// Copyright (c) 2012-2023 Wojciech Figat. All rights reserved. using System; using System.ComponentModel; namespace FlaxEngine { /// /// A collection of common math functions on double floating-points. /// [HideInEditor] public static class Mathd { /// /// The value for which all absolute numbers smaller than are considered equal to zero. /// public const double Epsilon = 1e-16; /// /// A value specifying the approximation of π which is 180 degrees. /// public const double Pi = Math.PI; /// /// A value specifying the approximation of 2π which is 360 degrees. /// public const double TwoPi = 2.0 * Math.PI; /// /// A value specifying the approximation of π/2 which is 90 degrees. /// public const double PiOverTwo = Math.PI / 2.0; /// /// A value specifying the approximation of π/4 which is 45 degrees. /// public const double PiOverFour = Math.PI / 4.0; /// /// A value specifying the golden mean /// public const double GoldenRatio = 1.6180339887; /// /// Returns the absolute value of f. /// /// public static double Abs(double f) { return Math.Abs(f); } /// /// Returns the arc-cosine of f - the angle in radians whose cosine is f. /// /// public static double Acos(double f) { return Math.Acos(f); } /// /// Compares two floating point values if they are similar. /// /// /// public static bool Approximately(double a, double b) { return Abs(b - a) < Max(Epsilon * Max(Abs(a), Abs(b)), Epsilon * 8f); } /// /// Returns the arc-sine of f - the angle in radians whose sine is f. /// /// public static double Asin(double f) { return Math.Asin(f); } /// /// Returns the arc-tangent of f - the angle in radians whose tangent is f. /// /// public static double Atan(double f) { return Math.Atan(f); } /// /// Returns the angle in radians whose Tan is y/x. /// /// /// public static double Atan2(double y, double x) { return Math.Atan2(y, x); } /// /// Returns the smallest integer greater to or equal to f. /// /// public static double Ceil(double f) { return Math.Ceiling(f); } /// /// Returns the smallest integer greater to or equal to f. /// /// public static long CeilToInt(double f) { return (long)Math.Ceiling(f); } /// /// Clamps value between 0 and 1 and returns value. /// /// Value to clamp /// Result value public static double Saturate(double value) { if (value < 0d) return 0d; return value > 1d ? 1d : value; } /// /// Returns the cosine of angle f in radians. /// /// public static double Cos(double f) { return Math.Cos(f); } /// /// Calculates the shortest difference between two given angles given in degrees. /// /// /// public static double DeltaAngle(double current, double target) { double t = Repeat(target - current, 360f); if (t > 180d) t -= 360d; return t; } /// /// Returns e raised to the specified power. /// /// public static double Exp(double power) { return Math.Exp(power); } /// /// Returns the largest integer smaller to or equal to f. /// /// public static double Floor(double f) { return Math.Floor(f); } /// /// Returns the largest integer smaller to or equal to f. /// /// public static long FloorToInt(double f) { return (long)Math.Floor(f); } /// /// Remaps the specified value from the specified range to another. /// /// The value to remap. /// The source range minimum. /// The source range maximum. /// The destination range minimum. /// The destination range maximum. /// The remapped value. public static double Remap(double value, double fromMin, double fromMax, double toMin, double toMax) { return (value - fromMin) / (fromMax - fromMin) * (toMax - toMin) + toMin; } /// /// Calculates the linear parameter t that produces the interpolation value within the range [a, b]. /// /// /// /// public static double InverseLerp(double a, double b, double value) { if (a == b) return 0d; return Saturate((value - a) / (b - a)); } /// /// Same as Lerp but makes sure the values interpolate correctly when they wrap around 360 degrees. /// /// /// /// public static double LerpAngle(double a, double b, double t) { double c = Repeat(b - a, 360d); if (c > 180d) c -= 360d; return a + c * Saturate(t); } /// /// Returns the logarithm of a specified number in a specified base. /// /// /// public static double Log(double f, double p) { return Math.Log(f, p); } /// /// Returns the natural (base e) logarithm of a specified number. /// /// public static double Log(double f) { return Math.Log(f); } /// /// Returns the base 10 logarithm of