// Copyright (c) 2012-2022 Wojciech Figat. All rights reserved. #pragma once #include "Math.h" #include "Mathd.h" #include "Engine/Core/Formatting.h" #include "Engine/Core/Templates.h" struct Double2; struct Double4; struct Vector2; struct Vector3; struct Vector4; struct Int2; struct Int3; struct Int4; struct Color; struct Matrix; /// /// Represents a two dimensional mathematical vector with 64-bit precision (per-component). /// API_STRUCT() struct FLAXENGINE_API Double3 { DECLARE_SCRIPTING_TYPE_MINIMAL(Double3); public: union { struct { /// /// The X component of the vector. /// API_FIELD() double X; /// /// The Y component of the vector. /// API_FIELD() double Y; /// /// The Z component of the vector. /// API_FIELD() double Z; }; // Raw values double Raw[3]; }; public: // Vector with all components equal 0. static const Double3 Zero; // Vector with all components equal 1. static const Double3 One; // Vector with all components equal half (0.5, 0.5, 0.5). static const Double3 Half; // Vector X=1, Y=0, Z=0. static const Double3 UnitX; // Vector X=0, Y=1, Z=0. static const Double3 UnitY; // Vector X=0, Y=0, Z=1. static const Double3 UnitZ; // A unit vector designating up (0, 1, 0). static const Double3 Up; // A unit vector designating down (0, -1, 0). static const Double3 Down; // A unit vector designating a (-1, 0, 0). static const Double3 Left; // A unit vector designating b (1, 0, 0). static const Double3 Right; // A unit vector designating forward in a a-handed coordinate system (0, 0, 1). static const Double3 Forward; // A unit vector designating backward in a a-handed coordinate system (0, 0, -1). static const Double3 Backward; // A minimum Double3. static const Double3 Minimum; // A maximum Double3. static const Double3 Maximum; public: /// /// Empty constructor. /// Double3() { } // Init // @param xyz Value to assign to the all components Double3(double xyz) : X(xyz) , Y(xyz) , Z(xyz) { } // Init // @param x X component value // @param y Y component value // @param z Z component value Double3(double x, double y, double z) : X(x) , Y(y) , Z(z) { } /// /// Init /// /// X, Y and Z components in an array explicit Double3(double xyz[3]) : X(xyz[0]) , Y(xyz[1]) , Z(xyz[2]) { } explicit Double3(const Vector2& xy, double z); explicit Double3(const Vector2& xy); Double3(const Vector3& xyz); explicit Double3(const Vector4& xyzw); explicit Double3(const Int2& xy, double z); explicit Double3(const Int3& xyz); explicit Double3(const Int4& xyzw); explicit Double3(const Double2& xy); explicit Double3(const Double2& xy, double z); explicit Double3(const Double4& xyzw); explicit Double3(const Color& color); public: String ToString() const; public: // Gets a value indicting whether this instance is normalized. bool IsNormalized() const { return Math::IsOne(X * X + Y * Y + Z * Z); } // Gets a value indicting whether this vector is zero. bool IsZero() const { return Math::IsZero(X) && Math::IsZero(Y) && Math::IsZero(Z); } // Gets a value indicting whether any vector component is zero. bool IsAnyZero() const { return Math::IsZero(X) || Math::IsZero(Y) || Math::IsZero(Z); } // Gets a value indicting whether this vector is one. bool IsOne() const { return Math::IsOne(X) && Math::IsOne(Y) && Math::IsOne(Z); } // Calculates the length of the vector. double Length() const { return Math::Sqrt(X * X + Y * Y + Z * Z); } // Calculates the squared length of the vector. double LengthSquared() const { return X * X + Y * Y + Z * Z; } // Calculates inverted length of the vector (1 / length). double InvLength() const { return 1.0 / Length(); } /// /// Calculates a vector with values being absolute values of that vector. /// Double3 GetAbsolute() const { return Double3(Math::Abs(X), Math::Abs(Y), Math::Abs(Z)); } /// /// Calculates a vector with values being opposite to values of that vector. /// Double3 GetNegative() const { return Double3(-X, -Y, -Z); } /// /// Calculates a normalized vector that has