// Copyright (c) 2012-2023 Wojciech Figat. All rights reserved. #if COMPILE_WITH_MODEL_TOOL && USE_OPEN_FBX #include "ModelTool.h" #include "Engine/Core/Log.h" #include "Engine/Core/DeleteMe.h" #include "Engine/Core/Math/Mathd.h" #include "Engine/Core/Math/Matrix.h" #include "Engine/Core/Collections/Sorting.h" #include "Engine/Platform/FileSystem.h" #include "Engine/Tools/TextureTool/TextureTool.h" #include "Engine/Platform/File.h" // Import OpenFBX library // Source: https://github.com/nem0/OpenFBX #include #include Float2 ToFloat2(const ofbx::Vec2& v) { return Float2((float)v.x, (float)v.y); } Float2 ToFloat2(const ofbx::Vec3& v) { return Float2((float)v.x, (float)v.y); } Float3 ToFloat3(const ofbx::Vec3& v) { return Float3((float)v.x, (float)v.y, (float)v.z); } Color ToColor(const ofbx::Vec4& v) { return Color((float)v.x, (float)v.y, (float)v.z, (float)v.w); } Color ToColor(const ofbx::Color& v) { return Color(v.r, v.g, v.b, 1.0f); } Quaternion ToQuaternion(const ofbx::Quat& v) { return Quaternion((float)v.x, (float)v.y, (float)v.z, (float)v.w); } Matrix ToMatrix(const ofbx::Matrix& mat) { Matrix result; for (int32 i = 0; i < 16; i++) result.Raw[i] = (float)mat.m[i]; return result; } struct FbxNode { int32 ParentIndex; Transform LocalTransform; String Name; int32 LodIndex; const ofbx::Object* FbxObj; }; struct FbxBone { int32 NodeIndex; int32 ParentBoneIndex; const ofbx::Object* FbxObj; Matrix OffsetMatrix; bool operator<(const FbxBone& other) const { return NodeIndex < other.NodeIndex; } }; struct OpenFbxImporterData { const ofbx::IScene* Scene; std::unique_ptr ScenePtr; const String Path; const ModelTool::Options& Options; ofbx::GlobalSettings GlobalSettings; Float3 Up; Float3 Front; Float3 Right; bool ConvertRH; float FrameRate; Quaternion RootConvertRotation = Quaternion::Identity; Array Nodes; Array Bones; Array Materials; Array ImportedMaterials; OpenFbxImporterData(const char* path, const ModelTool::Options& options, ofbx::IScene* scene) : Scene(scene) , ScenePtr(scene) , Path(path) , Options(options) , GlobalSettings(*scene->getGlobalSettings()) , ConvertRH(GlobalSettings.CoordAxis == ofbx::CoordSystem_RightHanded) , Nodes(static_cast(scene->getMeshCount() * 4.0f)) { float frameRate = scene->getSceneFrameRate(); if (frameRate <= 0 || GlobalSettings.TimeMode == ofbx::FrameRate_DEFAULT) { frameRate = Options.DefaultFrameRate; if (frameRate <= 0) frameRate = 30.0f; } FrameRate = frameRate; const float coordAxisSign = GlobalSettings.CoordAxis == ofbx::CoordSystem_LeftHanded ? -1.0f : +1.0f; switch (GlobalSettings.UpAxis) { case ofbx::UpVector_AxisX: Up = Float3((float)GlobalSettings.UpAxisSign, 0, 0); switch (GlobalSettings.FrontAxis) { case ofbx::FrontVector_ParityEven: // Up: X, Front: Y, Right: Z Front = Float3(0, (float)GlobalSettings.FrontAxisSign, 0); Right = Float3(0, 0, coordAxisSign); break; case ofbx::FrontVector_ParityOdd: // Up: X, Front: Z, Right: Y Front = Float3(0, 0, (float)GlobalSettings.FrontAxisSign); Right = Float3(0, coordAxisSign, 0); break; default: ; } break; case ofbx::UpVector_AxisY: Up = Float3(0, (float)GlobalSettings.UpAxisSign, 0); switch (GlobalSettings.FrontAxis) { case ofbx::FrontVector_ParityEven: // Up: Y, Front: X, Right: Z Front = Float3((float)GlobalSettings.FrontAxisSign, 0, 0); Right = Float3(0, 0, coordAxisSign); break; case ofbx::FrontVector_ParityOdd: // Up: Y, Front: Z, Right: X Front = Float3(0, 0, (float)GlobalSettings.FrontAxisSign); Right = Float3(coordAxisSign, 0, 0); break; default: ; } break; case ofbx::UpVector_AxisZ: Up = Float3(0, 0, (float)GlobalSettings.UpAxisSign); switch (GlobalSettings.FrontAxis) { case ofbx::FrontVector_ParityEven: // Up: Z, Front: X, Right: Y Front = Float3((float)GlobalSettings.FrontAxisSign, 0, 0); Right = Float3(0, coordAxisSign, 0); break; case ofbx::FrontVector_ParityOdd: // Up: Z, Front: Y, Right: X Front = Float3((float)GlobalSettings.FrontAxisSign, 0, 0); Right = Float3(coordAxisSign, 0, 0); break; default: ; } break; default: ; } } bool ImportMaterialTexture(ImportedModelData& result, const ofbx::Material* mat, ofbx::Texture::TextureType textureType, int32& textureIndex, TextureEntry::TypeHint type) const { const ofbx::Texture* tex = mat->getTexture(textureType); if (tex) { // Find texture file path ofbx::DataView aFilename = tex->getRelativeFileName(); if (aFilename == "") aFilename = tex->getFileName(); char filenameData[256]; aFilename.toString(filenameData); const String filename(filenameData); String path; if (ModelTool::FindTexture(Path, filename, path)) return true; // Check if already used textureIndex = 0; while (textureIndex < result.Textures.Count()) { if (result.Textures[textureIndex].FilePath == path) return true; textureIndex++; } // Import texture