// Copyright (c) 2012-2023 Wojciech Figat. All rights reserved.
using System;
using System.ComponentModel;
namespace FlaxEngine
{
///
/// A collection of common math functions on double floating-points.
///
[HideInEditor]
public static class Mathd
{
///
/// The value for which all absolute numbers smaller than are considered equal to zero.
///
public const double Epsilon = 1e-16;
///
/// A value specifying the approximation of π which is 180 degrees.
///
public const double Pi = Math.PI;
///
/// A value specifying the approximation of 2π which is 360 degrees.
///
public const double TwoPi = 2.0 * Math.PI;
///
/// A value specifying the approximation of π/2 which is 90 degrees.
///
public const double PiOverTwo = Math.PI / 2.0;
///
/// A value specifying the approximation of π/4 which is 45 degrees.
///
public const double PiOverFour = Math.PI / 4.0;
///
/// A value specifying the golden mean
///
public const double GoldenRatio = 1.6180339887;
///
/// Returns the absolute value of f.
///
///
public static double Abs(double f)
{
return Math.Abs(f);
}
///
/// Returns the arc-cosine of f - the angle in radians whose cosine is f.
///
///
public static double Acos(double f)
{
return Math.Acos(f);
}
///
/// Compares two floating point values if they are similar.
///
///
///
public static bool Approximately(double a, double b)
{
return Abs(b - a) < Max(Epsilon * Max(Abs(a), Abs(b)), Epsilon * 8f);
}
///
/// Returns the arc-sine of f - the angle in radians whose sine is f.
///
///
public static double Asin(double f)
{
return Math.Asin(f);
}
///
/// Returns the arc-tangent of f - the angle in radians whose tangent is f.
///
///
public static double Atan(double f)
{
return Math.Atan(f);
}
///
/// Returns the angle in radians whose Tan is y/x.
///
///
///
public static double Atan2(double y, double x)
{
return Math.Atan2(y, x);
}
///
/// Returns the smallest integer greater to or equal to f.
///
///
public static double Ceil(double f)
{
return Math.Ceiling(f);
}
///
/// Returns the smallest integer greater to or equal to f.
///
///
public static long CeilToInt(double f)
{
return (long)Math.Ceiling(f);
}
///
/// Clamps value between 0 and 1 and returns value.
///
/// Value to clamp
/// Result value
public static double Saturate(double value)
{
if (value < 0d)
return 0d;
return value > 1d ? 1d : value;
}
///
/// Returns the cosine of angle f in radians.
///
///
public static double Cos(double f)
{
return Math.Cos(f);
}
///
/// Calculates the shortest difference between two given angles given in degrees.
///
///
///
public static double DeltaAngle(double current, double target)
{
double t = Repeat(target - current, 360f);
if (t > 180d)
t -= 360d;
return t;
}
///
/// Returns e raised to the specified power.
///
///
public static double Exp(double power)
{
return Math.Exp(power);
}
///
/// Returns the largest integer smaller to or equal to f.
///
///
public static double Floor(double f)
{
return Math.Floor(f);
}
///
/// Returns the largest integer smaller to or equal to f.
///
///
public static long FloorToInt(double f)
{
return (long)Math.Floor(f);
}
///
/// Remaps the specified value from the specified range to another.
///
/// The value to remap.
/// The source range minimum.
/// The source range maximum.
/// The destination range minimum.
/// The destination range maximum.
/// The remapped value.
public static double Remap(double value, double fromMin, double fromMax, double toMin, double toMax)
{
return (value - fromMin) / (fromMax - fromMin) * (toMax - toMin) + toMin;
}
///
/// Calculates the linear parameter t that produces the interpolation value within the range [a, b].
///
///
///
///
public static double InverseLerp(double a, double b, double value)
{
if (a == b)
return 0d;
return Saturate((value - a) / (b - a));
}
///
/// Same as Lerp but makes sure the values interpolate correctly when they wrap around 360 degrees.
///
///
///
///
public static double LerpAngle(double a, double b, double t)
{
double c = Repeat(b - a, 360d);
if (c > 180d)
c -= 360d;
return a + c * Saturate(t);
}
///
/// Returns the logarithm of a specified number in a specified base.
///
///
///
public static double Log(double f, double p)
{
return Math.Log(f, p);
}
///
/// Returns the natural (base e) logarithm of a specified number.
///
///
public static double Log(double f)
{
return Math.Log(f);
}
///
/// Returns the base 10 logarithm of a specified number.
///
///
public static double Log10(double f)
{
return Math.Log10(f);
}
///
/// Returns largest of two or more values.
///
///
///
public static double Max(double a, double b)
{
return a <= b ? b : a;
}
///
/// Returns largest of two or more values.
///
///
public static double Max(params double[] values)
{
int length = values.Length;
if (length == 0)
return 0d;
double t = values[0];
for (var i = 1; i < length; i++)
if (values[i] > t)
t = values[i];
return t;
}
///
/// Returns the smallest of two or more values.
///
///
///
public static double Min(double a, double b)
{
return a >= b ? b : a;
}
///
/// Returns the smallest of two or more values.
///
///
public static double Min(params double[] values)
{
int length = values.Length;
if (length == 0)
return 0d;
double t = values[0];
for (var i = 1; i < length; i++)
if (values[i] < t)
t = values[i];
return t;
}
///
/// Moves a value current towards target.
