, Float3* normals, Float3* tangents, Float2* uvs, Color32* colors) { auto model = mesh->GetModel(); CHECK_RETURN(model && model->IsVirtual(), true); CHECK_RETURN(triangles && vertices, true); // Pack mesh data into vertex buffers Array vb1; Array vb2; vb1.Resize(vertexCount); if (normals) { if (tangents) { for (uint32 i = 0; i < vertexCount; i++) { const Float3 normal = normals[i]; const Float3 tangent = tangents[i]; auto& v = vb1.Get()[i]; RenderTools::CalculateTangentFrame(v.Normal, v.Tangent, normal, tangent); } } else { for (uint32 i = 0; i < vertexCount; i++) { const Float3 normal = normals[i]; auto& v = vb1.Get()[i]; RenderTools::CalculateTangentFrame(v.Normal, v.Tangent, normal); } } } else { // Set default tangent frame const auto n = Float1010102(Float3::UnitZ); const auto t = Float1010102(Float3::UnitX); for (uint32 i = 0; i < vertexCount; i++) { vb1[i].Normal = n; vb1[i].Tangent = t; } } if (uvs) { for (uint32 i = 0; i < vertexCount; i++) vb1[i].TexCoord = Half2(uvs[i]); } else { auto v = Half2::Zero; for (uint32 i = 0; i < vertexCount; i++) vb1[i].TexCoord = v; } { auto v = Half2::Zero; for (uint32 i = 0; i < vertexCount; i++) vb1[i].LightmapUVs = v; } if (colors) { vb2.Resize(vertexCount); for (uint32 i = 0; i < vertexCount; i++) vb2[i].Color = colors[i]; } return mesh->UpdateMesh(vertexCount, triangleCount, (VB0ElementType*)vertices, vb1.Get(), vb2.HasItems() ? vb2.Get() : nullptr, triangles); } #if !COMPILE_WITHOUT_CSHARP template bool UpdateMesh(Mesh* mesh, uint32 vertexCount, uint32 triangleCount, MArray* verticesObj, MArray* trianglesObj, MArray* normalsObj, MArray* tangentsObj, MArray* uvObj, MArray* colorsObj) { ASSERT((uint32)MCore::Array::GetLength(verticesObj) >= vertexCount); ASSERT((uint32)MCore::Array::GetLength(trianglesObj) / 3 >= triangleCount); auto vertices = MCore::Array::GetAddress(verticesObj); auto triangles = MCore::Array::GetAddress(trianglesObj); const auto normals = normalsObj ? MCore::Array::GetAddress(normalsObj) : nullptr; const auto tangents = tangentsObj ? MCore::Array::GetAddress(tangentsObj) : nullptr; const auto uvs = uvObj ? MCore::Array::GetAddress(uvObj) : nullptr; const auto colors = colorsObj ? MCore::Array::GetAddress(colorsObj) : nullptr; return UpdateMesh(mesh, vertexCount, triangleCount, vertices, triangles, normals, tangents, uvs, colors); } template bool UpdateTriangles(Mesh* mesh, int32 triangleCount, MArray* trianglesObj) { const auto model = mesh->GetModel(); ASSERT(model && model->IsVirtual() && trianglesObj); // Get buffer data ASSERT(MCore::Array::GetLength(trianglesObj) / 3 >= triangleCount); auto ib = MCore::Array::GetAddress(trianglesObj); return mesh->UpdateTriangles(triangleCount, ib); } #endif } bool Mesh::HasVertexColors() const { return _vertexBuffers[2] != nullptr && _vertexBuffers[2]->IsAllocated(); } bool Mesh::UpdateMesh(uint32 vertexCount, uint32 triangleCount, VB0ElementType* vb0, VB1ElementType* vb1, VB2ElementType* vb2, void* ib, bool use16BitIndices) { auto model = (Model*)_model; Unload(); // Setup GPU resources model->LODs[_lodIndex]._verticesCount -= _vertices; const bool failed = Load(vertexCount, triangleCount, vb0, vb1, vb2, ib, use16BitIndices); if (!failed) { model->LODs[_lodIndex]._verticesCount += _vertices; // Calculate mesh bounds BoundingBox bounds; BoundingBox::FromPoints((Float3*)vb0, vertexCount, bounds); SetBounds(bounds); // Send event (actors using this model can update bounds, etc.) model->onLoaded(); } return failed; } bool Mesh::UpdateMesh(uint32 vertexCount, uint32 triangleCount, Float3* vertices, uint16* triangles, Float3* normals, Float3* tangents, Float2* uvs, Color32* colors) { return ::UpdateMesh(this, vertexCount, triangleCount, vertices, triangles, normals, tangents, uvs, colors); } bool Mesh::UpdateMesh(uint32 vertexCount, uint32 triangleCount, Float3* vertices, uint32* triangles, Float3* normals, Float3* tangents, Float2* uvs, Color32* colors) { return ::UpdateMesh(this, vertexCount, triangleCount, vertices, triangles, normals, tangents, uvs, colors); } bool Mesh::UpdateTriangles(uint32 triangleCount, void* ib, bool use16BitIndices) { // Cache data uint32 indicesCount = triangleCount * 3; uint32 ibStride = use16BitIndices ? sizeof(uint16) : sizeof(uint32); // Create index buffer GPUBuffer* indexBuffer = GPUDevice::Instance->CreateBuffer(String::Empty); if (indexBuffer->Init(GPUBufferDescription::Index(ibStride, indicesCount, ib))) { Delete(indexBuffer); return true; } // TODO: update collision proxy // Initialize SAFE_DELETE_GPU_RESOURCE(_indexBuffer); _indexBuffer = indexBuffer; _triangles = triangleCount; _use16BitIndexBuffer = use16BitIndices; return false; } void Mesh::Init(Model* model, int32 lodIndex, int32 index, int32 materialSlotIndex, const BoundingBox& box, const BoundingSphere& sphere, bool hasLightmapUVs) { _model = model; _lodIndex = lodIndex; _index = index; _materialSlotIndex = materialSlotIndex; _use16BitIndexBuffer = false; _hasLightmapUVs = hasLightmapUVs; _box = box; _sphere = sphere; _vertices = 0; _triangles = 0; _vertexBuffers[0] = nullptr; _vertexBuffers[1] = nullptr; _vertexBuffers[2] = nullptr; _indexBuffer = nullptr; } Mesh::~Mesh() { // Release buffers SAFE_DELETE_GPU_RESOURCE(_vertexBuffers[0]); SAFE_DELETE_GPU_RESOURCE(_vertexBuffers[1]); SAFE_DELETE_GPU_RESOURCE(_vertexBuffers[2]); SAFE_DELETE_GPU_RESOURCE(_indexBuffer); } bool Mesh::Load(uint32 vertices, uint32 triangles, void* vb0, void* vb1, void* vb2, void* ib, bool use16BitIndexBuffer) { // Cache data uint32 indicesCount = triangles * 3; uint32 ibStride = use16BitIndexBuffer ? sizeof(uint16) : sizeof(uint32); GPUBuffer* vertexBuffer0 = nullptr; GPUBuffer* vertexBuffer1 = nullptr; GPUBuffer* vertexBuffer2 = nullptr; GPUBuffer* indexBuffer = nullptr; // Create GPU buffers #if GPU_ENABLE_RESOURCE_NAMING #define MESH_BUFFER_NAME(postfix) GetModel()->GetPath() + TEXT(postfix) #else #define MESH_BUFFER_NAME(postfix) String::Empty #endif vertexBuffer0 = GPUDevice::Instance->CreateBuffer(MESH_BUFFER_NAME(".VB0")); if (vertexBuffer0->Init(GPUBufferDescription::Vertex(sizeof(VB0ElementType), vertices, vb0))) goto ERROR_LOAD_END; vertexBuffer1 = GPUDevice::Instance->CreateBuffer(MESH_BUFFER_NAME(".VB1")); if (vertexBuffer1->Init(GPUBufferDescription::Vertex(sizeof(VB1ElementType), vertices, vb1))) goto ERROR_LOAD_END; if (vb2) { vertexBuffer2 = GPUDevice::Instance->CreateBuffer(MESH_BUFFER_NAME(".VB2")); if (vertexBuffer2->Init(GPUBufferDescription::Vertex(sizeof(VB2ElementType), vertices, vb2))) goto ERROR_LOAD_END; } indexBuffer = GPUDevice::Instance->CreateBuffer(MESH_BUFFER_NAME(".IB")); if (indexBuffer->Init(GPUBufferDescription::Index(ibStride, indicesCount, ib))) goto ERROR_LOAD_END; // Init collision proxy #if USE_PRECISE_MESH_INTERSECTS if (!_collisionProxy.HasData()) { if (use16BitIndexBuffer) _collisionProxy.Init(vertices, triangles, (Float3*)vb0, (uint16*)ib); else _collisionProxy.Init(vertices, triangles, (Float3*)vb0, (uint32*)ib); } #endif // Initialize _vertexBuffers[0] = vertexBuffer0; _vertexBuffers[1] = vertexBuffer1; _vertexBuffers[2] = vertexBuffer2; _indexBuffer = indexBuffer; _triangles = triangles; _vertices = vertices; _use16BitIndexBuffer = use16BitIndexBuffer; _cachedVertexBuffer[0].Clear(); _cachedVertexBuffer[1].Clear(); _cachedVertexBuffer[2].Clear(); return false; #undef MESH_BUFFER_NAME ERROR_LOAD_END: SAFE_DELETE_GPU_RESOURCE(vertexBuffer0); SAFE_DELETE_GPU_RESOURCE(vertexBuffer1); SAFE_DELETE_GPU_RESOURCE(vertexBuffer2); SAFE_DELETE_GPU_RESOURCE(indexBuffer); return true; } void Mesh::Unload() { SAFE_DELETE_GPU_RESOURCE(_vertexBuffers[0]); SAFE_DELETE_GPU_RESOURCE(_vertexBuffers[1]); SAFE_DELETE_GPU_RESOURCE(_vertexBuffers[2]); SAFE_DELETE_GPU_RESOURCE(_indexBuffer); _triangles = 0; _vertices = 0; _use16BitIndexBuffer = false; _cachedIndexBuffer.Resize(0); _cachedVertexBuffer[0].Clear(); _cachedVertexBuffer[1].Clear(); _cachedVertexBuffer[2].Clear(); } bool Mesh::Intersects(const Ray& ray, const Matrix& world, Real& distance, Vector3& normal) const { // Get bounding box of the mesh bounds transformed by the instance world matrix Vector3 corners[8]; _box.GetCorners(corners); Vector3 tmp; Vector3::Transform(corners[0], world, tmp); Vector3 min = tmp; Vector3 max = tmp; for (int32 i = 1; i < 8; i++) { Vector3::Transform(corners[i], world, tmp); min = Vector3::Min(min, tmp); max = Vector3::Max(max, tmp); } const BoundingBox transformedBox(min, max); // Test ray on box #if USE_PRECISE_MESH_INTERSECTS if (transformedBox.Intersects(ray, distance)) { // Use exact test on raw geometry return _collisionProxy.Intersects(ray, world, distance, normal); } distance = 0; normal = Vector3::Up; return false; #else return transformedBox.Intersects(ray, distance, normal); #endif } bool Mesh::Intersects(const Ray& ray, const Transform& transform, Real& distance, Vector3& normal) const { // Get bounding box of the mesh bounds transformed by the instance world matrix Vector3 corners[8]; _box.GetCorners(corners); Vector3 tmp; transform.LocalToWorld(corners[0], tmp); Vector3 min = tmp; Vector3 max = tmp; for (int32 i = 1; i < 8; i++) { transform.LocalToWorld(corners[i], tmp); min = Vector3::Min(min, tmp); max = Vector3::Max(max, tmp); } const BoundingBox transformedBox(min, max); // Test ray on box #if USE_PRECISE_MESH_INTERSECTS if (transformedBox.Intersects(ray, distance)) { // Use exact test on raw geometry