// File generated by Flax Materials Editor // Version: @0 #define MATERIAL 1 #define USE_PER_VIEW_CONSTANTS 1 @3 #include "./Flax/Common.hlsl" #include "./Flax/MaterialCommon.hlsl" #include "./Flax/GBufferCommon.hlsl" @7 // Primary constant buffer (with additional material parameters) META_CB_BEGIN(0, Data) float4x4 WorldMatrix; float4x4 LocalMatrix; float3 Dummy0; float WorldDeterminantSign; float MeshMinZ; float Segment; float ChunksPerSegment; float PerInstanceRandom; float3 GeometrySize; float MeshMaxZ; @1META_CB_END // Shader resources @2 // The spline deformation buffer (stored as 4x3, 3 float4 behind each other) Buffer SplineDeformation : register(t0); // Geometry data passed though the graphics rendering stages up to the pixel shader struct GeometryData { float3 WorldPosition : TEXCOORD0; float2 TexCoord : TEXCOORD1; #if USE_VERTEX_COLOR half4 VertexColor : COLOR; #endif float3 WorldNormal : TEXCOORD2; float4 WorldTangent : TEXCOORD3; }; // Interpolants passed from the vertex shader struct VertexOutput { float4 Position : SV_Position; GeometryData Geometry; #if USE_CUSTOM_VERTEX_INTERPOLATORS float4 CustomVSToPS[CUSTOM_VERTEX_INTERPOLATORS_COUNT] : TEXCOORD9; #endif #if USE_TESSELLATION float TessellationMultiplier : TESS; #endif }; // Interpolants passed to the pixel shader struct PixelInput { float4 Position : SV_Position; GeometryData Geometry; #if USE_CUSTOM_VERTEX_INTERPOLATORS float4 CustomVSToPS[CUSTOM_VERTEX_INTERPOLATORS_COUNT] : TEXCOORD9; #endif bool IsFrontFace : SV_IsFrontFace; }; // Material properties generation input struct MaterialInput { float3 WorldPosition; float TwoSidedSign; float2 TexCoord; #if USE_VERTEX_COLOR half4 VertexColor; #endif float3x3 TBN; float4 SvPosition; float3 PreSkinnedPosition; float3 PreSkinnedNormal; #if USE_CUSTOM_VERTEX_INTERPOLATORS float4 CustomVSToPS[CUSTOM_VERTEX_INTERPOLATORS_COUNT]; #endif }; // Extracts geometry data to the material input MaterialInput GetGeometryMaterialInput(GeometryData geometry) { MaterialInput output = (MaterialInput)0; output.WorldPosition = geometry.WorldPosition; output.TexCoord = geometry.TexCoord; #if USE_VERTEX_COLOR output.VertexColor = geometry.VertexColor; #endif output.TBN = CalcTangentBasis(geometry.WorldNormal, geometry.WorldTangent); return output; } #if USE_TESSELLATION // Interpolates the geometry positions data only (used by the tessallation when generating vertices) #define InterpolateGeometryPositions(output, p0, w0, p1, w1, p2, w2, offset) output.WorldPosition = p0.WorldPosition * w0 + p1.WorldPosition * w1 + p2.WorldPosition * w2 + offset // Offsets the geometry positions data only (used by the tessallation when generating vertices) #define OffsetGeometryPositions(geometry, offset) geometry.WorldPosition += offset // Applies the Phong tessallation to the geometry positions (used by the tessallation when doing Phong tess) #define ApplyGeometryPositionsPhongTess(geometry, p0, p1, p2, U, V, W) \ float3 posProjectedU = TessalationProjectOntoPlane(p0.WorldNormal, p0.WorldPosition, geometry.WorldPosition); \ float3 posProjectedV = TessalationProjectOntoPlane(p1.WorldNormal, p1.WorldPosition, geometry.WorldPosition); \ float3 posProjectedW = TessalationProjectOntoPlane(p2.WorldNormal, p2.WorldPosition, geometry.WorldPosition); \ geometry.WorldPosition = U * posProjectedU + V * posProjectedV + W * posProjectedW // Interpolates the geometry data except positions (used by the tessallation when generating vertices) GeometryData InterpolateGeometry(GeometryData p0, float w0, GeometryData p1, float w1, GeometryData p2, float w2) { GeometryData output = (GeometryData)0; output.TexCoord = p0.TexCoord * w0 + p1.TexCoord * w1 + p2.TexCoord * w2; #if USE_VERTEX_COLOR output.VertexColor = p0.VertexColor * w0 + p1.VertexColor * w1 + p2.VertexColor * w2; #endif output.WorldNormal = p0.WorldNormal * w0 + p1.WorldNormal * w1 + p2.WorldNormal * w2; output.WorldNormal = normalize(output.WorldNormal); output.WorldTangent = p0.WorldTangent * w0 + p1.WorldTangent * w1 + p2.WorldTangent * w2; output.WorldTangent.xyz = normalize(output.WorldTangent.xyz); return output; } #endif MaterialInput GetMaterialInput(PixelInput input) { MaterialInput output = GetGeometryMaterialInput(input.Geometry); output.TwoSidedSign = WorldDeterminantSign * (input.IsFrontFace ? 