auto& texture = result.Textures.AddOne(); texture.FilePath = path; texture.Type = type; texture.AssetID = Guid::Empty; return true; } return false; } int32 AddMaterial(ImportedModelData& result, const ofbx::Material* mat) { int32 index = Materials.Find(mat); if (index == -1) { index = Materials.Count(); Materials.Add(mat); auto& material = ImportedMaterials.AddOne(); material.AssetID = Guid::Empty; if (mat) material.Name = String(mat->name).TrimTrailing(); if (mat && EnumHasAnyFlags(result.Types, ImportDataTypes::Materials)) { material.Diffuse.Color = ToColor(mat->getDiffuseColor()); if (EnumHasAnyFlags(result.Types, ImportDataTypes::Textures)) { ImportMaterialTexture(result, mat, ofbx::Texture::DIFFUSE, material.Diffuse.TextureIndex, TextureEntry::TypeHint::ColorRGB); ImportMaterialTexture(result, mat, ofbx::Texture::EMISSIVE, material.Emissive.TextureIndex, TextureEntry::TypeHint::ColorRGB); ImportMaterialTexture(result, mat, ofbx::Texture::NORMAL, material.Normals.TextureIndex, TextureEntry::TypeHint::Normals); // FBX don't always store normal maps inside the object if (material.Diffuse.TextureIndex != -1 && material.Normals.TextureIndex == -1) { // If missing, try to locate a normal map in the same path as the diffuse const String srcFolder = String(StringUtils::GetDirectoryName(result.Textures[material.Diffuse.TextureIndex].FilePath)); const String srcName = StringUtils::GetFileNameWithoutExtension(result.Textures[material.Diffuse.TextureIndex].FilePath); String srcSearch; const int32 num = srcName.FindLast('_'); String srcSmallName = srcName; if (num != -1) srcSmallName = srcName.Substring(0, num); bool isNormal = false; for (int32 iExt = 0; iExt < 6; iExt++) { String sExit = TEXT(".dds"); if (iExt == 1) sExit = TEXT(".png"); else if (iExt == 2) sExit = TEXT(".jpg"); else if (iExt == 3) sExit = TEXT(".jpeg"); else if (iExt == 4) sExit = TEXT(".tif"); else if (iExt == 5) sExit = TEXT(".tga"); for (int32 i = 0; i < 5; i++) { String sFind = TEXT("_normal" + sExit); if (i == 1) sFind = TEXT("_n" + sExit); else if (i == 2) sFind = TEXT("_nm" + sExit); else if (i == 3) sFind = TEXT("_nmp" + sExit); else if (i == 4) sFind = TEXT("_nor" + sExit); srcSearch = srcFolder + TEXT("/") + srcSmallName + sFind; if (FileSystem::FileExists(srcSearch)) { isNormal = true; break; } } if (isNormal) break; } if (isNormal) { auto& texture = result.Textures.AddOne(); texture.FilePath = srcSearch; texture.Type = TextureEntry::TypeHint::Normals; texture.AssetID = Guid::Empty; material.Normals.TextureIndex = result.Textures.Count() - 1; } } if (material.Diffuse.TextureIndex != -1) { // Detect using alpha mask in diffuse texture material.Diffuse.HasAlphaMask = TextureTool::HasAlpha(result.Textures[material.Diffuse.TextureIndex].FilePath); if (material.Diffuse.HasAlphaMask) result.Textures[material.Diffuse.TextureIndex].Type = TextureEntry::TypeHint::ColorRGBA; } } } } const auto& importedMaterial = ImportedMaterials[index]; for (int32 i = 0; i < result.Materials.Count(); i++) { if (result.Materials[i].Name == importedMaterial.Name) return i; } result.Materials.Add(importedMaterial); return result.Materials.Count() - 1; } int32 FindNode(const ofbx::Object* link) { for (int32 i = 0; i < Nodes.Count(); i++) { if (Nodes[i].FbxObj == link) return i; } return -1; } int32 FindNode(const String& name, StringSearchCase caseSensitivity = StringSearchCase::CaseSensitive) { for (int32 i = 0; i < Nodes.Count(); i++) { if (Nodes[i].Name.Compare(name, caseSensitivity) == 0) return i; } return -1; } int32 FindBone(const int32 nodeIndex) { for (int32 i = 0; i < Bones.Count(); i++) { if (Bones[i].NodeIndex == nodeIndex) return i; } return -1; } int32 FindBone(const ofbx::Object* link) { for (int32 i = 0; i < Bones.Count(); i++) { if (Bones[i].FbxObj == link) return i; } return -1; } }; void ProcessNodes(OpenFbxImporterData& data, const ofbx::Object* aNode, int32 parentIndex) { const int32 nodeIndex = data.Nodes.Count(); // Create node FbxNode node; node.ParentIndex = parentIndex; node.Name = aNode->name; node.FbxObj = aNode; // Pick node LOD index if (parentIndex == -1 || !data.Options.ImportLODs) { node.LodIndex = 0; } else { node.LodIndex = data.Nodes[parentIndex].LodIndex; if (node.LodIndex == 0) node.LodIndex = ModelTool::DetectLodIndex(node.Name); ASSERT(Math::IsInRange(node.LodIndex, 0, MODEL_MAX_LODS - 1)); } auto transform = ToMatrix(aNode->evalLocal(aNode->getLocalTranslation(), aNode->getLocalRotation())); if (data.ConvertRH) { // Mirror all base vectors at the local Z axis transform.M31 = -transform.M31; transform.M32 = -transform.M32; transform.M33 = -transform.M33; transform.M34 = -transform.M34; // Now invert the Z axis again to keep the matrix determinant positive // The local meshes will