return _collisionProxy.Intersects(ray, transform, distance, normal); } distance = 0; normal = Vector3::Up; return false; #else return transformedBox.Intersects(ray, distance, normal); #endif } void Mesh::GetDrawCallGeometry(DrawCall& drawCall) const { drawCall.Geometry.IndexBuffer = _indexBuffer; drawCall.Geometry.VertexBuffers[0] = _vertexBuffers[0]; drawCall.Geometry.VertexBuffers[1] = _vertexBuffers[1]; drawCall.Geometry.VertexBuffers[2] = _vertexBuffers[2]; drawCall.Geometry.VertexBuffersOffsets[0] = 0; drawCall.Geometry.VertexBuffersOffsets[1] = 0; drawCall.Geometry.VertexBuffersOffsets[2] = 0; drawCall.Draw.StartIndex = 0; drawCall.Draw.IndicesCount = _triangles * 3; } void Mesh::Render(GPUContext* context) const { if (!IsInitialized()) return; context->BindVB(ToSpan((GPUBuffer**)_vertexBuffers, 3)); context->BindIB(_indexBuffer); context->DrawIndexedInstanced(_triangles * 3, 1, 0, 0, 0); } void Mesh::Draw(const RenderContext& renderContext, MaterialBase* material, const Matrix& world, StaticFlags flags, bool receiveDecals, DrawPass drawModes, float perInstanceRandom, int16 sortOrder) const { if (!material || !material->IsSurface() || !IsInitialized()) return; drawModes &= material->GetDrawModes(); if (drawModes == DrawPass::None) return; // Setup draw call DrawCall drawCall; drawCall.Geometry.IndexBuffer = _indexBuffer; drawCall.Geometry.VertexBuffers[0] = _vertexBuffers[0]; drawCall.Geometry.VertexBuffers[1] = _vertexBuffers[1]; drawCall.Geometry.VertexBuffers[2] = _vertexBuffers[2]; drawCall.Draw.IndicesCount = _triangles * 3; drawCall.InstanceCount = 1; drawCall.Material = material; drawCall.World = world; drawCall.ObjectPosition = drawCall.World.GetTranslation(); drawCall.ObjectRadius = _sphere.Radius * drawCall.World.GetScaleVector().GetAbsolute().MaxValue(); drawCall.Surface.GeometrySize = _box.GetSize(); drawCall.Surface.PrevWorld = world; drawCall.Surface.Lightmap = nullptr; drawCall.Surface.LightmapUVsArea = Rectangle::Empty; drawCall.Surface.Skinning = nullptr; drawCall.Surface.LODDitherFactor = 0.0f; drawCall.WorldDeterminantSign = Math::FloatSelect(world.RotDeterminant(), 1, -1); drawCall.PerInstanceRandom = perInstanceRandom; #if USE_EDITOR const ViewMode viewMode = renderContext.View.Mode; if (viewMode == ViewMode::LightmapUVsDensity || viewMode == ViewMode::LODPreview) GBufferPass::AddIndexBufferToModelLOD(_indexBuffer, &((Model*)_model)->LODs[_lodIndex]); #endif // Push draw call to the render list renderContext.List->AddDrawCall(renderContext, drawModes, flags, drawCall, receiveDecals, sortOrder); } void Mesh::Draw(const RenderContext& renderContext, const DrawInfo& info, float lodDitherFactor) const { const auto& entry = info.Buffer->At(_materialSlotIndex); if (!entry.Visible || !IsInitialized()) return; const MaterialSlot& slot = _model->MaterialSlots[_materialSlotIndex]; // Select material MaterialBase* material; if (entry.Material && entry.Material->IsLoaded()) material = entry.Material; else if (slot.Material && slot.Material->IsLoaded()) material = slot.Material; else material = GPUDevice::Instance->GetDefaultMaterial(); if (!material || !material->IsSurface()) return; // Check if skip rendering const auto shadowsMode = entry.ShadowsMode & slot.ShadowsMode; const auto drawModes = info.DrawModes & renderContext.View.Pass & renderContext.View.GetShadowsDrawPassMask(shadowsMode) & material->GetDrawModes(); if (drawModes == DrawPass::None) return; // Setup draw call DrawCall drawCall; drawCall.Geometry.IndexBuffer = _indexBuffer; drawCall.Geometry.VertexBuffers[0] = _vertexBuffers[0]; drawCall.Geometry.VertexBuffers[1] = _vertexBuffers[1]; drawCall.Geometry.VertexBuffers[2] = _vertexBuffers[2]; if (info.Deformation) { info.Deformation->RunDeformers(this, MeshBufferType::Vertex0, drawCall.Geometry.VertexBuffers[0]); info.Deformation->RunDeformers(this, MeshBufferType::Vertex1, drawCall.Geometry.VertexBuffers[1]); } if (info.VertexColors && info.VertexColors[_lodIndex]) { // TODO: cache vertexOffset within the model LOD per-mesh uint32 vertexOffset = 0; for (int32 meshIndex = 0; meshIndex < _index; meshIndex++) vertexOffset += ((Model*)_model)->LODs[_lodIndex].Meshes[meshIndex].GetVertexCount(); drawCall.Geometry.VertexBuffers[2] = info.VertexColors[_lodIndex]; drawCall.Geometry.VertexBuffersOffsets[2] = vertexOffset * sizeof(VB2ElementType); } drawCall.Draw.IndicesCount = _triangles * 3; drawCall.InstanceCount = 1; drawCall.Material = material; drawCall.World = *info.World; drawCall.ObjectPosition = drawCall.World.GetTranslation(); drawCall.ObjectRadius = info.Bounds.Radius; // TODO: should it be kept in sync with ObjectPosition? drawCall.Surface.GeometrySize = _box.GetSize(); drawCall.Surface.PrevWorld = info.DrawState->PrevWorld; drawCall.Surface.Lightmap = (info.Flags & StaticFlags::Lightmap) != StaticFlags::None ? info.Lightmap : nullptr; drawCall.Surface.LightmapUVsArea = info.LightmapUVs ? *info.LightmapUVs : Rectangle::Empty; drawCall.Surface.Skinning = nullptr; drawCall.Surface.LODDitherFactor = lodDitherFactor; drawCall.WorldDeterminantSign = Math::FloatSelect(drawCall.World.RotDeterminant(), 1, -1); drawCall.PerInstanceRandom = info.PerInstanceRandom; #if USE_EDITOR const ViewMode viewMode = renderContext.View.Mode; if (viewMode == ViewMode::LightmapUVsDensity || viewMode == ViewMode::LODPreview) GBufferPass::AddIndexBufferToModelLOD(_indexBuffer, &((Model*)_model)->LODs[_lodIndex]); #endif // Push draw call to the render list renderContext.List->AddDrawCall(renderContext, drawModes, info.Flags, drawCall, entry.ReceiveDecals, info.SortOrder); } void Mesh::Draw(const RenderContextBatch& renderContextBatch, const DrawInfo& info, float lodDitherFactor) const { const auto& entry = info.Buffer->At(_materialSlotIndex); if (!entry.Visible || !IsInitialized()) return; const MaterialSlot& slot = _model->MaterialSlots[_materialSlotIndex]; // Select material MaterialBase* material; if (entry.Material && entry.Material->IsLoaded()) material = entry.Material; else if (slot.Material && slot.Material->IsLoaded()) material = slot.Material; else material = GPUDevice::Instance->GetDefaultMaterial(); if (!material || !material->IsSurface()) return; // Setup draw call DrawCall drawCall; drawCall.Geometry.IndexBuffer = _indexBuffer; drawCall.Geometry.VertexBuffers[0] = _vertexBuffers[0]; drawCall.Geometry.VertexBuffers[1] = _vertexBuffers[1]; drawCall.Geometry.VertexBuffers[2] = _vertexBuffers[2]; if (info.Deformation) { info.Deformation->RunDeformers(this, MeshBufferType::Vertex0, drawCall.Geometry.VertexBuffers[0]); info.Deformation->RunDeformers(this, MeshBufferType::Vertex1, drawCall.Geometry.VertexBuffers[1]); } if (info.VertexColors && info.VertexColors[_lodIndex]) { // TODO: cache vertexOffset within the model LOD per-mesh uint32 vertexOffset = 0; for (int32 meshIndex = 0; meshIndex < _index; meshIndex++) vertexOffset += ((Model*)_model)->LODs[_lodIndex].Meshes[meshIndex].GetVertexCount(); drawCall.Geometry.VertexBuffers[2] = info.VertexColors[_lodIndex]; drawCall.Geometry.VertexBuffersOffsets[2] = vertexOffset * sizeof(VB2ElementType); } drawCall.Draw.IndicesCount = _triangles * 3; drawCall.InstanceCount = 1; drawCall.Material = material; drawCall.World = *info.World; drawCall.ObjectPosition = drawCall.World.GetTranslation(); drawCall.ObjectRadius = info.Bounds.Radius; // TODO: should it be kept in sync with ObjectPosition? drawCall.Surface.GeometrySize = _box.GetSize(); drawCall.Surface.PrevWorld = info.DrawState->PrevWorld; drawCall.Surface.Lightmap = (info.Flags & StaticFlags::Lightmap) != StaticFlags::None ? info.Lightmap : nullptr; drawCall.Surface.LightmapUVsArea = info.LightmapUVs ? *info.LightmapUVs : Rectangle::Empty; drawCall.Surface.Skinning = nullptr; drawCall.Surface.LODDitherFactor = lodDitherFactor; drawCall.WorldDeterminantSign = Math::FloatSelect(drawCall.World.RotDeterminant(), 1, -1); drawCall.PerInstanceRandom = info.PerInstanceRandom; #if USE_EDITOR const ViewMode viewMode = renderContextBatch.GetMainContext().View.Mode; if (viewMode == ViewMode::LightmapUVsDensity || viewMode == ViewMode::LODPreview) GBufferPass::AddIndexBufferToModelLOD(_indexBuffer, &((Model*)_model)->LODs[_lodIndex]); #endif // Push draw call to the render lists const auto shadowsMode = entry.ShadowsMode & slot.ShadowsMode; const auto drawModes = info.DrawModes & material->GetDrawModes(); if (drawModes != DrawPass::None) renderContextBatch.GetMainContext().List->AddDrawCall(renderContextBatch, drawModes, info.Flags, shadowsMode, info.Bounds, drawCall, entry.ReceiveDecals, info.SortOrder); } bool Mesh::DownloadDataGPU(MeshBufferType type, BytesContainer& result) const { GPUBuffer* buffer = nullptr; switch (type) { case MeshBufferType::Index: buffer = _indexBuffer; break; case MeshBufferType::Vertex0: buffer = _vertexBuffers[0]; break; case MeshBufferType::Vertex1: buffer = _vertexBuffers[1]; break; case MeshBufferType::Vertex2: buffer = _vertexBuffers[2]; break; } return buffer && buffer->DownloadData(result); } Task* Mesh::DownloadDataGPUAsync(MeshBufferType type, BytesContainer& result) const { GPUBuffer* buffer = nullptr; switch (type) { case MeshBufferType::Index: buffer = _indexBuffer; break; case MeshBufferType::Vertex0: buffer = _vertexBuffers[0]; break; case MeshBufferType::Vertex1: buffer = _vertexBuffers[1]; break; case MeshBufferType::Vertex2: buffer = _vertexBuffers[2]; break; } return