// Copyright (c) 2012-2024 Wojciech Figat. All rights reserved. #if COMPILE_WITH_MODEL_TOOL #include "MeshAccelerationStructure.h" #include "Engine/Core/Math/Math.h" #include "Engine/Content/Content.h" #include "Engine/Content/Assets/Model.h" #include "Engine/Graphics/Models/ModelData.h" #include "Engine/Profiler/ProfilerCPU.h" void MeshAccelerationStructure::BuildBVH(int32 node, int32 maxLeafSize, Array& scratch) { auto& root = _bvh[node]; ASSERT_LOW_LAYER(root.Leaf.IsLeaf); if (root.Leaf.TriangleCount <= maxLeafSize) return; // Spawn two leaves const int32 childIndex = _bvh.Count(); _bvh.AddDefault(2); auto& left = _bvh.Get()[childIndex]; auto& right = _bvh.Get()[childIndex + 1]; left.Leaf.IsLeaf = 1; right.Leaf.IsLeaf = 1; left.Leaf.MeshIndex = root.Leaf.MeshIndex; right.Leaf.MeshIndex = root.Leaf.MeshIndex; // Mid-point splitting based on the largest axis const Float3 boundsSize = root.Bounds.GetSize(); int32 axisCount = 0; int32 axis = 0; RETRY: if (axisCount == 0) { // Pick the highest axis axis = 0; if (boundsSize.Y > boundsSize.X && boundsSize.Y >= boundsSize.Z) axis = 1; else if (boundsSize.Z > boundsSize.X) axis = 2; } else if (axisCount == 3) { // Failed to split _bvh.Resize(childIndex); return; } else { // Go to the next axis axis = (axis + 1) % 3; } const float midPoint = (float)(root.Bounds.Minimum.Raw[axis] + boundsSize.Raw[axis] * 0.5f); const Mesh& meshData = _meshes[root.Leaf.MeshIndex]; const Float3* vb = meshData.VertexBuffer.Get(); int32 indexStart = root.Leaf.TriangleIndex * 3; int32 indexEnd = indexStart + root.Leaf.TriangleCount * 3; left.Leaf.TriangleCount = 0; right.Leaf.TriangleCount = 0; if (meshData.Use16BitIndexBuffer) { struct Tri { uint16 I0, I1, I2; }; scratch.Resize(root.Leaf.TriangleCount * sizeof(Tri)); auto dst = (Tri*)scratch.Get(); auto ib16 = meshData.IndexBuffer.Get(); for (int32 i = indexStart; i < indexEnd;) { const Tri tri = { ib16[i++], ib16[i++], ib16[i++] }; const float v0 = vb[tri.I0].Raw[axis]; const float v1 = vb[tri.I1].Raw[axis]; const float v2 = vb[tri.I2].Raw[axis]; const float centroid = (v0 + v1 + v2) * 0.333f; if (centroid <= midPoint) dst[left.Leaf.TriangleCount++] = tri; // Left else dst[root.Leaf.TriangleCount - ++right.Leaf.TriangleCount] = tri; // Right } Platform::MemoryCopy(ib16 + indexStart, dst, root.Leaf.TriangleCount * 3 * sizeof(uint16)); if (left.Leaf.TriangleCount == 0 || right.Leaf.TriangleCount == 0) { axisCount++; goto RETRY; } left.Bounds = BoundingBox(vb[dst[0].I0]); indexStart = 0; indexEnd = left.Leaf.TriangleCount * 3; for (int32 i = indexStart; i < indexEnd; i++) left.Bounds.Merge(vb[((uint16*)scratch.Get())[i]]); right.Bounds = BoundingBox(vb[dst[root.Leaf.TriangleCount - 1].I0]); indexStart = left.Leaf.TriangleCount; indexEnd = root.Leaf.TriangleCount * 3; for (int32 i = indexStart; i < indexEnd; i++) right.Bounds.Merge(vb[((uint16*)scratch.Get())[i]]); } else { struct Tri { uint32 I0, I1, I2; }; scratch.Resize(root.Leaf.TriangleCount * sizeof(Tri)); auto dst = (Tri*)scratch.Get(); auto ib32 = meshData.IndexBuffer.Get(); for (int32 i = indexStart; i < indexEnd;) { const Tri tri = { ib32[i++], ib32[i++], ib32[i++] }; const float v0 = vb[tri.I0].Raw[axis]; const float v1 = vb[tri.I1].Raw[axis]; const float v2 = vb[tri.I2].Raw[axis]; const float centroid = (v0 + v1 + v2) * 0.333f; if (centroid <= midPoint) dst[left.Leaf.TriangleCount++] = tri; // Left else dst[root.Leaf.TriangleCount - ++right.Leaf.TriangleCount] = tri; // Right } Platform::MemoryCopy(ib32 + indexStart, dst, root.Leaf.TriangleCount * 3 * sizeof(uint32)); if (left.Leaf.TriangleCount == 0 || right.Leaf.TriangleCount == 0) { axisCount++; goto RETRY; } left.Bounds = BoundingBox(vb[dst[0].I0]); indexStart = 0; indexEnd = left.Leaf.TriangleCount * 3; for (int32 i = indexStart; i < indexEnd; i++) left.Bounds.Merge(vb[((uint32*)scratch.Get())[i]]); right.Bounds = BoundingBox(vb[dst[root.Leaf.TriangleCount - 1].I0]); indexStart = left.Leaf.TriangleCount; indexEnd = root.Leaf.TriangleCount * 3; for (int32 i = indexStart; i < indexEnd; i++) right.Bounds.Merge(vb[((uint32*)scratch.Get())[i]]); } ASSERT_LOW_LAYER(left.Leaf.TriangleCount + right.Leaf.TriangleCount == root.Leaf.TriangleCount); left.Leaf.TriangleIndex = root.Leaf.TriangleIndex; right.Leaf.TriangleIndex = left.Leaf.TriangleIndex + left.Leaf.TriangleCount; // Convert into a node root.Node.IsLeaf = 0; root.Node.ChildIndex = childIndex; root.Node.ChildrenCount = 2; // Split children BuildBVH(childIndex, maxLeafSize, scratch); BuildBVH(childIndex + 1, maxLeafSize, scratch); } bool MeshAccelerationStructure::PointQueryBVH(int32 node, const Vector3& point, Real& hitDistance, Vector3& hitPoint, Triangle& hitTriangle) const { const auto& root = _bvh[node]; bool hit = false; if (root.Leaf.IsLeaf) { // Find closest triangle Vector3 p; const Mesh& meshData = _meshes[root.Leaf.MeshIndex]; const Float3* vb = meshData.VertexBuffer.Get(); const int32 indexStart = root.Leaf.TriangleIndex * 3; const int32 indexEnd = indexStart + root.Leaf.TriangleCount * 3; if (meshData.Use16BitIndexBuffer) { const uint16* ib16 = meshData.IndexBuffer.Get(); for (int32 i = indexStart; i < indexEnd;) { Vector3 v0 = vb[ib16[i++]]; Vector3 v1 = vb[ib16[i++]]; Vector3 v2 = vb[ib16[i++]]; CollisionsHelper::ClosestPointPointTriangle(point, v0, v1, v2, p); const Real distance = Vector3::Distance(point, p); if (distance < hitDistance) { hitDistance = distance; hitPoint = p; hitTriangle = Triangle(v0, v1, v2); hit = true; } } } else { const uint32* ib32 = meshData.IndexBuffer.Get(); for (int32 i = indexStart; i < indexEnd;) { Vector3 v0 = vb[ib32[i++]]; Vector3 v1 = vb[ib32[i++]]; Vector3 v2 = vb[ib32[i++]]; CollisionsHelper::ClosestPointPointTriangle(point, v0, v1, v2, p); const Real distance = Vector3::Distance(point, p); if (distance < hitDistance) { hitDistance = distance; hitPoint = p; hitTriangle = Triangle(v0, v1, v2); hit = true; } } } } else { // Check all nested nodes for (uint32 i = 0; i < root.Node.ChildrenCount; i++) { const int32 index = root.Node.ChildIndex + i; if (_bvh[index].Bounds.Distance(point) >= hitDistance) continue; if (PointQueryBVH(index, point, hitDistance, hitPoint, hitTriangle)) hit = true; } } return hit; } bool MeshAccelerationStructure::RayCastBVH(int32 node, const Ray& ray, Real& hitDistance, Vector3& hitNormal, Triangle& hitTriangle) const { const auto& root = _bvh[node]; if (!root.Bounds.Intersects(ray)) return false; Vector3 normal; Real distance; bool hit = false; if (root.Leaf.IsLeaf) { // Ray cast along triangles in the leaf const Mesh& meshData = _meshes[root.Leaf.MeshIndex]; const Float3* vb = meshData.VertexBuffer.Get(); const int32 indexStart = root.Leaf.TriangleIndex * 3; const int32 indexEnd = indexStart + root.Leaf.TriangleCount * 3; if (meshData.Use16BitIndexBuffer) { const uint16* ib16 = meshData.IndexBuffer.Get(); for (int32 i = indexStart; i < indexEnd;) { Vector3 v0 = vb[ib16[i++]]; Vector3 v1 = vb[ib16[i++]]; Vector3 v2 = vb[ib16[i++]]; if (CollisionsHelper::RayIntersectsTriangle(ray, v0, v1, v2, distance, normal) && distance < hitDistance) { hitDistance = distance; hitNormal = normal; hitTriangle = Triangle(v0, v1, v2); hit = true; } } } else { const uint32* ib32 = meshData.IndexBuffer.Get(); for (int32 i = indexStart; i < indexEnd;) { Vector3 v0 = vb[ib32[i++]]; Vector3 v1 = vb[ib32[i++]]; Vector3 v2 = vb[ib32[i++]]; if (CollisionsHelper::RayIntersectsTriangle(ray, v0, v1, v2, distance, normal) && distance < hitDistance) { hitDistance = distance; hitNormal = normal; hitTriangle = Triangle(v0, v1, v2); hit = true; } } } } else { // Ray cast all child nodes Triangle triangle; for (uint32 i = 0; i < root.Node.ChildrenCount; i++) { const int32 index = root.Node.ChildIndex + i; distance = hitDistance; if (RayCastBVH(index, ray, distance, normal, triangle) && distance < hitDistance) { hitDistance = distance; hitNormal = normal; hitTriangle = triangle; hit = true; } } } return hit; } void MeshAccelerationStructure::Add(Model* model, int32 lodIndex) { PROFILE_CPU(); lodIndex = Math::Clamp(lodIndex, model->HighestResidentLODIndex(), model->LODs.Count() - 1); ModelLOD& lod = model->LODs[lodIndex]; _meshes.EnsureCapacity(_meshes.Count() + lod.Meshes.Count()); bool failed = false; for (int32 i = 0; i < lod.Meshes.Count(); i++) { auto& mesh = lod.Meshes[i]; const MaterialSlot& materialSlot = model->MaterialSlots[mesh.GetMaterialSlotIndex()]; if (materialSlot.Material && !materialSlot.Material->WaitForLoaded()) { // Skip transparent materials if (materialSlot.Material->GetInfo().BlendMode != MaterialBlendMode::Opaque) continue; } auto& meshData = _meshes.AddOne(); if (model->IsVirtual()) { meshData.Indices = mesh.GetTriangleCount() * 3; meshData.Vertices = mesh.GetVertexCount(); failed |= mesh.DownloadDataGPU(MeshBufferType::Index, meshData.IndexBuffer); failed |= mesh.DownloadDataGPU(MeshBufferType::Vertex0, meshData.VertexBuffer); } else { failed |= mesh.DownloadDataCPU(MeshBufferType::Index, meshData.IndexBuffer, meshData.Indices); failed |= mesh.DownloadDataCPU(MeshBufferType::Vertex0, meshData.VertexBuffer, meshData.Vertices); } if (failed) return; if (!meshData.IndexBuffer.IsAllocated() && meshData.IndexBuffer.Length() != 0) { // BVH nodes modifies index buffer (sorts data in-place) so