be inverted accordingly so that the result should look just fine again transform.M13 = -transform.M13; transform.M23 = -transform.M23; transform.M33 = -transform.M33; transform.M43 = -transform.M43; } transform.Decompose(node.LocalTransform); data.Nodes.Add(node); // Process the children int i = 0; while (ofbx::Object* child = aNode->resolveObjectLink(i)) { if (child->isNode()) ProcessNodes(data, child, nodeIndex); i++; } } Matrix GetOffsetMatrix(OpenFbxImporterData& data, const ofbx::Mesh* mesh, const ofbx::Object* node) { #if 1 auto* skin = mesh ? mesh->getGeometry()->getSkin() : nullptr; if (skin) { for (int i = 0, c = skin->getClusterCount(); i < c; i++) { const ofbx::Cluster* cluster = skin->getCluster(i); if (cluster->getLink() == node) { return ToMatrix(cluster->getTransformLinkMatrix()); } } } //return Matrix::Identity; return ToMatrix(node->getGlobalTransform()); #else Matrix t = Matrix::Identity; const int32 boneIdx = data.FindBone(node); int32 idx = data.Bones[boneIdx].NodeIndex; do { t *= data.Nodes[idx].LocalTransform.GetWorld(); idx = data.Nodes[idx].ParentIndex; } while (idx != -1); return t; #endif } bool IsMeshInvalid(const ofbx::Mesh* aMesh) { return aMesh->getGeometry()->getVertexCount() == 0; } bool ImportBones(OpenFbxImporterData& data, String& errorMsg) { // Check all meshes const int meshCount = data.Scene->getMeshCount(); for (int i = 0; i < meshCount; i++) { const auto aMesh = data.Scene->getMesh(i); const auto aGeometry = aMesh->getGeometry(); const ofbx::Skin* skin = aGeometry->getSkin(); if (skin == nullptr || IsMeshInvalid(aMesh)) continue; for (int clusterIndex = 0, clusterCount = skin->getClusterCount(); clusterIndex < clusterCount; clusterIndex++) { const ofbx::Cluster* cluster = skin->getCluster(clusterIndex); if (cluster->getIndicesCount() == 0) continue; const auto link = cluster->getLink(); ASSERT(link != nullptr); // Create bone if missing int32 boneIndex = data.FindBone(link); if (boneIndex == -1) { // Find the node where the bone is mapped int32 nodeIndex = data.FindNode(link); if (nodeIndex == -1) { nodeIndex = data.FindNode(String(link->name), StringSearchCase::IgnoreCase); if (nodeIndex == -1) { LOG(Warning, "Invalid mesh bone linkage. Mesh: {0}, bone: {1}. Skipping...", String(aMesh->name), String(link->name)); continue; } } // Add bone boneIndex = data.Bones.Count(); data.Bones.EnsureCapacity(256); data.Bones.Resize(boneIndex + 1); auto& bone = data.Bones[boneIndex]; // Setup bone bone.NodeIndex = nodeIndex; bone.ParentBoneIndex = -1; bone.FbxObj = link; bone.OffsetMatrix = GetOffsetMatrix(data, aMesh, link) * Matrix::Scaling(data.GlobalSettings.UnitScaleFactor); bone.OffsetMatrix.Invert(); // Mirror offset matrices (RH to LH) if (data.ConvertRH) { auto& m = bone.OffsetMatrix; m.M13 = -m.M13; m.M23 = -m.M23; m.M43 = -m.M43; m.M31 = -m.M31; m.M32 = -m.M32; m.M34 = -m.M34; } } } } return false; } bool ProcessMesh(ImportedModelData& result, OpenFbxImporterData& data, const ofbx::Mesh* aMesh, MeshData& mesh, String& errorMsg, int32 triangleStart, int32 triangleEnd) { // Prepare const int32 firstVertexOffset = triangleStart * 3; const int32 lastVertexOffset = triangleEnd * 3; const ofbx::Geometry* aGeometry = aMesh->getGeometry(); const int vertexCount = lastVertexOffset - firstVertexOffset + 3; ASSERT(firstVertexOffset + vertexCount <= aGeometry->getVertexCount()); const ofbx::Vec3* vertices = aGeometry->getVertices(); const ofbx::Vec3* normals = aGeometry->getNormals(); const ofbx::Vec3* tangents = aGeometry->getTangents(); const ofbx::Vec4* colors = aGeometry->getColors(); const ofbx::Vec2* uvs = aGeometry->getUVs(); const ofbx::Skin* skin = aGeometry->getSkin(); const ofbx::BlendShape* blendShape = aGeometry->getBlendShape(); // Properties mesh.Name = aMesh->name; const ofbx::Material* aMaterial = nullptr; if (aMesh->getMaterialCount() > 0) { if (aGeometry->getMaterials()) aMaterial = aMesh->getMaterial(aGeometry->getMaterials()[triangleStart]); else aMaterial = aMesh->getMaterial(0); } mesh.MaterialSlotIndex = data.AddMaterial(result, aMaterial); // Vertex positions mesh.Positions.Resize(vertexCount, false); for (int i = 0; i < vertexCount; i++) mesh.Positions.Get()[i] = ToFloat3(vertices[i + firstVertexOffset]); // Indices (dummy index buffer) if (vertexCount % 3 != 0) { errorMsg = TEXT("Invalid vertex count. It must be multiple of 3."); return true; } mesh.Indices.Resize(vertexCount, false); for (int i = 0; i < vertexCount; i++) mesh.Indices.Get()[i] = i; // Texture coordinates if (uvs) { mesh.UVs.Resize(vertexCount, false); for (int i = 0; i < vertexCount; i++) mesh.UVs.Get()[i] = ToFloat2(uvs[i + firstVertexOffset]); if (data.ConvertRH) { for (int32 v = 0; v < vertexCount; v++) mesh.UVs[v].Y = 1.0f - mesh.UVs[v].Y; } } // Normals if (data.Options.CalculateNormals || !normals) { if (mesh.GenerateNormals(data.Options.SmoothingNormalsAngle)) { errorMsg = TEXT("Failed to generate normals."); return true; } } else if (normals) { mesh.Normals.Resize(vertexCount, false); for (int i = 0; i < vertexCount; i++) mesh.Normals.Get()[i] = ToFloat3(normals[i + firstVertexOffset]); if (data.ConvertRH) { // Mirror normals along the Z axis for (int32 i = 0; i < vertexCount; i++) mesh.Normals.Get()[i].Z *= -1.0f; } } // Tangents if ((data.Options.CalculateTangents || !tangents) && mesh.UVs.HasItems()) { // Generated after full mesh data conversion } else if (tangents) { mesh.Tangents.Resize(vertexCount, false); for (int i = 0; i < vertexCount; i++) mesh.Tangents.Get()[i] = ToFloat3(tangents[i + firstVertexOffset]); if (data.ConvertRH) { // Mirror tangents along the Z axis for (int32 i = 0; i < vertexCount; i++) mesh.Tangents.Get()[i].Z *= -1.0f; } } // Lightmap UVs if (data.Options.LightmapUVsSource == ModelLightmapUVsSource::Disable) { // No lightmap UVs } else if (data.Options.LightmapUVsSource == ModelLightmapUVsSource::Generate) { // Generate lightmap UVs if (mesh.GenerateLightmapUVs()) { LOG(Error, "Failed to generate lightmap uvs"); } } else { // Select input channel index int32 inputChannelIndex; switch (data.Options.LightmapUVsSource) { case ModelLightmapUVsSource::Channel0: inputChannelIndex = 0; break; case ModelLightmapUVsSource::Channel1: inputChannelIndex = 1; break; case ModelLightmapUVsSource::Channel2: inputChannelIndex = 2; break; case ModelLightmapUVsSource::Channel3: inputChannelIndex = 3; break; default: inputChannelIndex = INVALID_INDEX; break; } // Check if has that channel texcoords const auto lightmapUVs = aGeometry->getUVs(inputChannelIndex); if (lightmapUVs) { mesh.LightmapUVs.Resize(vertexCount, false); for (int i = 0; i < vertexCount; i++) mesh.LightmapUVs.Get()[i] = ToFloat2(lightmapUVs[i + firstVertexOffset]); if (data.ConvertRH) { for (int32 v = 0; v < vertexCount; v++) mesh.LightmapUVs[v].Y = 1.0f - mesh.LightmapUVs[v].Y; } } else { LOG(Warning, "Cannot import model lightmap uvs. Missing texcoords channel {0}.", inputChannelIndex); } } // Vertex Colors if (data.Options.ImportVertexColors && colors) { mesh.Colors.Resize(vertexCount, false); for (int i = 0; i < vertexCount; i++) mesh.Colors.Get()[i] = ToColor(colors[i + firstVertexOffset]); } // Blend Indices and Blend Weights if (skin && skin->getClusterCount() > 0 && EnumHasAnyFlags(result.Types, ImportDataTypes::Skeleton)) { mesh.BlendIndices.Resize(vertexCount); mesh.BlendWeights.Resize(vertexCount); mesh.BlendIndices.SetAll(Int4::Zero); mesh.BlendWeights.SetAll(Float4::Zero); for (int clusterIndex = 0, clusterCount = skin->getClusterCount(); clusterIndex < clusterCount; clusterIndex++) { const ofbx::Cluster* cluster = skin->getCluster(clusterIndex); if (cluster->getIndicesCount() == 0) continue; const auto link = cluster->getLink(); ASSERT(link != nullptr); // Get bone (should be created earlier) const int32 boneIndex = data.FindBone(link); if (boneIndex == -1) { // Find the node where the bone is mapped const int32 nodeIndex = data.FindNode(link); if (nodeIndex == -1) continue; errorMsg = TEXT("Missing bone"); return true; } // Apply the bone influences const int* clusterIndices = cluster->getIndices(); const double* clusterWeights = cluster->getWeights(); for (int j = 0; j < cluster->getIndicesCount(); j++) { int vtxIndex = clusterIndices[j] - firstVertexOffset; float vtxWeight = (float)clusterWeights[j]; if (vtxWeight <= 0 || vtxIndex < 0 || vtxIndex >= vertexCount) continue; auto& indices = mesh.BlendIndices[vtxIndex]; auto& weights = mesh.BlendWeights[vtxIndex]; for (int32 k = 0; k < 4; k++) { if (vtxWeight >= weights.Raw[k]) { for (int32 l = 2; l >= k; l--) { indices.Raw[l + 1] = indices.Raw[l]; weights.Raw[l + 1] = weights.Raw[l]; } indices.Raw[k] = boneIndex; weights.Raw[k] = vtxWeight; break; } } } } mesh.NormalizeBlendWeights(); } // Blend Shapes if (blendShape && blendShape->getBlendShapeChannelCount() > 0 && EnumHasAnyFlags(result.Types, ImportDataTypes::Skeleton) && data.Options.ImportBlendShapes) { mesh.BlendShapes.EnsureCapacity(blendShape->getBlendShapeChannelCount()); for (int32 channelIndex = 0; channelIndex < blendShape->getBlendShapeChannelCount(); channelIndex++) { const ofbx::BlendShapeChannel* channel = blendShape->getBlendShapeChannel(channelIndex); // Use last shape const int targetShapeCount = channel->getShapeCount(); if (targetShapeCount == 0) continue; const ofbx::Shape* shape = channel->getShape(targetShapeCount - 1); if (shape->getVertexCount() != aGeometry->getVertexCount()) { LOG(Error, "Blend shape '{0}' in mesh '{1}' has different amount of vertices ({2}) than mesh ({3})", String(shape->name), mesh.Name, shape->getVertexCount(), aGeometry->getVertexCount()); continue; } BlendShape& blendShapeData = mesh.BlendShapes.AddOne(); blendShapeData.Name = shape->name; blendShapeData.Weight = channel->getShapeCount() > 1 ? (float)(channel->getDeformPercent() / 100.0) : 1.0f; blendShapeData.Vertices.Resize(vertexCount); for (int32 i = 0; i < blendShapeData.Vertices.Count(); i++) blendShapeData.Vertices.Get()[i].VertexIndex = i; auto shapeVertices = shape->getVertices(); for (int32 i = 0; i < blendShapeData.Vertices.Count(); i++) { auto delta = ToFloat3(shapeVertices[i + firstVertexOffset]) - mesh.Positions.Get()[i]; blendShapeData.Vertices.Get()[i].PositionDelta = delta; } auto shapeNormals = shape->getNormals(); for (int32 i = 0; i < blendShapeData.Vertices.Count(); i++) { /*auto delta = ToFloat3(shapeNormals[i + firstVertexOffset]) - mesh.Normals[i]; auto length = delta.Length(); if (length > ZeroTolerance) delta /= length;*/ auto delta = Float3::Zero; // TODO: blend shape normals deltas fix when importing from fbx blendShapeData.Vertices.Get()[i].NormalDelta = delta; } } } if (data.ConvertRH) { // Mirror positions along the Z axis for (int32 i = 0; i < vertexCount; i++) mesh.Positions[i].Z *= -1.0f; for (auto& blendShapeData : mesh.BlendShapes) { for (auto& v : blendShapeData.Vertices) v.PositionDelta.Z *= -1.0f; } } // Build solid index buffer (remove duplicated vertices) mesh.BuildIndexBuffer(); if (data.ConvertRH) { // Invert the order for (int32 i = 0; i < mesh.Indices.Count(); i += 3) Swap(mesh.Indices[i], mesh.Indices[i + 2]); } if ((data.Options.CalculateTangents || !tangents) && mesh.UVs.HasItems()) { if (mesh.GenerateTangents(data.Options.SmoothingTangentsAngle)) { errorMsg = TEXT("Failed to generate tangents."); return true; } } if (data.Options.OptimizeMeshes) { mesh.ImproveCacheLocality(); } // Apply FBX Mesh geometry transformation /*const Matrix geometryTransform = ToMatrix(aMesh->getGeometricMatrix()); if (!geometryTransform.IsIdentity()) { mesh.TransformBuffer(geometryTransform); }*/ return false; } bool ImportMesh(ImportedModelData& result, OpenFbxImporterData& data, const ofbx::Mesh* aMesh, String& errorMsg, int32 triangleStart, int32 triangleEnd) { // Find the parent node int32 nodeIndex = data.FindNode(aMesh); // Special case for some models without nodes structure (only root but with some meshes inside) if (nodeIndex == -1 && data.Nodes[0].FbxObj->resolveObjectLink(0) == nullptr) { nodeIndex = data.Nodes.Count(); // Create dummy node FbxNode node; node.ParentIndex = 0; node.Name = aMesh->name; node.FbxObj = nullptr; // Pick node LOD index if (!data.Options.ImportLODs) { node.LodIndex = 0; } else { node.LodIndex = data.Nodes[0].LodIndex; if (node.LodIndex == 0) node.LodIndex = ModelTool::DetectLodIndex(node.Name); ASSERT(Math::IsInRange(node.LodIndex, 0, MODEL_MAX_LODS - 1)); } node.LocalTransform = Transform::Identity; data.Nodes.Add(node); } if (nodeIndex == -1) { LOG(Warning, "Invalid mesh linkage. Mesh: {0}. Skipping...", String(aMesh->name)); return false; } // Import mesh data MeshData* meshData = New(); if (ProcessMesh(result, data, aMesh, *meshData, errorMsg, triangleStart, triangleEnd)) return true; // Link mesh auto& node = data.Nodes[nodeIndex]; const int32 lodIndex = node.LodIndex; meshData->NodeIndex = nodeIndex; if (result.LODs.Count() <= lodIndex) result.LODs.Resize(lodIndex + 1); result.LODs[lodIndex].Meshes.Add(meshData); return false; } bool ImportMesh(int32 index, ImportedModelData& result, OpenFbxImporterData& data, String& errorMsg) { const auto aMesh = data.Scene->getMesh(index); const auto aGeometry = aMesh->getGeometry(); const auto trianglesCount = aGeometry->getVertexCount() / 3; if (IsMeshInvalid(aMesh)) return false; if (aMesh->getMaterialCount() < 2 || !aGeometry->getMaterials()) { // Fast path if mesh is using single material for all triangles if (ImportMesh(result, data, aMesh, errorMsg, 0, trianglesCount - 1)) return true; } else { // Create mesh for each sequence of triangles that share the same material const auto materials = aGeometry->getMaterials(); int32 rangeStart = 0; int32 rangeStartVal = materials[rangeStart]; for (int32 triangleIndex = 1; triangleIndex < trianglesCount; triangleIndex++) { if (rangeStartVal != materials[triangleIndex]) { if (ImportMesh(result, data, aMesh, errorMsg, rangeStart, triangleIndex - 1)) return true; // Start a new range rangeStart = triangleIndex; rangeStartVal = materials[triangleIndex]; } } if (ImportMesh(result, data, aMesh, errorMsg, rangeStart, trianglesCount - 1)) return true; } return false; } struct AnimInfo { double TimeStart; double TimeEnd; double Duration; int32 FramesCount; float SamplingPeriod; }; struct Frame { ofbx::Vec3 