a specified number. /// /// public static double Log10(double f) { return Math.Log10(f); } /// /// Returns largest of two or more values. /// /// /// public static double Max(double a, double b) { return a <= b ? b : a; } /// /// Returns largest of two or more values. /// /// public static double Max(params double[] values) { int length = values.Length; if (length == 0) return 0d; double t = values[0]; for (var i = 1; i < length; i++) if (values[i] > t) t = values[i]; return t; } /// /// Returns the smallest of two or more values. /// /// /// public static double Min(double a, double b) { return a >= b ? b : a; } /// /// Returns the smallest of two or more values. /// /// public static double Min(params double[] values) { int length = values.Length; if (length == 0) return 0d; double t = values[0]; for (var i = 1; i < length; i++) if (values[i] < t) t = values[i]; return t; } /// /// Moves a value current towards target. /// /// The current value. /// The value to move towards. /// The maximum change that should be applied to the value. public static double MoveTowards(double current, double target, double maxDelta) { if (Abs(target - current) <= maxDelta) return target; return current + Sign(target - current) * maxDelta; } /// /// Same as MoveTowards but makes sure the values interpolate correctly when they wrap around 360 degrees. /// /// /// /// public static double MoveTowardsAngle(double current, double target, double maxDelta) { double delta = DeltaAngle(current, target); if ((-maxDelta < delta) && (delta < maxDelta)) return target; target = current + delta; return MoveTowards(current, target, maxDelta); } /// /// PingPongs the value t, so that it is never larger than length and never smaller than 0. /// /// /// public static double PingPong(double t, double length) { t = Repeat(t, length * 2f); return length - Abs(t - length); } /// /// Returns f raised to power p. /// /// /// public static double Pow(double f, double p) { return Math.Pow(f, p); } /// /// Loops the value t, so that it is never larger than length and never smaller than 0. /// /// /// public static double Repeat(double t, double length) { return t - Floor(t / length) * length; } /// /// Returns f rounded to the nearest integer. /// /// public static double Round(double f) { return Math.Round(f); } /// /// Returns f rounded to the nearest integer. /// /// public static int RoundToInt(double f) { return (int)Math.Round(f); } /// /// Returns f rounded to the nearest integer. /// /// public static long RoundToLong(double f) { return (long)Math.Round(f); } /// /// Returns the sign of f. /// /// public static double Sign(double f) { return f > 0.0d ? 1.0d : f < 0.0d ? -1.0d : 0.0d; } /// /// Returns the sine of angle f in radians. /// /// public static double Sin(double f) { return Math.Sin(f); } /// /// Gradually changes a value towards a desired goal over time with smoothing. /// /// The current value. /// The target value. /// The current velocity. /// The smoothing time. Smaller values increase blending time. /// The maximum speed. /// The smoothed value. public static double SmoothDamp(double current, double target, ref double currentVelocity, double smoothTime, double maxSpeed) { return SmoothDamp(current, target, ref currentVelocity, smoothTime, maxSpeed, Time.DeltaTime); } /// /// Gradually changes a value towards a desired goal over time with smoothing. /// /// The current value. /// The target value. /// The current velocity. /// The smoothing time. Smaller values increase blending time. /// The smoothed value. public static double SmoothDamp(double current, double target, ref double currentVelocity, double smoothTime) { return SmoothDamp(current, target, ref currentVelocity, smoothTime, double.PositiveInfinity, Time.DeltaTime); } /// /// Gradually changes a value towards a desired goal over time with smoothing. /// /// The current value. /// The target value. /// The current velocity. /// The smoothing time. Smaller values increase blending time. /// The maximum speed. /// The delta time (in seconds) since last update. /// The smoothed value. public static double SmoothDamp(double current, double target, ref double currentVelocity, double smoothTime, [DefaultValue("double.PositiveInfinity")] double maxSpeed, [DefaultValue("Time.DeltaTime")] double deltaTime) { smoothTime = Max(0.0001d, smoothTime); double a = 2d / smoothTime; double