1.0 : -1.0); output.SvPosition = input.Position; #if USE_CUSTOM_VERTEX_INTERPOLATORS output.CustomVSToPS = input.CustomVSToPS; #endif return output; } // Removes the scale vector from the local to world transformation matrix float3x3 RemoveScaleFromLocalToWorld(float3x3 localToWorld) { // Extract per axis scales from localToWorld transform float scaleX = length(localToWorld[0]); float scaleY = length(localToWorld[1]); float scaleZ = length(localToWorld[2]); float3 invScale = float3( scaleX > 0.00001f ? 1.0f / scaleX : 0.0f, scaleY > 0.00001f ? 1.0f / scaleY : 0.0f, scaleZ > 0.00001f ? 1.0f / scaleZ : 0.0f); localToWorld[0] *= invScale.x; localToWorld[1] *= invScale.y; localToWorld[2] *= invScale.z; return localToWorld; } // Transforms a vector from tangent space to world space float3 TransformTangentVectorToWorld(MaterialInput input, float3 tangentVector) { return mul(tangentVector, input.TBN); } // Transforms a vector from world space to tangent space float3 TransformWorldVectorToTangent(MaterialInput input, float3 worldVector) { return mul(input.TBN, worldVector); } // Transforms a vector from world space to view space float3 TransformWorldVectorToView(MaterialInput input, float3 worldVector) { return mul(worldVector, (float3x3)ViewMatrix); } // Transforms a vector from view space to world space float3 TransformViewVectorToWorld(MaterialInput input, float3 viewVector) { return mul((float3x3)ViewMatrix, viewVector); } // Transforms a vector from local space to world space float3 TransformLocalVectorToWorld(MaterialInput input, float3 localVector) { float3x3 localToWorld = (float3x3)WorldMatrix; //localToWorld = RemoveScaleFromLocalToWorld(localToWorld); return mul(localVector, localToWorld); } // Transforms a vector from local space to world space float3 TransformWorldVectorToLocal(MaterialInput input, float3 worldVector) { float3x3 localToWorld = (float3x3)WorldMatrix; //localToWorld = RemoveScaleFromLocalToWorld(localToWorld); return mul(localToWorld, worldVector); } // Gets the current object position float3 GetObjectPosition(MaterialInput input) { return WorldMatrix[3].xyz; } // Gets the current object size float3 GetObjectSize(MaterialInput input) { float4x4 world = WorldMatrix; return GeometrySize * float3(world._m00, world._m11, world._m22); } // Gets the current object scale (supports instancing) float3 GetObjectScale(MaterialInput input) { float4x4 world = WorldMatrix; // Extract scale from the world matrix float3 scale; scale.x = length(float3(world._11, world._12, world._13)); scale.y = length(float3(world._21, world._22, world._23)); scale.z = length(float3(world._31, world._32, world._33)); return scale; } // Get the current object random value float GetPerInstanceRandom(MaterialInput input) { return PerInstanceRandom; } // Get the current object LOD transition dither factor float GetLODDitherFactor(MaterialInput input) { return 0; } // Gets the interpolated vertex color (in linear space) float4 GetVertexColor(MaterialInput input) { #if USE_VERTEX_COLOR return input.VertexColor; #else return 1; #endif } float3 SampleLightmap(Material material, MaterialInput materialInput) { return 0; } @8 // Get material properties function (for vertex shader) Material GetMaterialVS(MaterialInput input) { @5 } // Get material properties function (for domain shader) Material GetMaterialDS(MaterialInput input) { @6 } // Get material properties function (for pixel shader) Material GetMaterialPS(MaterialInput input) { @4 } // Calculates the transform matrix from mesh tangent space to local space float3x3 CalcTangentToLocal(ModelInput input) { float bitangentSign = input.Tangent.w ? -1.0f : +1.0f; float3 normal = input.Normal.xyz * 2.0 - 1.0; float3 tangent = input.Tangent.xyz * 2.0 - 1.0; float3 bitangent = cross(normal, tangent) * bitangentSign; return float3x3(tangent, bitangent, normal); } // Vertex Shader function for GBuffer Pass and Depth Pass (with full vertex