length equal to 1. /// Double3 GetNormalized() const { const double rcp = 1.0 / Length(); return Double3(X * rcp, Y * rcp, Z * rcp); } /// /// Returns the average arithmetic of all the components. /// double AverageArithmetic() const { return (X + Y + Z) * 0.333333334; } /// /// Gets the sum of all vector components values. /// double SumValues() const { return X + Y + Z; } /// /// Returns the minimum value of all the components. /// double MinValue() const { return Math::Min(X, Y, Z); } /// /// Returns the maximum value of all the components. /// double MaxValue() const { return Math::Max(X, Y, Z); } /// /// Returns true if vector has one or more components is not a number (NaN). /// bool IsNaN() const { return isnan(X) || isnan(Y) || isnan(Z); } /// /// Returns true if vector has one or more components equal to +/- infinity. /// bool IsInfinity() const { return isinf(X) || isinf(Y) || isinf(Z); } /// /// Returns true if vector has one or more components equal to +/- infinity or NaN. /// bool IsNanOrInfinity() const { return IsInfinity() || IsNaN(); } public: /// /// Performs vector normalization (scales vector up to unit length). /// void Normalize() { const double length = Math::Sqrt(X * X + Y * Y + Z * Z); if (Math::Abs(length) >= ZeroTolerance) { const double inv = 1.0 / length; X *= inv; Y *= inv; Z *= inv; } } /// /// Performs fast vector normalization (scales vector up to unit length). /// void NormalizeFast() { const double inv = 1.0 / Math::Sqrt(X * X + Y * Y + Z * Z); X *= inv; Y *= inv; Z *= inv; } /// /// Sets all vector components to the absolute values. /// void Absolute() { X = Math::Abs(X); Y = Math::Abs(Y); Z = Math::Abs(Z); } /// /// Negates all components of that vector. /// void Negate() { X = -X; Y = -Y; Z = -Z; } /// /// When this vector contains Euler angles (degrees), ensure that angles are between +/-180. /// void UnwindEuler(); public: Double3 operator+(const Double3& b) const { return Double3(X + b.X, Y + b.Y, Z + b.Z); } Double3 operator-(const Double3& b) const { return Double3(X - b.X, Y - b.Y, Z - b.Z); } Double3 operator*(const Double3& b) const { return Double3(X * b.X, Y * b.Y, Z * b.Z); } Double3 operator/(const Double3& b) const { return Double3(X / b.X, Y / b.Y, Z / b.Z); } Double3 operator-() const { return Double3(-X, -Y, -Z); } Double3 operator^(const Double3& b) const { return Cross(*this, b); } double operator|(const Double3& b) const { return Dot(*this, b); } Double3& operator+=(const Double3& b) { X += b.X; Y += b.Y; Z += b.Z; return *this; } Double3& operator-=(const Double3& b) { X -= b.X; Y -= b.Y; Z -= b.Z; return *this; } Double3& operator*=(const Double3& b) { X *= b.X; Y *= b.Y; Z *= b.Z; return *this; } Double3& operator/=(const Double3& b) { X /= b.X; Y /= b.Y; Z /= b.Z; return *this; } Double3 operator+(double b) const { return Double3(X + b, Y + b, Z + b); } Double3 operator-(double b) const { return Double3(X - b, Y - b, Z - b); } Double3 operator*(double b) const { return Double3(X * b, Y * b, Z * b); } Double3 operator/(double b) const { return Double3(X / b, Y / b, Z / b); } Double3& operator+=(double b) { *this = Add(*this, b); return *this; } Double3& operator-=(double b) { *this = Subtract(*this, b); return *this; } Double3& operator*=(double b) { *this = Multiply(*this, b); return *this; } Double3& operator/=(double b) { *this = Divide(*this, b); return *this; } bool operator==(const Double3& b) const { return X == b.X && Y == b.Y && Z == b.Z; } bool operator!