buffer ? buffer->DownloadDataAsync(result) : nullptr; } bool Mesh::DownloadDataCPU(MeshBufferType type, BytesContainer& result, int32& count) const { if (_cachedVertexBuffer[0].IsEmpty()) { PROFILE_CPU(); auto model = GetModel(); ScopeLock lock(model->Locker); if (model->IsVirtual()) { LOG(Error, "Cannot access CPU data of virtual models. Use GPU data download"); return true; } // Fetch chunk with data from drive/memory const auto chunkIndex = MODEL_LOD_TO_CHUNK_INDEX(GetLODIndex()); if (model->LoadChunk(chunkIndex)) return true; const auto chunk = model->GetChunk(chunkIndex); if (!chunk) { LOG(Error, "Missing chunk."); return true; } MemoryReadStream stream(chunk->Get(), chunk->Size()); // Seek to find mesh location for (int32 i = 0; i <= _index; i++) { // #MODEL_DATA_FORMAT_USAGE uint32 vertices; stream.ReadUint32(&vertices); uint32 triangles; stream.ReadUint32(&triangles); uint32 indicesCount = triangles * 3; bool use16BitIndexBuffer = indicesCount <= MAX_uint16; uint32 ibStride = use16BitIndexBuffer ? sizeof(uint16) : sizeof(uint32); if (vertices == 0 || triangles == 0) { LOG(Error, "Invalid mesh data."); return true; } auto vb0 = stream.Move(vertices); auto vb1 = stream.Move(vertices); bool hasColors = stream.ReadBool(); VB2ElementType18* vb2 = nullptr; if (hasColors) { vb2 = stream.Move(vertices); } auto ib = stream.Move(indicesCount * ibStride); if (i != _index) continue; // Cache mesh data _cachedIndexBufferCount = indicesCount; _cachedIndexBuffer.Set(ib, indicesCount * ibStride); _cachedVertexBuffer[0].Set((const byte*)vb0, vertices * sizeof(VB0ElementType)); _cachedVertexBuffer[1].Set((const byte*)vb1, vertices * sizeof(VB1ElementType)); if (hasColors) _cachedVertexBuffer[2].Set((const byte*)vb2, vertices * sizeof(VB2ElementType)); break; } } switch (type) { case MeshBufferType::Index: result.Link(_cachedIndexBuffer); count = _cachedIndexBufferCount; break; case MeshBufferType::Vertex0: result.Link(_cachedVertexBuffer[0]); count = _cachedVertexBuffer[0].Count() / sizeof(VB0ElementType); break; case MeshBufferType::Vertex1: result.Link(_cachedVertexBuffer[1]); count = _cachedVertexBuffer[1].Count() / sizeof(VB1ElementType); break; case MeshBufferType::Vertex2: result.Link(_cachedVertexBuffer[2]); count = _cachedVertexBuffer[2].Count() / sizeof(VB2ElementType); break; default: return true; } return false; } ScriptingObject* Mesh::GetParentModel() { return _model; } #if !COMPILE_WITHOUT_CSHARP bool Mesh::UpdateMeshUInt(int32 vertexCount, int32 triangleCount, MArray* verticesObj, MArray* trianglesObj, MArray* normalsObj, MArray* tangentsObj, MArray* uvObj, MArray* colorsObj) { return ::UpdateMesh(this, (uint32)vertexCount, (uint32)triangleCount, verticesObj, trianglesObj, normalsObj, tangentsObj, uvObj, colorsObj); } bool Mesh::UpdateMeshUShort(int32 vertexCount, int32 triangleCount, MArray* verticesObj, MArray* trianglesObj, MArray* normalsObj, MArray* tangentsObj, MArray* uvObj, MArray* colorsObj) { return ::UpdateMesh(this, (uint32)vertexCount, (uint32)triangleCount, verticesObj, trianglesObj, normalsObj, tangentsObj, uvObj, colorsObj); } bool Mesh::UpdateTrianglesUInt(int32 