Translation; ofbx::Vec3 Rotation; ofbx::Vec3 Scaling; }; void ExtractKeyframePosition(const ofbx::Object* bone, ofbx::Vec3& trans, const Frame& localFrame, Float3& keyframe) { const Matrix frameTrans = ToMatrix(bone->evalLocal(trans, localFrame.Rotation, localFrame.Scaling)); keyframe = frameTrans.GetTranslation(); } void ExtractKeyframeRotation(const ofbx::Object* bone, ofbx::Vec3& trans, const Frame& localFrame, Quaternion& keyframe) { const Matrix frameTrans = ToMatrix(bone->evalLocal(localFrame.Translation, trans, { 1.0, 1.0, 1.0 })); Quaternion::RotationMatrix(frameTrans, keyframe); } void ExtractKeyframeScale(const ofbx::Object* bone, ofbx::Vec3& trans, const Frame& localFrame, Float3& keyframe) { // Fix empty scale case if (Math::IsZero(trans.x) && Math::IsZero(trans.y) && Math::IsZero(trans.z)) trans = { 1.0, 1.0, 1.0 }; const Matrix frameTrans = ToMatrix(bone->evalLocal(localFrame.Translation, localFrame.Rotation, trans)); keyframe = frameTrans.GetScaleVector(); } template void ImportCurve(const ofbx::AnimationCurveNode* curveNode, LinearCurve& curve, AnimInfo& info, void (*ExtractKeyframe)(const ofbx::Object*, ofbx::Vec3&, const Frame&, T&)) { if (curveNode == nullptr) return; const auto keyframes = curve.Resize(info.FramesCount); const auto bone = curveNode->getBone(); Frame localFrame; localFrame.Translation = bone->getLocalTranslation(); localFrame.Rotation = bone->getLocalRotation(); localFrame.Scaling = bone->getLocalScaling(); for (int32 i = 0; i < info.FramesCount; i++) { auto& key = keyframes[i]; const double t = info.TimeStart + ((double)i / info.FramesCount) * info.Duration; key.Time = (float)i; ofbx::Vec3 trans = curveNode->getNodeLocalTransform(t); ExtractKeyframe(bone, trans, localFrame, key.Value); } } bool ImportAnimation(int32 index, ImportedModelData& data, OpenFbxImporterData& importerData) { const ofbx::AnimationStack* stack = importerData.Scene->getAnimationStack(index); const ofbx::AnimationLayer* layer = stack->getLayer(0); const ofbx::TakeInfo* takeInfo = importerData.Scene->getTakeInfo(stack->name); if (takeInfo == nullptr) return true; // Initialize animation animation keyframes sampling const float frameRate = importerData.FrameRate; data.Animation.FramesPerSecond = frameRate; const double localDuration = takeInfo->local_time_to - takeInfo->local_time_from; if (localDuration <= ZeroTolerance) return true; data.Animation.Duration = (double)(int32)(localDuration * frameRate + 0.5f); AnimInfo info; info.TimeStart = takeInfo->local_time_from; info.TimeEnd = takeInfo->local_time_to; info.Duration = localDuration; info.FramesCount = (int32)data.Animation.Duration; info.SamplingPeriod = 1.0f / frameRate; // Count valid animation channels Array animatedNodes(importerData.Nodes.Count()); for (int32 nodeIndex = 0; nodeIndex < importerData.Nodes.Count(); nodeIndex++) { auto& aNode = importerData.Nodes[nodeIndex]; const ofbx::AnimationCurveNode* translationNode = layer->getCurveNode(*aNode.FbxObj, "Lcl Translation"); const ofbx::AnimationCurveNode* rotationNode = layer->getCurveNode(*aNode.FbxObj, "Lcl Rotation"); const ofbx::AnimationCurveNode* scalingNode = layer->getCurveNode(*aNode.FbxObj, "Lcl Scaling"); if (translationNode || rotationNode || (scalingNode && importerData.Options.ImportScaleTracks)) animatedNodes.Add(nodeIndex); } if (animatedNodes.IsEmpty()) return true; data.Animation.Channels.Resize(animatedNodes.Count(), false); // Import curves for (int32 i = 0; i < animatedNodes.Count(); i++) { const int32 nodeIndex = animatedNodes[i]; auto& aNode = importerData.Nodes[nodeIndex]; auto& anim = data.Animation.Channels[i]; const ofbx::AnimationCurveNode* translationNode = layer->getCurveNode(*aNode.FbxObj, "Lcl Translation"); const ofbx::AnimationCurveNode* rotationNode = layer->getCurveNode(*aNode.FbxObj, "Lcl Rotation"); const ofbx::AnimationCurveNode* scalingNode = layer->getCurveNode(*aNode.FbxObj, "Lcl Scaling"); anim.NodeName = aNode.Name; ImportCurve(translationNode, anim.Position, info, ExtractKeyframePosition); ImportCurve(rotationNode, anim.Rotation, info, ExtractKeyframeRotation); if (importerData.Options.ImportScaleTracks) ImportCurve(scalingNode, anim.Scale, info, ExtractKeyframeScale); } if (importerData.ConvertRH) { for (int32 i = 0; i < data.Animation.Channels.Count(); i++) { auto& anim = data.Animation.Channels[i]; auto& posKeys = anim.Position.GetKeyframes(); auto& rotKeys = anim.Rotation.GetKeyframes(); for (int32 k = 0; k < posKeys.Count(); k++) { posKeys[k].Value.Z *= -1.0f; } for (int32 k = 0; k < rotKeys.Count(); k++) { rotKeys[k].Value.X *= -1.0f; rotKeys[k].Value.Y *= -1.0f; } } } return false; } static Float3 FbxVectorFromAxisAndSign(int axis, int sign) { switch (axis) { case 0: return { sign ? 