// Copyright (c) 2012-2022 Wojciech Figat. All rights reserved. #pragma once #include "Math.h" #include "Engine/Core/Formatting.h" #include "Engine/Core/Templates.h" /// /// Four-components vector (32 bit integer type). /// API_STRUCT() struct FLAXENGINE_API Int4 { DECLARE_SCRIPTING_TYPE_MINIMAL(Int4); public: union { struct { /// /// The X component. /// API_FIELD() int32 X; /// /// The Y component. /// API_FIELD() int32 Y; /// /// The Z component. /// API_FIELD() int32 Z; /// /// The W component. /// API_FIELD() int32 W; }; // Raw values int32 Raw[4]; }; public: // Vector with all components equal 0 static const Int4 Zero; // Vector with all components equal 1 static const Int4 One; // A minimum Int4 static const Int4 Minimum; // A maximum Int4 static const Int4 Maximum; public: /// /// Empty constructor. /// Int4() { } // Init // @param xy Value to assign to the all components Int4(int32 xyzw) : X(xyzw) , Y(xyzw) , Z(xyzw) , W(xyzw) { } // Init // @param x X component value // @param y Y component value // @param z Z component value // @param w W component value Int4(int32 x, int32 y, int32 z, int32 w) : X(x) , Y(y) , Z(z) , W(w) { } // Init // @param v Int2 to use X and Y components // @param z Z component value // @param w W component value Int4(const Int2& xy, int32 z, int32 w); // Init // @param v Int3 to use X , Y and Z components // @param w W component value Int4(const Int3& xyz, int32 w); // Init // @param v Vector2 to use X and Y components // @param z Z component value // @param w W component value explicit Int4(const Vector2& xy, int32 z, int32 w); // Init // @param v Vector3 to use X , Y and Z components // @param w W component value explicit Int4(const Vector3& xyz, int32 w); // Init // @param v Vector to use X, Y, Z and W components explicit Int4(const Vector4& xyzw); public: String ToString() const; public: // Arithmetic operators with Int2 Int4 operator+(const Int4& b) const { return Add(*this, b); } Int4 operator-(const Int4& b) const { return Subtract(*this, b); } Int4 operator*(const Int4& b) const { return Multiply(*this, b); } Int4 operator/(const Int4& b) const { return Divide(*this, b); } Int4 operator-() const { return Int4(-X, -Y, -Z, -W); } // op= operators with Int2 Int4& operator+=(const Int4& b) { *this = Add(*this, b); return *this; } Int4& operator-=(const Int4& b) { *this = Subtract(*this, b); return *this; } Int4& operator*=(const Int4& b) { *this = Multiply(*this, b); return *this; } Int4& operator/=(const Int4& b) { *this = Divide(*this, b); return *this; } // Arithmetic operators with int32 Int4 operator+(int32 b) const { return Add(*this, b); } Int4 operator-(int32 b) const { return Subtract(*this, b); } Int4 operator*(int32 b) const { return Multiply(*this, b); } Int4 operator/(int32 b) const { return Divide(*this, b); } // op= operators with int32 Int4& operator+=(int32 b) { *this = Add(*this, b); return *this; } Int4& operator-=(int32 b) { *this = Subtract(*this, b); return *this; } Int4& operator*=(int32 b) { *this = Multiply(*this, b); return *this; } Int4& operator/=(int32 b) { *this = Divide(*this, b); return *this; } // Comparison operators bool operator==(const Int4& b) const { return X == b.X && Y == b.Y; } bool operator!