b = a * deltaTime; double c = 1d / (1d + b + 0.48d * b * b + 0.235d * b * b * b); double d = current - target; double e = target; double f = maxSpeed * smoothTime; d = Clamp(d, -f, f); target = current - d; double g = (currentVelocity + a * d) * deltaTime; currentVelocity = (currentVelocity - a * g) * c; double h = target + (d + g) * c; if (e - current > 0d == h > e) { h = e; currentVelocity = (h - e) / deltaTime; } return h; } /// /// Gradually changes an angle towards a desired goal over time with smoothing. /// /// The current angle. /// The target angle. /// The current velocity. /// The smoothing time. Smaller values increase blending time. /// The maximum speed. /// The smoothed value. public static double SmoothDampAngle(double current, double target, ref double currentVelocity, double smoothTime, double maxSpeed) { return SmoothDampAngle(current, target, ref currentVelocity, smoothTime, maxSpeed, Time.DeltaTime); } /// /// Gradually changes an angle towards a desired goal over time with smoothing. /// /// The current angle. /// The target angle. /// The current velocity. /// The smoothing time. Smaller values increase blending time. /// The smoothed value. public static double SmoothDampAngle(double current, double target, ref double currentVelocity, double smoothTime) { return SmoothDampAngle(current, target, ref currentVelocity, smoothTime, double.PositiveInfinity, Time.DeltaTime); } /// /// Gradually changes an angle towards a desired goal over time with smoothing. /// /// The current angle. /// The target angle. /// The current velocity. /// The smoothing time. Smaller values increase blending time. /// The maximum speed. /// The delta time (in seconds) since last update. /// The smoothed value. public static double SmoothDampAngle(double current, double target, ref double currentVelocity, double smoothTime, [DefaultValue("double.PositiveInfinity")] double maxSpeed, [DefaultValue("Time.DeltaTime")] double deltaTime) { target = current + DeltaAngle(current, target); return SmoothDamp(current, target, ref currentVelocity, smoothTime, maxSpeed, deltaTime); } /// /// Interpolates between min and max with smoothing at the limits. /// /// /// /// public static double SmoothStep(double from, double to, double t) { t = Saturate(t); t = -2d * t * t * t + 3d * t * t; return to * t + from * (1d - t); } /// /// Performs a cubic interpolation. /// /// The first point. /// The tangent direction at first point. /// The second point. /// The tangent direction at second point. /// The distance along the spline. /// The interpolated value. public static double CubicInterp(double p0, double t0, double p1, double t1, double alpha) { double alpha2 = alpha * alpha; double alpha3 = alpha2 * alpha; return (((2d * alpha3) - (3d * alpha2) + 1d) * p0) + ((alpha3 - (2d * alpha2) + alpha) * t0) + ((alpha3 - alpha2) * t1) + (((-2d * alpha3) + (3d * alpha2)) * p1); } /// /// Interpolate between A and B, applying an ease in function. Exponent controls the degree of the curve. /// public static double InterpEaseIn(double a, double b, double alpha, double exponent) { double modifiedAlpha = Pow(alpha, exponent); return Lerp(a, b, modifiedAlpha); } /// /// Interpolate between A and B, applying an ease out function. Exponent controls the degree of the curve. /// public static double InterpEaseOut(double a, double b, double alpha, double exponent) { double modifiedAlpha = 1d - Pow(1d - alpha, exponent); return Lerp(a, b, modifiedAlpha); } /// /// Interpolate between A and B, applying an ease in/out function. Exponent controls the degree of the curve. /// public static double InterpEaseInOut(double a, double b, double alpha, double exponent) { return Lerp(a, b, (alpha < 0.5d) ? InterpEaseIn(0d, 1d, alpha * 2d, exponent) * 0.5d : InterpEaseOut(0d, 1d, alpha * 2d - 1d, exponent) * 0.5d + 0.5d); } /// /// Interpolation between A and B, applying a sinusoidal in function. /// public static double InterpSinIn(double a, double b, double alpha) { double modifiedAlpha = -1d * Cos(alpha * PiOverTwo) + 1d; return Lerp(a, b, modifiedAlpha); } /// /// Interpolation between A and B, applying a sinusoidal out function. /// public static double InterpSinOut(double a, double b, double alpha) { double modifiedAlpha = Sin(alpha * PiOverTwo); return Lerp(a, b, modifiedAlpha); } /// /// Interpolation between A and B, applying a sinusoidal in/out function. /// public static double InterpSinInOut(double a, double b, double alpha) { return Lerp(a, b, (alpha < 0.5d) ? InterpSinIn(0d, 1d, alpha * 2d) * 0.5d : InterpSinOut(0d, 1d, alpha * 2d - 1d) * 0.5d + 0.5d); } /// /// Interpolation between A and B, applying an exponential in function. /// public static double InterpExpoIn(double a, double b, double alpha) { double modifiedAlpha = (alpha == 0d) ? 