1.f : -1.f, 0.f, 0.f }; case 1: return { 0.f, sign ? 1.f : -1.f, 0.f }; case 2: return { 0.f, 0.f, sign ? 1.f : -1.f }; } return { 0.f, 0.f, 0.f }; } bool ModelTool::ImportDataOpenFBX(const char* path, ImportedModelData& data, Options& options, String& errorMsg) { auto context = (OpenFbxImporterData*)options.SplitContext; if (!context) { // Import file Array fileData; if (File::ReadAllBytes(String(path), fileData)) { errorMsg = TEXT("Cannot load file."); return true; } ofbx::u64 loadFlags = 0; if (EnumHasAnyFlags(data.Types, ImportDataTypes::Geometry)) loadFlags |= (ofbx::u64)ofbx::LoadFlags::TRIANGULATE; else loadFlags |= (ofbx::u64)ofbx::LoadFlags::IGNORE_GEOMETRY; if (!options.ImportBlendShapes) loadFlags |= (ofbx::u64)ofbx::LoadFlags::IGNORE_BLEND_SHAPES; ofbx::IScene* scene = ofbx::load(fileData.Get(), fileData.Count(), loadFlags); if (!scene) { errorMsg = ofbx::getError(); return true; } fileData.Resize(0); // Process imported scene context = New(path, options, scene); auto& globalSettings = context->GlobalSettings; ProcessNodes(*context, scene->getRoot(), -1); // Apply model scene global scale factor context->Nodes[0].LocalTransform = Transform(Vector3::Zero, Quaternion::Identity, globalSettings.UnitScaleFactor) * context->Nodes[0].LocalTransform; // Log scene info LOG(Info, "Loaded FBX model, Frame Rate: {0}, Unit Scale Factor: {1}", context->FrameRate, globalSettings.UnitScaleFactor); LOG(Info, "Up: {1}{0}", globalSettings.UpAxis == ofbx::UpVector_AxisX ? TEXT("X") : globalSettings.UpAxis == ofbx::UpVector_AxisY ? TEXT("Y") : TEXT("Z"), globalSettings.UpAxisSign == 1 ? TEXT("+") : TEXT("-")); LOG(Info, "Front: {1}{0}", globalSettings.FrontAxis == ofbx::FrontVector_ParityEven ? TEXT("ParityEven") : TEXT("ParityOdd"), globalSettings.FrontAxisSign == 1 ? TEXT("+") : TEXT("-")); LOG(Info, "{0} Handed{1}", globalSettings.CoordAxis == ofbx::CoordSystem_RightHanded ? TEXT("Right") : TEXT("Left"), globalSettings.CoordAxisSign == 1 ? TEXT("") : TEXT(" (negative)")); LOG(Info, "Imported scene: Up={0}, Front={1}, Right={2}", context->Up, context->Front, context->Right); // Extract embedded textures if (EnumHasAnyFlags(data.Types, ImportDataTypes::Textures)) { String outputPath; for (int i = 0, c = scene->getEmbeddedDataCount(); i < c; i++) { const ofbx::DataView aEmbedded = scene->getEmbeddedData(i); ofbx::DataView aFilename = scene->getEmbeddedFilename(i); char filenameData[256]; aFilename.toString(filenameData); if (outputPath.IsEmpty()) { String pathStr(path); outputPath = String(StringUtils::GetDirectoryName(pathStr)) / TEXT("textures"); FileSystem::CreateDirectory(outputPath); } const String filenameStr(filenameData); String embeddedPath = outputPath / StringUtils::GetFileName(filenameStr); if (FileSystem::FileExists(embeddedPath)) continue; LOG(Info, "Extracing embedded resource to {0}", embeddedPath); if (File::WriteAllBytes(embeddedPath, aEmbedded.begin + 4, (int32)(aEmbedded.end - aEmbedded.begin - 4))) { LOG(Error, "Failed to write data to file"); } } } // Transform nodes to match the engine coordinates system - DirectX (UpVector = +Y, FrontVector = +Z, CoordSystem = -X (LeftHanded)) if (context->Up == Float3(1, 0, 0) && context->Front == Float3(0, 0, 1) && context->Right == Float3(0, 1, 0)) { context->RootConvertRotation = Quaternion::Euler(0, 180, 0); } else if (context->Up == Float3(0, 1, 0) && context->Front == Float3(-1, 0, 0) && context->Right == Float3(0, 0, 1)) { context->RootConvertRotation = Quaternion::Euler(90, -90, 0); } /*Float3 engineUp(0, 1, 0); Float3 engineFront(0, 0, 1); Float3 engineRight(-1, 0, 0);*/ /*Float3 engineUp(1, 0, 0); Float3 engineFront(0, 0, 1); Float3 engineRight(0, 1, 0); if (context->Up != engineUp || context->Front != engineFront || context->Right != engineRight) { LOG(Info, "Converting imported scene nodes to match engine coordinates system"); context->RootConvertRotation = Quaternion::GetRotationFromTo(context->Up, engineUp, engineUp); //context->RootConvertRotation *= Quaternion::GetRotationFromTo(rotation * context->Right, engineRight, engineRight); //context->RootConvertRotation *= Quaternion::GetRotationFromTo(rotation * context->Front, engineFront, engineFront); }*/ /*Float3 hackUp = FbxVectorFromAxisAndSign(globalSettings.UpAxis, globalSettings.UpAxisSign); if (hackUp == Float3::UnitX) context->RootConvertRotation = Quaternion::Euler(-90, 0, 0); else if (hackUp == Float3::UnitZ) context->RootConvertRotation = Quaternion::Euler(90, 0, 0);*/ if (!context->RootConvertRotation.IsIdentity()) { for (int32 i = 0; i < context->Nodes.Count(); i++) { if (context->Nodes[i].ParentIndex == -1) { context->Nodes[i].LocalTransform.Orientation = context->RootConvertRotation * context->Nodes[i].LocalTransform.Orientation; break; } } } } DeleteMe