triangleCount, MArray* trianglesObj) { return ::UpdateTriangles(this, triangleCount, trianglesObj); } bool Mesh::UpdateTrianglesUShort(int32 triangleCount, MArray* trianglesObj) { return ::UpdateTriangles(this, triangleCount, trianglesObj); } enum class InternalBufferType { VB0 = 0, VB1 = 1, VB2 = 2, IB16 = 3, IB32 = 4, }; MArray* Mesh::DownloadBuffer(bool forceGpu, MTypeObject* resultType, int32 typeI) { auto mesh = this; auto type = (InternalBufferType)typeI; auto model = mesh->GetModel(); ScopeLock lock(model->Locker); // Virtual assets always fetch from GPU memory forceGpu |= model->IsVirtual(); if (!mesh->IsInitialized() && forceGpu) { LOG(Error, "Cannot load mesh data from GPU if it's not loaded."); return nullptr; } MeshBufferType bufferType; switch (type) { case InternalBufferType::VB0: bufferType = MeshBufferType::Vertex0; break; case InternalBufferType::VB1: bufferType = MeshBufferType::Vertex1; break; case InternalBufferType::VB2: bufferType = MeshBufferType::Vertex2; break; case InternalBufferType::IB16: case InternalBufferType::IB32: bufferType = MeshBufferType::Index; break; default: return nullptr; } BytesContainer data; int32 dataCount; if (forceGpu) { // Get data from GPU // TODO: support reusing the input memory buffer to perform a single copy from staging buffer to the input CPU buffer auto task = mesh->DownloadDataGPUAsync(bufferType, data); if (task == nullptr) return nullptr; task->Start(); model->Locker.Unlock(); if (task->Wait()) { LOG(Error, "Task failed."); return nullptr; } model->Locker.Lock(); // Extract elements count from result data switch (bufferType) { case MeshBufferType::Index: dataCount = data.Length() / (Use16BitIndexBuffer() ? sizeof(uint16) : sizeof(uint32)); break; case MeshBufferType::Vertex0: dataCount = data.Length() / sizeof(VB0ElementType); break; case MeshBufferType::Vertex1: dataCount = data.Length() / sizeof(VB1ElementType); break; case MeshBufferType::Vertex2: dataCount = data.Length() / sizeof(VB2ElementType); break; } } else { // Get data from CPU if (DownloadDataCPU(bufferType, data, dataCount)) return nullptr; } // Convert into managed array MArray* result = MCore::Array::New(MCore::Type::GetClass(INTERNAL_TYPE_OBJECT_GET(resultType)), dataCount); void* managedArrayPtr = MCore::Array::GetAddress(result); const int32 elementSize = data.Length() / dataCount; switch (type) { case InternalBufferType::VB0: case InternalBufferType::VB1: case InternalBufferType::VB2: { Platform::MemoryCopy(managedArrayPtr, data.Get(), data.Length()); break; } case InternalBufferType::IB16: { if (elementSize == sizeof(uint16)) { Platform::MemoryCopy(managedArrayPtr, data.Get(), data.Length()); } else { auto dst = (uint16*)managedArrayPtr; auto src = (uint32*)data.Get(); for (int32 i = 0; i < dataCount; i++) dst[i] = src[i]; } break; } case InternalBufferType::IB32: { if (elementSize == sizeof(uint16)) { auto dst = (uint32*)managedArrayPtr; auto src = (uint16*)data.Get(); for (int32 i = 0; i < dataCount; i++) dst[i] = src[i]; } else { Platform::MemoryCopy(managedArrayPtr, data.Get(), data.Length()); } break; } } return result; } #endif