=(const Int4& b) const { return X != b.X || Y != b.Y; } bool operator>(const Int4& b) const { return X > b.X && Y > b.Y; } bool operator>=(const Int4& b) const { return X >= b.X && Y >= b.Y; } bool operator<(const Int4& b) const { return X < b.X && Y < b.Y; } bool operator<=(const Int4& b) const { return X <= b.X && Y <= b.Y; } public: static void Add(const Int4& a, const Int4& b, Int4& result) { result.X = a.X + b.X; result.Y = a.Y + b.Y; result.Z = a.Z + b.Z; result.W = a.W + b.W; } static Int4 Add(const Int4& a, const Int4& b) { Int4 result; Add(a, b, result); return result; } static void Subtract(const Int4& a, const Int4& b, Int4& result) { result.X = a.X - b.X; result.Y = a.Y - b.Y; result.Z = a.Z - b.Z; result.W = a.W - b.W; } static Int4 Subtract(const Int4& a, const Int4& b) { Int4 result; Subtract(a, b, result); return result; } static Int4 Multiply(const Int4& a, const Int4& b) { return Int4(a.X * b.X, a.Y * b.Y, a.Z * b.Z, a.W * b.W); } static Int4 Multiply(const Int4& a, int32 b) { return Int4(a.X * b, a.Y * b, a.Z * b, a.W * b); } static Int4 Divide(const Int4& a, const Int4& b) { return Int4(a.X / b.X, a.Y / b.Y, a.Z / b.Z, a.W / b.W); } static Int4 Divide(const Int4& a, int32 b) { return Int4(a.X / b, a.Y / b, a.Z / b, a.Y / b); } public: /// /// Gets a value indicting whether this vector is zero. /// /// True if the vector is zero, otherwise false. bool IsZero() const { return X == 0 && Y == 0 && Z == 0 && W == 0; } /// /// Gets a value indicting whether any vector component is zero. /// /// True if a component is zero, otherwise false. bool IsAnyZero() const { return X == 0 || Y == 0 || Z == 0 || W == 0; } /// /// Gets a value indicting whether this vector is one. /// /// True if the vector is one, otherwise false. bool IsOne() const { return X == 1 && Y == 1 && Z == 1 && W == 1; } /// /// Calculates a vector with values being opposite to values of that vector /// /// Negative vector Int4 GetNegative() const { return Int4(-X, -Y, -Z, -W); } /// /// Returns average arithmetic of all the components /// /// Average arithmetic of all the components float AverageArithmetic() const { return (X + Y + Z + W) * 0.25f; } /// /// Gets sum of all vector components values /// /// Sum of X, Y, Z and W int32 SumValues() const { return X + Y + Z + W; } /// /// Returns minimum value of all the components /// /// Minimum value int32 MinValue() const { return Math::Min(X, Y, Z, W); } /// /// Returns maximum value of all the components /// /// Maximum value int32 MaxValue() const { return Math::Max(X, Y, Z, W); } // Returns a vector containing the largest components of the specified vectors // @param a The first source vector // @param b The second source vector static Int4 Max(const Int4& a, const Int4& b) { return Int4(a.X > b.X ? a.X : b.X, a.Y > b.Y ? a.Y : b.Y, a.Z > b.Z ? a.Z : b.Z, a.W > b.W ? a.W : b.W); } // Returns a vector containing the smallest components of the specified vectors // @param a The first source vector // @param b The second source vector static Int4 Min(const Int4& a, const Int4& b) { return Int4(a.X < b.X ? a.X : b.X, a.Y < b.Y ? a.Y : b.Y, a.Z < b.Z ? a.Z : b.Z, a.W < b.W ? a.W : b.W); } // Returns a vector containing the largest components of the specified vectors // @param a The first source vector // @param b The second source vector // @param result When the method completes, contains an new vector composed of the largest components of the source vectors static void Max(const Int4& a, const Int4& b, Int4& result) { result = Int4(a.X > b.X ? a.X : b.X, a.Y > b.Y ? a.Y : b.Y, a.Z > b.Z ? a.Z : b.Z, a.W > b.W ? a.W : b.W); } // Returns a vector containing the smallest components of the specified vectors // @param a The first source vector // @param b The second source vector // @param result When the method completes, contains an new vector composed of the smallest components of the source vectors static void Min(const Int4& a, const Int4& b, Int4& result) { result = Int4(a.X < b.X ? a.X : b.X, a.Y < b.Y ? a.Y : b.Y, a.Z < b.Z ? a.Z : b.Z, a.W < b.W ? a.W : b.W); } }; template<> struct TIsPODType { enum { Value = true }; }; DEFINE_DEFAULT_FORMATTING(Int4, "X:{0} Y:{1} Z:{2} W:{3}", v.X, v.Y, v.Z, v.W);