// Copyright (c) 2012-2024 Wojciech Figat. All rights reserved. // Copyright (c) 2011 Stefan Gustavson. All rights reserved. // Distributed under the MIT license. // https://github.com/stegu/webgl-noise #ifndef __NOISE__ #define __NOISE__ #include "./Flax/Common.hlsl" float2 Mod289(float2 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } float3 Mod289(float3 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } float4 Mod289(float4 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } float3 Mod7(float3 x) { return x - floor(x * (1.0f / 7.0f)) * 7.0f; } float2 Permute(float2 x) { return Mod289(((x * 34.0) + 1.0) * x); } float3 Permute(float3 x) { return Mod289(((x * 34.0) + 1.0) * x); } float4 Permute(float4 x) { return Mod289(((x * 34.0) + 1.0) * x); } float4 TaylorInvSqrt(float4 r) { return 1.79284291400159 - 0.85373472095314 * r; } float2 PerlinNoiseFade(float2 t) { return t * t * t * (t * (t * 6.0 - 15.0) + 10.0); } float rand2dTo1d(float2 value, float2 dotDir = float2(12.9898, 78.233)) { // https://www.ronja-tutorials.com/post/024-white-noise/ float2 smallValue = sin(value); float random = dot(smallValue, dotDir); return frac(sin(random) * 143758.5453); } float2 rand2dTo2d(float2 value) { // https://www.ronja-tutorials.com/post/024-white-noise/ return float2( rand2dTo1d(value, float2(12.989, 78.233)), rand2dTo1d(value, float2(39.346, 11.135)) ); } // Classic Perlin noise float PerlinNoise(float2 p) { float4 Pi = floor(p.xyxy) + float4(0.0, 0.0, 1.0, 1.0); float4 Pf = frac(p.xyxy) - float4(0.0, 0.0, 1.0, 1.0); Pi = Mod289(Pi); float4 ix = Pi.xzxz; float4 iy = Pi.yyww; float4 fx = Pf.xzxz; float4 fy = Pf.yyww; float4 i = Permute(Permute(ix) + iy); float4 gx = frac(i * (1.0 / 41.0)) * 2.0 - 1.0; float4 gy = abs(gx) - 0.5; float4 tx = floor(gx + 0.5); gx = gx - tx; float2 g00 = float2(gx.x, gy.x); float2 g10 = float2(gx.y, gy.y); float2 g01 = float2(gx.z, gy.z); float2 g11 = float2(gx.w, gy.w); float4 norm = TaylorInvSqrt(float4(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11))); g00 *= norm.x; g01 *= norm.y; g10 *= norm.z; g11 *= norm.w; float n00 = dot(g00, float2(fx.x, fy.x)); float n10 = dot(g10, float2(fx.y, fy.y)); float n01 = dot(g01, float2(fx.z, fy.z)); float n11 = dot(g11, float2(fx.w, fy.w)); float2 fade_xy = PerlinNoiseFade(Pf.xy); float2 n_x = lerp(float2(n00, n01), float2(n10, n11), fade_xy.x); float n_xy = lerp(n_x.x, n_x.y, fade_xy.y); return saturate(2.3 * n_xy); } // Classic Perlin noise with periodic variant float PerlinNoise(float2 p, float2 rep) { float4 Pi = floor(p.xyxy) + float4(0.0, 0.0, 1.0, 1.0); float4 Pf = frac(p.xyxy) - float4(0.0, 0.0, 1.0, 1.0); Pi = fmod(Pi, rep.xyxy); Pi = Mod289(Pi); float4 ix = Pi.xzxz; float4 iy = Pi.yyww; float4 fx = Pf.xzxz; float4 fy = Pf.yyww; float4 i = Permute(Permute(ix) + iy); float4 gx = frac(i * (1.0 / 41.0)) * 2.0 - 1.0; float4 gy = abs(gx) - 0.5; float4 tx = floor(gx + 0.5); gx = gx - tx; float2 g00 = float2(gx.x, gy.x); float2 g10 = float2(gx.y, gy.y); float2 g01 = float2(gx.z, gy.z); float2 g11 = float2(gx.w, gy.w); float4 