clone it meshData.IndexBuffer.Copy(meshData.IndexBuffer.Get(), meshData.IndexBuffer.Length()); } meshData.Use16BitIndexBuffer = mesh.Use16BitIndexBuffer(); meshData.Bounds = mesh.GetBox(); } } void MeshAccelerationStructure::Add(ModelData* modelData, int32 lodIndex, bool copy) { PROFILE_CPU(); lodIndex = Math::Clamp(lodIndex, 0, modelData->LODs.Count() - 1); ModelLodData& lod = modelData->LODs[lodIndex]; _meshes.EnsureCapacity(_meshes.Count() + lod.Meshes.Count()); for (int32 i = 0; i < lod.Meshes.Count(); i++) { MeshData* mesh = lod.Meshes[i]; const MaterialSlotEntry& materialSlot = modelData->Materials[mesh->MaterialSlotIndex]; auto material = Content::LoadAsync(materialSlot.AssetID); if (material && !material->WaitForLoaded()) { // Skip transparent materials if (material->GetInfo().BlendMode != MaterialBlendMode::Opaque) continue; } auto& meshData = _meshes.AddOne(); meshData.Indices = mesh->Indices.Count(); meshData.Vertices = mesh->Positions.Count(); if (copy) { meshData.IndexBuffer.Copy((const byte*)mesh->Indices.Get(), meshData.Indices * sizeof(uint32)); meshData.VertexBuffer.Copy((const byte*)mesh->Positions.Get(), meshData.Vertices * sizeof(Float3)); } else { meshData.IndexBuffer.Link((const byte*)mesh->Indices.Get(), meshData.Indices * sizeof(uint32)); meshData.VertexBuffer.Link((const byte*)mesh->Positions.Get(), meshData.Vertices * sizeof(Float3)); } meshData.Use16BitIndexBuffer = false; mesh->CalculateBox(meshData.Bounds); } } void MeshAccelerationStructure::Add(Float3* vb, int32 vertices, void* ib, int32 indices, bool use16BitIndex, bool copy) { auto& meshData = _meshes.AddOne(); if (copy) { meshData.VertexBuffer.Copy((const byte*)vb, vertices * sizeof(Float3)); } else { meshData.VertexBuffer.Link((const byte*)vb, vertices * sizeof(Float3)); } meshData.IndexBuffer.Copy((const byte*)ib, indices * (use16BitIndex ? sizeof(uint16) : sizeof(uint32))); meshData.Vertices = vertices; meshData.Indices = indices; meshData.Use16BitIndexBuffer = use16BitIndex; } void MeshAccelerationStructure::BuildBVH(int32 maxLeafSize) { if (_meshes.Count() == 0) return; PROFILE_CPU(); // Estimate memory usage int32 trianglesCount = 0; for (const Mesh& meshData : _meshes) trianglesCount += meshData.Indices / 3; _bvh.Clear(); _bvh.EnsureCapacity(trianglesCount / maxLeafSize); // Init with the root node and all meshes as leaves auto& root = _bvh.AddOne(); root.Node.IsLeaf = 0; root.Node.ChildIndex = 1; root.Node.ChildrenCount = _meshes.Count(); root.Bounds = _meshes[0].Bounds; for (int32 i = 0; i < _meshes.Count(); i++) { const Mesh& meshData = _meshes[i]; auto& child = _bvh.AddOne(); child.Leaf.IsLeaf = 1; child.Leaf.MeshIndex = i; child.Leaf.TriangleIndex = 0; child.Leaf.TriangleCount = meshData.Indices / 3; child.Bounds = meshData.Bounds; BoundingBox::Merge(root.Bounds, meshData.Bounds, root.Bounds); } // Sub-divide mesh nodes into smaller leaves Array scratch; for (int32 i = 0; i < _meshes.Count(); i++) BuildBVH(i + 1, maxLeafSize, scratch); } bool MeshAccelerationStructure::PointQuery(const Vector3& point, Real& hitDistance, Vector3& hitPoint, Triangle& hitTriangle, Real