=(const Double3& b) const { return X != b.X || Y != b.Y || Z != b.Z; } bool operator>(const Double3& b) const { return X > b.X && Y > b.Y && Z > b.Z; } bool operator>=(const Double3& b) const { return X >= b.X && Y >= b.Y && Z >= b.Z; } bool operator<(const Double3& b) const { return X < b.X && Y < b.Y && Z < b.Z; } bool operator<=(const Double3& b) const { return X <= b.X && Y <= b.Y && Z <= b.Z; } public: static bool NearEqual(const Double3& a, const Double3& b) { return Math::NearEqual(a.X, b.X) && Math::NearEqual(a.Y, b.Y) && Math::NearEqual(a.Z, b.Z); } static bool NearEqual(const Double3& a, const Double3& b, double epsilon) { return Math::NearEqual(a.X, b.X, epsilon) && Math::NearEqual(a.Y, b.Y, epsilon) && Math::NearEqual(a.Z, b.Z, epsilon); } public: static void Add(const Double3& a, const Double3& b, Double3& result) { result.X = a.X + b.X; result.Y = a.Y + b.Y; result.Z = a.Z + b.Z; } static Double3 Add(const Double3& a, const Double3& b) { Double3 result; Add(a, b, result); return result; } static void Subtract(const Double3& a, const Double3& b, Double3& result) { result.X = a.X - b.X; result.Y = a.Y - b.Y; result.Z = a.Z - b.Z; } static Double3 Subtract(const Double3& a, const Double3& b) { Double3 result; Subtract(a, b, result); return result; } static Double3 Multiply(const Double3& a, const Double3& b) { return Double3(a.X * b.X, a.Y * b.Y, a.Z * b.Z); } static void Multiply(const Double3& a, const Double3& b, Double3& result) { result = Double3(a.X * b.X, a.Y * b.Y, a.Z * b.Z); } static Double3 Multiply(const Double3& a, double b) { return Double3(a.X * b, a.Y * b, a.Z * b); } static Double3 Divide(const Double3& a, const Double3& b) { return Double3(a.X / b.X, a.Y / b.Y, a.Z / b.Z); } static void Divide(const Double3& a, const Double3& b, Double3& result) { result = Double3(a.X / b.X, a.Y / b.Y, a.Z / b.Z); } static Double3 Divide(const Double3& a, double b) { return Double3(a.X / b, a.Y / b, a.Z / b); } static Double3 Floor(const Double3& v); static Double3 Frac(const Double3& v); static double ScalarProduct(const Double3& a, const Double3& b) { return a.X * b.X + a.Y * b.Y + a.Z * b.Z; } public: // Restricts a value to be within a specified range. // @param value The value to clamp. // @param min The minimum value. // @param max The maximum value. // @returns Clamped value static Double3 Clamp(const Double3& value, const Double3& min, const Double3& max); // Restricts a value to be within a specified range. // @param value The value to clamp. // @param min The minimum value. // @param max The maximum value. // @param result When the method completes, contains the clamped value. static void Clamp(const Double3& value, const Double3& min, const Double3& max, Double3& result); // Calculates the distance between two vectors. // @param value1 The first vector. // @param value2 The second vector. // @returns The distance between the two vectors. static double Distance(const Double3& value1, const Double3& value2); // Calculates the squared distance between two vectors. // @param value1 The first vector. // @param value2 The second vector. // @returns The squared distance between the two vectors. static double DistanceSquared(const Double3& value1, const Double3& value2); // Performs vector normalization (scales vector up to unit length). // @param inout Input vector to normalize. // @returns Output vector that is normalized (has unit length). static Double3 Normalize(const Double3& input); // Performs vector normalization (scales vector up to unit length). This is a faster version that does not performs check for length equal 0 (it assumes that input vector is not empty). // @param inout Input vector to normalize (cannot be zero). // @returns Output vector that is normalized (has unit length). static Double3 NormalizeFast(const Double3& input) { const double inv = 1.0 / input.Length(); return Double3(input.X * inv, input.Y * inv, input.Z * inv); } // Performs vector normalization (scales vector up to unit length). // @param inout Input vector to normalize. // @param output Output vector that is normalized (has unit length). static void Normalize(const Double3& input, Double3& result); // dot product with another vector. static double Dot(const Double3& a, const Double3& b) { return a.X * b.X + a.Y * b.Y + a.Z * b.Z; } // Calculates the cross product of two vectors. // @param a First source vector. // @param b Second