data) META_VS(true, FEATURE_LEVEL_ES2) META_VS_IN_ELEMENT(POSITION, 0, R32G32B32_FLOAT, 0, 0, PER_VERTEX, 0, true) META_VS_IN_ELEMENT(TEXCOORD, 0, R16G16_FLOAT, 1, 0, PER_VERTEX, 0, true) META_VS_IN_ELEMENT(NORMAL, 0, R10G10B10A2_UNORM, 1, ALIGN, PER_VERTEX, 0, true) META_VS_IN_ELEMENT(TANGENT, 0, R10G10B10A2_UNORM, 1, ALIGN, PER_VERTEX, 0, true) META_VS_IN_ELEMENT(TEXCOORD, 1, R16G16_FLOAT, 1, ALIGN, PER_VERTEX, 0, true) META_VS_IN_ELEMENT(COLOR, 0, R8G8B8A8_UNORM, 2, 0, PER_VERTEX, 0, USE_VERTEX_COLOR) VertexOutput VS_SplineModel(ModelInput input) { VertexOutput output; // Apply local transformation of the geometry before deformation float3 position = mul(float4(input.Position, 1), LocalMatrix).xyz; float4x4 world = LocalMatrix; // Apply spline curve deformation float splineAlpha = saturate((position.z - MeshMinZ) / (MeshMaxZ - MeshMinZ)); int splineIndex = (int)((Segment + splineAlpha) * ChunksPerSegment); position.z = splineAlpha; float3x4 splineMatrix = float3x4(SplineDeformation[splineIndex * 3], SplineDeformation[splineIndex * 3 + 1], SplineDeformation[splineIndex * 3 + 2]); position = mul(splineMatrix, float4(position, 1)); float4x3 splineMatrixT = transpose(splineMatrix); world = mul(world, float4x4(float4(splineMatrixT[0], 0), float4(splineMatrixT[1], 0), float4(splineMatrixT[2], 0), float4(splineMatrixT[3], 1))); // Compute world space vertex position output.Geometry.WorldPosition = mul(float4(position, 1), WorldMatrix).xyz; world = mul(world, WorldMatrix); // Compute clip space position output.Position = mul(float4(output.Geometry.WorldPosition, 1), ViewProjectionMatrix); // Pass vertex attributes output.Geometry.TexCoord = input.TexCoord0; #if USE_VERTEX_COLOR output.Geometry.VertexColor = input.Color; #endif // Calculate tanget space to world space transformation matrix for unit vectors float3x3 tangentToLocal = CalcTangentToLocal(input); float3x3 localToWorld = RemoveScaleFromLocalToWorld((float3x3)world); float3x3 tangentToWorld = mul(tangentToLocal, localToWorld); output.Geometry.WorldNormal = tangentToWorld[2]; output.Geometry.WorldTangent.xyz = tangentToWorld[0]; output.Geometry.WorldTangent.w = input.Tangent.w ? -1.0f : +1.0f; // Get material input params if need to evaluate any material property #if USE_POSITION_OFFSET || USE_TESSELLATION || USE_CUSTOM_VERTEX_INTERPOLATORS MaterialInput materialInput = GetGeometryMaterialInput(output.Geometry); materialInput.TwoSidedSign = WorldDeterminantSign; materialInput.SvPosition = output.Position; materialInput.PreSkinnedPosition = input.Position.xyz; materialInput.PreSkinnedNormal = tangentToLocal[2].xyz; Material material = GetMaterialVS(materialInput); #endif // Apply world position offset per-vertex #if USE_POSITION_OFFSET output.Geometry.WorldPosition += material.PositionOffset; output.Geometry.PrevWorldPosition += material.PositionOffset; output.Position = mul(float4(output.Geometry.WorldPosition, 1), ViewProjectionMatrix); #endif // Get tessalation multiplier (per vertex) #if USE_TESSELLATION output.TessellationMultiplier = material.TessellationMultiplier; #endif // Copy interpolants for other shader stages #if USE_CUSTOM_VERTEX_INTERPOLATORS output.CustomVSToPS = material.CustomVSToPS; #endif return output; } #if USE_DITHERED_LOD_TRANSITION void ClipLODTransition(PixelInput input) { } #endif // Pixel Shader function for Depth Pass META_PS(true, FEATURE_LEVEL_ES2) void PS_Depth(PixelInput input) { #if MATERIAL_MASKED || MATERIAL_BLEND != MATERIAL_BLEND_OPAQUE // Get material parameters MaterialInput materialInput = GetMaterialInput(input); Material material = GetMaterialPS(materialInput); // Perform per pixel clipping #if MATERIAL_MASKED clip(material.Mask - MATERIAL_MASK_THRESHOLD); #endif #if MATERIAL_BLEND != MATERIAL_BLEND_OPAQUE clip(material.Opacity - MATERIAL_OPACITY_THRESHOLD); #endif #endif } #if _PS_QuadOverdraw #include "./Flax/Editor/QuadOverdraw.hlsl" // Pixel Shader function for Quad Overdraw Pass (editor-only) [earlydepthstencil] META_PS(USE_EDITOR, FEATURE_LEVEL_SM5) void PS_QuadOverdraw(float4 svPos : SV_Position, uint primId : SV_PrimitiveID) { DoQuadOverdraw(svPos, primId); } #endif @9