maxDistance) const { hitDistance = maxDistance >= MAX_Real ? maxDistance : maxDistance * maxDistance; bool hit = false; // BVH if (_bvh.Count() != 0) { Array> stack; stack.Push(0); while (stack.HasItems()) { const int32 node = stack.Pop(); auto& root = _bvh[node]; // Skip too far nodes if (root.Bounds.Distance(point) >= hitDistance) continue; if (root.Leaf.IsLeaf) { // Check this leaf hit |= PointQueryBVH(node, point, hitDistance, hitPoint, hitTriangle); } else { // Check this node children for (uint32 i = 0; i < root.Node.ChildrenCount; i++) stack.Push(root.Node.ChildIndex + i); } } //hit = PointQueryBVH(0, point, hitDistance, hitPoint, hitTriangle); return hit; } // Brute-force { Vector3 p; for (const Mesh& meshData : _meshes) { const Float3* vb = meshData.VertexBuffer.Get(); if (meshData.Use16BitIndexBuffer) { const uint16* ib16 = meshData.IndexBuffer.Get(); for (int32 i = 0; i < meshData.Indices;) { Vector3 v0 = vb[ib16[i++]]; Vector3 v1 = vb[ib16[i++]]; Vector3 v2 = vb[ib16[i++]]; CollisionsHelper::ClosestPointPointTriangle(point, v0, v1, v2, p); const Real distance = Vector3::DistanceSquared(point, p); if (distance < hitDistance) { hitDistance = distance; hitPoint = p; hitTriangle = Triangle(v0, v1, v2); hit = true; } } } else { const uint32* ib32 = meshData.IndexBuffer.Get(); for (int32 i = 0; i < meshData.Indices;) { Vector3 v0 = vb[ib32[i++]]; Vector3 v1 = vb[ib32[i++]]; Vector3 v2 = vb[ib32[i++]]; CollisionsHelper::ClosestPointPointTriangle(point, v0, v1, v2, p); const Real distance = Vector3::DistanceSquared(point, p); if (distance < hitDistance) { hitDistance = distance; hitPoint = p; hitTriangle = Triangle(v0, v1, v2); hit = true; } } } } if (hit) hitDistance = Math::Sqrt(hitDistance); return hit; } } bool MeshAccelerationStructure::RayCast(const Ray& ray, Real& hitDistance, Vector3& hitNormal, Triangle& hitTriangle, Real maxDistance) const { hitDistance = maxDistance; // BVH if (_bvh.Count() != 0) { return RayCastBVH(0, ray, hitDistance, hitNormal, hitTriangle); } // Brute-force { Vector3 normal; Real distance; bool hit = false; for (const Mesh& meshData : _meshes) { if (!meshData.Bounds.Intersects(ray)) continue; const Float3* vb = meshData.VertexBuffer.Get(); if (meshData.Use16BitIndexBuffer) { const uint16* ib16 = meshData.IndexBuffer.Get(); for (int32 i = 0; i < meshData.Indices;) { Vector3 v0 = vb[ib16[i++]]; Vector3 v1 = vb[ib16[i++]]; Vector3 v2 = vb[ib16[i++]]; if (CollisionsHelper::RayIntersectsTriangle(ray, v0, v1, v2, distance, normal) && distance < hitDistance) { hitDistance = distance; hitNormal = normal; hitTriangle = Triangle(v0, v1, v2); hit = true; } } } else { const uint32* ib32 = meshData.IndexBuffer.Get(); for (int32 i = 0; i < meshData.Indices;) { Vector3 v0 = vb[ib32[i++]]; Vector3 v1 = vb[ib32[i++]]; Vector3 v2 = vb[ib32[i++]]; if (CollisionsHelper::RayIntersectsTriangle(ray, v0, v1, v2, distance, normal) && distance < hitDistance) { hitDistance = distance; hitNormal = normal; hitTriangle = Triangle(v0, v1, v2); hit = true; } } } } return hit; } } #endif