source vector. // @param result When the method completes, contains the cross product of the two vectors. static void Cross(const Double3& a, const Double3& b, Double3& result) { result = Double3(a.Y * b.Z - a.Z * b.Y, a.Z * b.X - a.X * b.Z, a.X * b.Y - a.Y * b.X); } // Calculates the cross product of two vectors. // @param a First source vector. // @param b Second source vector. // @returns Cross product of the two vectors. static Double3 Cross(const Double3& a, const Double3& b) { return Double3(a.Y * b.Z - a.Z * b.Y, a.Z * b.X - a.X * b.Z, a.X * b.Y - a.Y * b.X); } // Performs a linear interpolation between two vectors. // @param start Start vector. // @param end End vector. // @param amount Value between 0 and 1 indicating the weight of end. // @param result When the method completes, contains the linear interpolation of the two vectors. static void Lerp(const Double3& start, const Double3& end, double amount, Double3& result) { result.X = Math::Lerp(start.X, end.X, amount); result.Y = Math::Lerp(start.Y, end.Y, amount); result.Z = Math::Lerp(start.Z, end.Z, amount); } /// /// Performs a linear interpolation between two vectors. /// static Double3 Lerp(const Double3& start, const Double3& end, double amount) { Double3 result; Lerp(start, end, amount, result); return result; } /// /// Performs a cubic interpolation between two vectors /// static void SmoothStep(const Double3& start, const Double3& end, double amount, Double3& result) { amount = Math::SmoothStep(amount); Lerp(start, end, amount, result); } // Performs a Hermite spline interpolation. // @param value1 First source position vector // @param tangent1 First source tangent vector // @param value2 Second source position vector // @param tangent2 Second source tangent vector // @param amount Weighting factor, // @param result When the method completes, contains the result of the Hermite spline interpolation, static void Hermite(const Double3& value1, const Double3& tangent1, const Double3& value2, const Double3& tangent2, double amount, Double3& result); // Returns the reflection of a vector off a surface that has the specified normal // @param vector The source vector // @param normal Normal of the surface // @param result When the method completes, contains the reflected vector static void Reflect(const Double3& vector, const Double3& normal, Double3& result); // Transforms a 3D vector by the given Quaternion rotation // @param vector The vector to rotate // @param rotation The Quaternion rotation to apply // @param result When the method completes, contains the transformed Vector4 static void Transform(const Double3& vector, const Quaternion& rotation, Double3& result); // Transforms a 3D vector by the given Quaternion rotation // @param vector The vector to rotate // @param rotation The Quaternion rotation to apply // @returns The transformed Double3 static Double3 Transform(const Double3& vector, const Quaternion& rotation); // Transforms a 3D vector by the given matrix // @param vector The source vector // @param transform The transformation matrix // @param result When the method completes, contains the transformed Double3 static void Transform(const Double3& vector, const Matrix& transform, Double3& result); // Transforms a 3D vectors by the given matrix // @param vectors The source vectors // @param transform The transformation matrix // @param results When the method completes, contains the transformed Vector3s // @param vectorsCount Amount of vectors to transform static void Transform(const Double3* vectors, const Matrix& transform, Double3* results, int32 vectorsCount); // Transforms a 3D vector by the given matrix // @param vector The source vector // @param transform The transformation matrix // @returns Transformed Double3 static Double3 Transform(const Double3& vector, const Matrix& transform); // Transforms a 3D vector by the given matrix // @param vector The source vector // @param transform The