0d : Pow(2d, 10d * (alpha - 1d)); return Lerp(a, b, modifiedAlpha); } /// /// Interpolation between A and B, applying an exponential out function. /// public static double InterpExpoOut(double a, double b, double alpha) { double modifiedAlpha = (alpha == 1d) ? 1d : -Pow(2d, -10d * alpha) + 1d; return Lerp(a, b, modifiedAlpha); } /// /// Interpolation between A and B, applying an exponential in/out function. /// public static double InterpExpoInOut(double a, double b, double alpha) { return Lerp(a, b, (alpha < 0.5d) ? InterpExpoIn(0d, 1d, alpha * 2d) * 0.5d : InterpExpoOut(0d, 1d, alpha * 2d - 1d) * 0.5d + 0.5d); } /// /// Interpolation between A and B, applying a circular in function. /// public static double InterpCircularIn(double a, double b, double alpha) { double modifiedAlpha = -1d * (Sqrt(1d - alpha * alpha) - 1d); return Lerp(a, b, modifiedAlpha); } /// /// Interpolation between A and B, applying a circular out function. /// public static double InterpCircularOut(double a, double b, double alpha) { alpha -= 1d; double modifiedAlpha = Sqrt(1d - alpha * alpha); return Lerp(a, b, modifiedAlpha); } /// /// Interpolation between A and B, applying a circular in/out function. /// public static double InterpCircularInOut(double a, double b, double alpha) { return Lerp(a, b, (alpha < 0.5d) ? InterpCircularIn(0d, 1d, alpha * 2d) * 0.5d : InterpCircularOut(0d, 1d, alpha * 2d - 1d) * 0.5d + 0.5d); } /// /// Maps the specified value from the given range into another. /// /// The value to map from range [fromMin; fromMax]. /// The source range minimum value. /// The source range maximum value. /// The destination range minimum value. /// The destination range maximum value. /// The mapped value in range [toMin; toMax]. // [Deprecated on 17.04.2023, expires on 17.04.2024] [Obsolete("Please use Remap to upkeep the API consistency")] public static double Map(double value, double fromMin, double fromMax, double toMin, double toMax) { double t = (value - fromMin) / (fromMax - fromMin); return toMin + t * (toMax - toMin); } /// /// Get the next power of two for a size. /// /// The size. /// System.Int32. public static double NextPowerOfTwo(double size) { return Math.Pow(2d, Math.Ceiling(Math.Log(size, 2d))); } /// /// Converts a float value from sRGB to linear. /// /// The sRGB value. /// A linear value. public static double SRgbToLinear(double sRgbValue) { if (sRgbValue < 0.04045d) return sRgbValue / 12.92d; return Math.Pow((sRgbValue + 0.055d) / 1.055d, 2.4d); } /// /// Converts a float value from linear to sRGB. /// /// The linear value. /// The encoded sRGB value. public static double LinearToSRgb(double linearValue) { if (linearValue < 0.0031308d) return linearValue * 12.92d; return 1.055d * Math.Pow(linearValue, 1d / 2.4d) - 0.055d; } /// /// Returns square root of f. /// /// public static double Sqrt(double f) { return Math.Sqrt(f); } /// /// Returns square of the given value. /// /// The value. /// The value * value. public static double Square(double f) { return f * f; } /// /// Returns the tangent of angle f in radians. /// /// public static double Tan(double f) { return Math.Tan(f); } /// /// Checks if a and b are almost equals, taking into account the magnitude of floating point numbers (unlike method). See Remarks. See remarks. /// /// The left value to compare. /// The right value to compare. /// true if a almost equal to b, false otherwise /// The code is using the technique described by Bruce Dawson in Comparing Floating point numbers 2012 edition. public static unsafe bool NearEqual(double a, double b) { // Check if the numbers are really close -- needed // when comparing numbers near zero. if (IsZero(a - b)) return true; // Original from Bruce Dawson: http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ long aInt = *(long*)&a; long bInt = *(long*)&b; // Different signs means they do not match. if (aInt < 0 != bInt < 0) return false; // Find the difference in ULPs. long ulp = Math.Abs(aInt - bInt); // Choose of maxUlp = 4 // according to http://code.google.com/p/googletest/source/browse/trunk/include/gtest/internal/gtest-internal.h const long maxUlp = 4; return ulp <= maxUlp; } /// /// Determines whether the specified value is close to zero (0.0f). /// /// The floating value. /// true if the specified value is close to zero (0.0f); otherwise, false. public static bool IsZero(double a) { return Math.Abs(a) < Epsilon; } /// /// Determines whether the specified value is close to one (1.0f). /// /// The floating value. /// true if the specified value is close to one (1.0f); otherwise, false. public static bool IsOne(double a) { return IsZero(a - 1d); } /// /// Checks if a - b are almost equals within a float epsilon. /// /// The left value to compare. /// The right value to compare. /// Epsilon value /// true if a almost equal to b within a float epsilon, false otherwise public static bool WithinEpsilon(double a, double b, double epsilon) { double num = a - b; return (-epsilon <= num) && (num <= epsilon); } /// /// Determines whether the specified value is in a given range [min; max]. /// /// The value. /// The minimum. /// The maximum. /// /// true if the specified value is in a given range; otherwise, false. /// public static bool IsInRange(double value, double min, double max) { return value >= min && value <= max; } /// /// Determines whether the specified value is NOT in a given range [min; max]. /// /// The value. /// The minimum. /// The maximum. /// /// true if the specified value is NOT in a given range; otherwise, false. /// public static bool IsNotInRange(double value, double min, double max) { return value < min || value > max; } #region Angle units conversions /// /// Converts revolutions to degrees. /// public static double RevolutionsToDegrees = 360d; /// /// Converts revolutions to radians. /// public static double RevolutionsToRadians = TwoPi; /// /// Converts revolutions to gradians. /// public static double RevolutionsToGradians = 400d; /// /// Converts degrees to revolutions. /// public static double DegreesToRevolutions = (1d / 360d); /// /// Converts degrees to radians. /// public static double DegreesToRadians = (Pi / 180d); /// /// Converts radians to revolutions. /// public static double RadiansToRevolutions = (1d / TwoPi); /// /// Converts radians to gradians. /// public static double RadiansToGradians = (200d / Pi); /// /// Converts gradians to revolutions. /// public static double GradiansToRevolutions = (1d / 400d); /// /// Converts gradians to degrees. /// public static double GradiansToDegrees = (9.0f / 10d); /// /// Converts gradians to radians. /// public static double GradiansToRadians = (Pi / 200d); /// /// Converts radians to degrees. /// public static double RadiansToDegrees = (180d / Pi); #endregion /// /// Given a heading which may be outside the +/- PI range, 'unwind' it back into that range. /// /// Optimized version of that is it faster and has fixed cost but with large angle values (100 for example) starts to lose accuracy floating point problem. /// Angle in radians to unwind. /// Valid angle in radians. public static double UnwindRadians(double angle) { var a = angle - Math.Floor(angle / TwoPi) * TwoPi; // Loop function between 0 and TwoPi return a > Pi ? a - TwoPi : a; // Change range so it become Pi and -Pi } /// /// The same as but is more computation intensive with large and has better accuracy with large . ///
cost of this function is %
///
/// Angle in radians to unwind. /// Valid angle in radians. public static double UnwindRadiansAccurate(double angle) { while (angle > Pi) angle -= TwoPi; while (angle < -Pi) angle += TwoPi; return angle; } /// /// Utility to ensure angle is between +/- 180 degrees by unwinding. /// /// Optimized version of that is it faster and has fixed cost but with large angle values (100 for example) starts to lose accuracy floating point problem. /// Angle in degrees to unwind. /// Valid angle in degrees. public static double UnwindDegrees(double angle) { var a = angle - Math.Floor(angle / 360.0) * 360.0; // Loop function between 0 and 360 return a > 180 ? a - 360.0 : a; // Change range so it become 180 and -180 } /// /// The same as but is more computation intensive with large and has better accuracy with large . ///
cost of this function is % 180.0f
///