norm = TaylorInvSqrt(float4(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11))); g00 *= norm.x; g01 *= norm.y; g10 *= norm.z; g11 *= norm.w; float n00 = dot(g00, float2(fx.x, fy.x)); float n10 = dot(g10, float2(fx.y, fy.y)); float n01 = dot(g01, float2(fx.z, fy.z)); float n11 = dot(g11, float2(fx.w, fy.w)); float2 fade_xy = PerlinNoiseFade(Pf.xy); float2 n_x = lerp(float2(n00, n01), float2(n10, n11), fade_xy.x); float n_xy = lerp(n_x.x, n_x.y, fade_xy.y); return saturate(2.3 * n_xy); } // Simplex noise float SimplexNoise(float2 p) { float4 C = float4(0.211324865405187f, // (3.0-math.sqrt(3.0))/6.0 0.366025403784439f, // 0.5*(math.sqrt(3.0)-1.0) -0.577350269189626f, // -1.0 + 2.0 * C.x 0.024390243902439f); // 1.0 / 41.0 // First corner float2 i = floor(p + dot(p, C.yy)); float2 x0 = p - i + dot(i, C.xx); // Other corners float2 i1 = (x0.x > x0.y) ? float2(1.0f, 0.0f) : float2(0.0f, 1.0f); float4 x12 = x0.xyxy + C.xxzz; x12.xy -= i1; // Permutations i = Mod289(i); float3 perm = Permute(Permute(i.y + float3(0.0f, i1.y, 1.0f)) + i.x + float3(0.0f, i1.x, 1.0f)); float3 m = max(0.5f - float3(dot(x0, x0), dot(x12.xy, x12.xy), dot(x12.zw, x12.zw)), 0.0f); m = m * m; m = m * m; // Gradients: 41 points uniformly over a line, mapped onto a diamond. // The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287) float3 x = 2.0f * frac(perm * C.www) - 1.0f; float3 h = abs(x) - 0.5f; float3 ox = floor(x + 0.5f); float3 a0 = x - ox; // Normalise gradients implicitly by scaling m // Approximation of: m *= inversemath.sqrt( a0*a0 + h*h ); m *= 1.79284291400159f - 0.85373472095314f * (a0 * a0 + h * h); // Compute final noise value at P float gx = a0.x * x0.x + h.x * x0.y; float2 gyz = a0.yz * x12.xz + h.yz * x12.yw; float3 g = float3(gx, gyz); return saturate(130.0f * dot(m, g)); } // Worley noise (cellar noise with standard 3x3 search window for F1 and F2 values) float2 WorleyNoise(float2 p) { const float K = 0.142857142857f; // 1/7 const float Ko = 0.428571428571f; // 3/7 const float jitter = 1.0f; // Less gives more regular pattern float2 Pi = Mod289(floor(p)); float2 Pf = frac(p); float3 oi = float3(-1.0f, 0.0f, 1.0f); float3 of = float3(-0.5f, 0.5f, 1.5f); float3 px = Permute(Pi.x + oi); float3 pp = Permute(px.x + Pi.y + oi); // p11, p12, p13 float3 ox = frac(pp * K) - Ko; float3 oy = Mod7(floor(pp * K)) * K - Ko; float3 dx = Pf.x + 0.5f + jitter * ox; float3 dy = Pf.y - of + jitter * oy; float3 d1 = dx * dx + dy * dy; // d11, d12 and d13, squared pp = Permute(px.y + Pi.y + oi); // p21, p22, p23 ox = frac(pp * K) - Ko; oy = Mod7(floor(pp * K)) * K - Ko; dx = Pf.x - 0.5f + jitter * ox; dy = Pf.y - of + jitter * oy; float3 d2 = dx * dx + dy * dy; // d21, d22 and d23, squared pp = Permute(px.z + Pi.y + oi); // p31, p32, p33 ox = frac(pp * K) - Ko; oy = Mod7(floor(pp * K)) * K - Ko; dx = Pf.x - 1.5f + jitter * ox; dy = Pf.y - of + jitter * oy; float3 d3 = dx * dx + dy * dy; // d31, d32 and d33, squared float3 d1a = min(d1, d2); // Sort out the two smallest distances (F1, F2) d2 = max(d1, d2); // Swap