transformation matrix // @param result When the method completes, contains the transformed Double4 static void Transform(const Double3& vector, const Matrix& transform, Double4& result); // Performs a coordinate transformation using the given matrix // @param coordinate The coordinate vector to transform // @param transform The transformation matrix // @param result When the method completes, contains the transformed coordinates static void TransformCoordinate(const Double3& coordinate, const Matrix& transform, Double3& result); // Performs a normal transformation using the given matrix // @param normal The normal vector to transform // @param transform The transformation matrix // @param result When the method completes, contains the transformed normal static void TransformNormal(const Double3& normal, const Matrix& transform, Double3& result); // Returns a vector containing the largest components of the specified vectors // @param a The first source vector // @param b The second source vector // @param result When the method completes, contains an new vector composed of the largest components of the source vectors static Double3 Max(const Double3& a, const Double3& b) { return Double3(a.X > b.X ? a.X : b.X, a.Y > b.Y ? a.Y : b.Y, a.Z > b.Z ? a.Z : b.Z); } // Returns a vector containing the smallest components of the specified vectors // @param a The first source vector // @param b The second source vector // @param result When the method completes, contains an new vector composed of the smallest components of the source vectors static Double3 Min(const Double3& a, const Double3& b) { return Double3(a.X < b.X ? a.X : b.X, a.Y < b.Y ? a.Y : b.Y, a.Z < b.Z ? a.Z : b.Z); } // Returns a vector containing the largest components of the specified vectors // @param a The first source vector // @param b The second source vector // @param result When the method completes, contains an new vector composed of the largest components of the source vectors static void Max(const Double3& a, const Double3& b, Double3& result) { result = Double3(a.X > b.X ? a.X : b.X, a.Y > b.Y ? a.Y : b.Y, a.Z > b.Z ? a.Z : b.Z); } // Returns a vector containing the smallest components of the specified vectors // @param a The first source vector // @param b The second source vector // @param result When the method completes, contains an new vector composed of the smallest components of the source vectors static void Min(const Double3& a, const Double3& b, Double3& result) { result = Double3(a.X < b.X ? a.X : b.X, a.Y < b.Y ? a.Y : b.Y, a.Z < b.Z ? a.Z : b.Z); } static Double3 Round(const Double3& v) { return Double3(Math::Round(v.X), Math::Round(v.Y), Math::Round(v.Z)); } static Double3 Ceil(const Double3& v) { return Double3(Math::Ceil(v.X), Math::Ceil(v.Y), Math::Ceil(v.Z)); } static Double3 Abs(const Double3& v) { return Double3(Math::Abs(v.X), Math::Abs(v.Y), Math::Abs(v.Z)); } /// /// Calculates the area of the triangle. /// /// The first triangle vertex. /// The second triangle vertex. /// The third triangle vertex. /// The triangle area. static double TriangleArea(const Double3& v0, const Double3& v1, const Double3& v2); /// /// Calculates the angle (in radians) between from and to. This is always the smallest value. /// /// The first vector. /// The second vector. /// The angle (in radians). static double Angle(const Double3& from, const Double3& to); }; inline Double3 operator+(double a, const Double3& b) { return b + a; } inline Double3 operator-(double a, const Double3& b) { return Double3(a) - b; } inline Double3 operator*(double a, const Double3& b) { return b * a; } inline Double3 operator/(double a, const Double3& b) { return Double3(a) / b; } namespace Math { FORCE_INLINE static bool NearEqual(const Double3& a, const Double3& b) { return Double3::NearEqual(a, b); } } template<> struct TIsPODType { enum { Value = true }; }; DEFINE_DEFAULT_FORMATTING(Double3, "X:{0} Y:{1} Z:{2}", v.X, v.Y, v.Z);