/// Angle in radians to unwind. /// Valid angle in radians. public static double UnwindDegreesAccurate(double angle) { while (angle > 180.0) angle -= 360.0; while (angle < -180.0) angle += 360.0; return angle; } /// /// Clamps the specified value. /// /// The value. /// The min. /// The max. /// The result of clamping a value between min and max public static double Clamp(double value, double min, double max) { return value < min ? min : value > max ? max : value; } /// /// Interpolates between two values using a linear function by a given amount. /// /// /// See: ///

///

///
/// Value to interpolate from. /// Value to interpolate to. /// Interpolation amount. /// The result of linear interpolation of values based on the amount. public static double Lerp(double from, double to, double amount) { return from + (to - from) * amount; } /// /// Performs smooth (cubic Hermite) interpolation between 0 and 1. /// /// /// See: ///

///
/// Value between 0 and 1 indicating interpolation amount. public static double SmoothStep(double amount) { return amount <= 0d ? 0d : amount >= 1d ? 1d : amount * amount * (3d - 2d * amount); } /// /// Performs a smooth(er) interpolation between 0 and 1 with 1st and 2nd order derivatives of zero at endpoints. /// /// /// See: ///

///
/// Value between 0 and 1 indicating interpolation amount. public static double SmootherStep(double amount) { return amount <= 0d ? 0d : amount >= 1d ? 1d : amount * amount * amount * (amount * (amount * 6d - 15d) + 10d); } /// /// Calculates the modulo of the specified value. /// /// The value. /// The modulo. /// The result of the modulo applied to value public static double Mod(double value, double modulo) { if (modulo == 0d) return value; return value % modulo; } /// /// Calculates the modulo 2*PI of the specified value. /// /// The value. /// The result of the modulo applied to value public static double Mod2PI(double value) { return Mod(value, TwoPi); } /// /// Wraps the specified value into a range [min, max] /// /// The value. /// The min. /// The max. /// Result of the wrapping. /// Is thrown when is greater than . public static double Wrap(double value, double min, double max) { if (NearEqual(min, max)) return min; double mind = min; double maxd = max; double valued = value; if (mind > maxd) throw new ArgumentException(string.Format("min {0} should be less than or equal to max {1}", min, max), nameof(min)); double rangeSize = maxd - mind; return mind + (valued - mind) - rangeSize * Math.Floor((valued - mind) / rangeSize); } /// /// Gauss function. ///

///
/// Curve amplitude. /// Position X. /// Position Y /// Center X. /// Center Y. /// Curve sigma X. /// Curve sigma Y. /// The result of Gaussian function. public static double Gauss(double amplitude, double x, double y, double centerX, double centerY, double sigmaX, double sigmaY) { double cx = x - centerX; double cy = y - centerY; double componentX = cx * cx / (2 * sigmaX * sigmaX); double componentY = cy * cy / (2 * sigmaY * sigmaY); return amplitude * Math.Exp(-(componentX + componentY)); } /// /// Converts the input alpha value from a linear 0-1 value into the output alpha described by blend mode. /// /// The alpha (normalized to 0-1). /// The mode. /// The output alpha (normalized to 0-1). public static double InterpolateAlphaBlend(double alpha, AlphaBlendMode mode) { switch (mode) { case AlphaBlendMode.Sinusoidal: alpha = (Sin(alpha * Pi - PiOverTwo) + 1d) / 2d; break; case AlphaBlendMode.Cubic: alpha = CubicInterp(0d, 0d, 1d, 0d, alpha); break; case AlphaBlendMode.QuadraticInOut: alpha = InterpEaseInOut(0d, 1d, alpha, 2d); break; case AlphaBlendMode.CubicInOut: alpha = InterpEaseInOut(0d, 1d, alpha, 3d); break; case AlphaBlendMode.HermiteCubic: alpha = SmoothStep(0d, 1d, alpha); break; case AlphaBlendMode.QuarticInOut: alpha = InterpEaseInOut(0d, 1d, alpha, 4d); break; case AlphaBlendMode.QuinticInOut: alpha = InterpEaseInOut(0d, 1d, alpha, 5d); break; case AlphaBlendMode.CircularIn: alpha = InterpCircularIn(0d, 1d, alpha); break; case AlphaBlendMode.CircularOut: alpha = InterpCircularOut(0d, 1d, alpha); break; case AlphaBlendMode.CircularInOut: alpha = InterpCircularInOut(0d, 1d, alpha); break; case AlphaBlendMode.ExpIn: alpha = InterpExpoIn(0d, 1d, alpha); break; case AlphaBlendMode.ExpOut: alpha = InterpExpoOut(0d, 1d, alpha); break; case AlphaBlendMode.ExpInOut: alpha = InterpExpoInOut(0d, 1d, alpha); break; } return Saturate(alpha); } } }