to keep candidates for F2 d2 = min(d2, d3); // neither F1 nor F2 are now in d3 d1 = min(d1a, d2); // F1 is now in d1 d2 = max(d1a, d2); // Swap to keep candidates for F2 d1.xy = (d1.x < d1.y) ? d1.xy : d1.yx; // Swap if smaller d1.xz = (d1.x < d1.z) ? d1.xz : d1.zx; // F1 is in d1.x d1.yz = min(d1.yz, d2.yz); // F2 is now not in d2.yz d1.y = min(d1.y, d1.z); // nor in d1.z d1.y = min(d1.y, d2.x); // F2 is in d1.y, we're done. return saturate(sqrt(d1.xy)); } // Voronoi noise (X=minDistToCell, Y=randomColor, Z=minEdgeDistance) float3 VoronoiNoise(float2 p) { // Reference: https://www.ronja-tutorials.com/post/028-voronoi-noise/ float2 baseCell = floor(p); // first pass to find the closest cell float minDistToCell = 10; float2 toClosestCell; float2 closestCell; UNROLL for (int x1 = -1; x1 <= 1; x1++) { UNROLL for (int y1 = -1; y1 <= 1; y1++) { float2 cell = baseCell + float2(x1, y1); float2 cellPosition = cell + rand2dTo2d(cell); float2 toCell = cellPosition - p; float distToCell = length(toCell); if (distToCell < minDistToCell) { minDistToCell = distToCell; closestCell = cell; toClosestCell = toCell; } } } // second pass to find the distance to the closest edge float minEdgeDistance = 10; UNROLL for (int x2 = -1; x2 <= 1; x2++) { UNROLL for (int y2 = -1; y2 <= 1; y2++) { float2 cell = baseCell + float2(x2, y2); float2 cellPosition = cell + rand2dTo2d(cell); float2 toCell = cellPosition - p; float2 diffToClosestCell = abs(closestCell - cell); if (diffToClosestCell.x + diffToClosestCell.y >= 0.1) { float2 toCenter = (toClosestCell + toCell) * 0.5; float2 cellDifference = normalize(toCell - toClosestCell); minEdgeDistance = min(minEdgeDistance, dot(toCenter, cellDifference)); } } } float random = rand2dTo1d(closestCell); return saturate(float3(minDistToCell, random, minEdgeDistance)); } float CustomNoise(float3 p) { float3 a = floor(p); float3 d = p - a; d = d * d * (3.0 - 2.0 * d); float4 b = a.xxyy + float4(0.0, 1.0, 0.0, 1.0); float4 k1 = Permute(b.xyxy); float4 k2 = Permute(k1.xyxy + b.zzww); float4 c = k2 + a.zzzz; float4 k3 = Permute(c); float4 k4 = Permute(c + 1.0); float4 o1 = frac(k3 * (1.0 / 41.0)); float4 o2 = frac(k4 * (1.0 / 41.0)); float4 o3 = o2 * d.z + o1 * (1.0 - d.z); float2 o4 = o3.yw * d.x + o3.xz * (1.0 - d.x); return o4.y * d.y + o4.x * (1.0 - d.y); } float3 CustomNoise3D(float3 p) { float o = CustomNoise(p); float a = CustomNoise(p + float3(0.0001f, 0.0f, 0.0f)); float b = CustomNoise(p + float3(0.0f, 0.0001f, 0.0f)); float c = CustomNoise(p + float3(0.0f, 0.0f, 0.0001f)); float3 grad = float3(o - a, o - b, o - c); float3 other = abs(grad.zxy); return normalize(cross(grad,other)); } float3 CustomNoise3D(float3 position, int octaves, float roughness) { float weight = 0.0f; float3 noise = float3(0.0, 0.0, 0.0); float scale = 1.0f; for (int i = 0; i < octaves; i++) { float curWeight = pow((1.0 - ((float)i / octaves)), lerp(2.0, 0.2, roughness)); noise += CustomNoise3D(position * scale) * curWeight; weight += curWeight; scale *= 1.72531; } return noise / weight; } #endif