contextCleanup(options.SplitContext ? nullptr : context); // Build final skeleton bones hierarchy before importing meshes if (EnumHasAnyFlags(data.Types, ImportDataTypes::Skeleton)) { if (ImportBones(*context, errorMsg)) { LOG(Warning, "Failed to import skeleton bones."); return true; } Sorting::QuickSort(context->Bones.Get(), context->Bones.Count()); } // Import geometry (meshes and materials) if (EnumHasAnyFlags(data.Types, ImportDataTypes::Geometry) && context->Scene->getMeshCount() > 0) { const int meshCount = context->Scene->getMeshCount(); if (options.SplitObjects && options.ObjectIndex == -1 && meshCount > 1) { // Import the first object within this call options.SplitObjects = false; options.ObjectIndex = 0; if (options.OnSplitImport.IsBinded()) { // Split all animations into separate assets LOG(Info, "Splitting imported {0} meshes", meshCount); for (int32 i = 1; i < meshCount; i++) { auto splitOptions = options; splitOptions.ObjectIndex = i; splitOptions.SplitContext = context; const auto aMesh = context->Scene->getMesh(i); const String objectName(aMesh->name); options.OnSplitImport(splitOptions, objectName); } } } if (options.ObjectIndex != -1) { // Import the selected mesh const auto meshIndex = Math::Clamp(options.ObjectIndex, 0, meshCount - 1); if (ImportMesh(meshIndex, data, *context, errorMsg)) return true; // Let the firstly imported mesh import all materials from all meshes (index 0 is importing all following ones before itself during splitting - see code above) if (options.ObjectIndex == 1) { for (int32 i = 0; i < meshCount; i++) { const auto aMesh = context->Scene->getMesh(i); if (i == 1 || IsMeshInvalid(aMesh)) continue; for (int32 j = 0; j < aMesh->getMaterialCount(); j++) { const ofbx::Material* aMaterial = aMesh->getMaterial(j); context->AddMaterial(data, aMaterial); } } } } else { // Import all meshes for (int32 meshIndex = 0; meshIndex < meshCount; meshIndex++) { if (ImportMesh(meshIndex, data, *context, errorMsg)) return true; } } } // Import skeleton if (EnumHasAnyFlags(data.Types, ImportDataTypes::Skeleton)) { data.Skeleton.Nodes.Resize(context->Nodes.Count(), false); for (int32 i = 0; i < context->Nodes.Count(); i++) { auto& node = data.Skeleton.Nodes[i]; auto& aNode = context->Nodes[i]; node.Name = aNode.Name; node.ParentIndex = aNode.ParentIndex; node.LocalTransform = aNode.LocalTransform; } data.Skeleton.Bones.Resize(context->Bones.Count(), false); for (int32 i = 0; i < context->Bones.Count(); i++) { auto& bone = data.Skeleton.Bones[i]; auto& aBone = context->Bones[i]; const auto boneNodeIndex = aBone.NodeIndex; // Find the parent bone int32 parentBoneIndex = -1; for (int32 j = context->Nodes[boneNodeIndex].ParentIndex; j != -1; j = context->Nodes[j].ParentIndex) { parentBoneIndex = context->FindBone(j); if (parentBoneIndex != -1) break; } aBone.ParentBoneIndex = parentBoneIndex; const auto parentBoneNodeIndex = aBone.ParentBoneIndex == -1 ? -1 : context->Bones[aBone.ParentBoneIndex].NodeIndex; bone.ParentIndex = aBone.ParentBoneIndex; bone.NodeIndex = aBone.NodeIndex; bone.LocalTransform = CombineTransformsFromNodeIndices(context->Nodes, parentBoneNodeIndex, boneNodeIndex); bone.OffsetMatrix = aBone.OffsetMatrix; } } // Import animations if (EnumHasAnyFlags(data.Types, ImportDataTypes::Animations)) { const int animCount = context->Scene->getAnimationStackCount(); if (options.SplitObjects && options.ObjectIndex == -1 && animCount > 1) { // Import the first object within this call options.SplitObjects = false; options.ObjectIndex = 0; if (options.OnSplitImport.IsBinded()) { // Split all animations into separate assets LOG(Info, "Splitting imported {0} animations", animCount); for (int32 i = 1; i < animCount; i++) { auto splitOptions = options; splitOptions.ObjectIndex = i; splitOptions.SplitContext = context; const ofbx::AnimationStack* stack = context->Scene->getAnimationStack(i); const ofbx::AnimationLayer* layer = stack->getLayer(0); const String objectName(layer->name); options.OnSplitImport(splitOptions, objectName); } } } if (options.ObjectIndex != -1) { // Import selected animation const auto animIndex = Math::Clamp(options.ObjectIndex, 0, animCount - 1); ImportAnimation(animIndex, data, *context); } else { // Import first valid animation for (int32 animIndex = 0; animIndex < animCount; animIndex++) { if (!ImportAnimation(animIndex, data, *context)) break; } } } // Import nodes if (EnumHasAnyFlags(data.Types, ImportDataTypes::Nodes)) { data.Nodes.Resize(context->Nodes.Count()); for (int32 i = 0; i < context->Nodes.Count(); i++) { auto& node = data.Nodes[i]; auto& aNode = context->Nodes[i]; node.Name = aNode.Name; node.ParentIndex = aNode.ParentIndex; node.LocalTransform = aNode.LocalTransform; } } return false; } #endif