///
/// The current value.
/// The value to move towards.
/// The maximum change that should be applied to the value.
public static double MoveTowards(double current, double target, double maxDelta)
{
if (Abs(target - current) <= maxDelta)
return target;
return current + Sign(target - current) * maxDelta;
}
///
/// Same as MoveTowards but makes sure the values interpolate correctly when they wrap around 360 degrees.
///
///
///
///
public static double MoveTowardsAngle(double current, double target, double maxDelta)
{
double delta = DeltaAngle(current, target);
if ((-maxDelta < delta) && (delta < maxDelta))
return target;
target = current + delta;
return MoveTowards(current, target, maxDelta);
}
///
/// PingPongs the value t, so that it is never larger than length and never smaller than 0.
///
///
///
public static double PingPong(double t, double length)
{
t = Repeat(t, length * 2f);
return length - Abs(t - length);
}
///
/// Returns f raised to power p.
///
///
///
public static double Pow(double f, double p)
{
return Math.Pow(f, p);
}
///
/// Loops the value t, so that it is never larger than length and never smaller than 0.
///
///
///
public static double Repeat(double t, double length)
{
return t - Floor(t / length) * length;
}
///
/// Returns f rounded to the nearest integer.
///
///
public static double Round(double f)
{
return Math.Round(f);
}
///
/// Returns f rounded to the nearest integer.
///
///
public static int RoundToInt(double f)
{
return (int)Math.Round(f);
}
///
/// Returns f rounded to the nearest integer.
///
///
public static long RoundToLong(double f)
{
return (long)Math.Round(f);
}
///
/// Returns the sign of f.
///
///
public static double Sign(double f)
{
return f > 0.0d ? 1.0d : f < 0.0d ? -1.0d : 0.0d;
}
///
/// Returns the sine of angle f in radians.
///
///
public static double Sin(double f)
{
return Math.Sin(f);
}
///
/// Gradually changes a value towards a desired goal over time with smoothing.
///
/// The current value.
/// The target value.
/// The current velocity.
/// The smoothing time. Smaller values increase blending time.
/// The maximum speed.
/// The smoothed value.
public static double SmoothDamp(double current, double target, ref double currentVelocity, double smoothTime, double maxSpeed)
{
return SmoothDamp(current, target, ref currentVelocity, smoothTime, maxSpeed, Time.DeltaTime);
}
///
/// Gradually changes a value towards a desired goal over time with smoothing.
///
/// The current value.
/// The target value.
/// The current velocity.
/// The smoothing time. Smaller values increase blending time.
/// The smoothed value.
public static double SmoothDamp(double current, double target, ref double currentVelocity, double smoothTime)
{
return SmoothDamp(current, target, ref currentVelocity, smoothTime, double.PositiveInfinity, Time.DeltaTime);
}
///
/// Gradually changes a value towards a desired goal over time with smoothing.
///
/// The current value.
/// The target value.
/// The current velocity.
/// The smoothing time. Smaller values increase blending time.
/// The maximum speed.
/// The delta time (in seconds) since last update.
/// The smoothed value.
public static double SmoothDamp(double current, double target, ref double currentVelocity, double smoothTime, [DefaultValue("double.PositiveInfinity")] double maxSpeed, [DefaultValue("Time.DeltaTime")] double deltaTime)
{
smoothTime = Max(0.0001d, smoothTime);
double a = 2d / smoothTime;
double b = a * deltaTime;
double c = 1d / (1d + b + 0.48d * b * b + 0.235d * b * b * b);
double d = current - target;
double e = target;
double f = maxSpeed * smoothTime;
d = Clamp(d, -f, f);
target = current - d;
double g = (currentVelocity + a * d) * deltaTime;
currentVelocity = (currentVelocity - a * g) * c;
double h = target + (d + g) * c;
if (e - current > 0d == h > e)
{
h = e;
currentVelocity = (h - e) / deltaTime;
}
return h;
}
///
/// Gradually changes an angle towards a desired goal over time with smoothing.
///
/// The current angle.
/// The target angle.
/// The current velocity.
/// The smoothing time. Smaller values increase blending time.
/// The maximum speed.
/// The smoothed value.
public static double SmoothDampAngle(double current, double target, ref double currentVelocity, double smoothTime, double maxSpeed)
{
return SmoothDampAngle(current, target, ref currentVelocity, smoothTime, maxSpeed, Time.DeltaTime);
}
///
/// Gradually changes an angle towards a desired goal over time with smoothing.
///
/// The current angle.
/// The target angle.
/// The current velocity.
/// The smoothing time. Smaller values increase blending time.
/// The smoothed value.
public static double SmoothDampAngle(double current, double target, ref double currentVelocity, double smoothTime)
{
return SmoothDampAngle(current, target, ref currentVelocity, smoothTime, double.PositiveInfinity, Time.DeltaTime);
}
///
/// Gradually changes an angle towards a desired goal over time with smoothing.
///
/// The current angle.
/// The target angle.
/// The current velocity.
/// The smoothing time. Smaller values increase blending time.
/// The maximum speed.
/// The delta time (in seconds) since last update.
/// The smoothed value.
public static double SmoothDampAngle(double current, double target, ref double currentVelocity, double smoothTime, [DefaultValue("double.PositiveInfinity")] double maxSpeed, [DefaultValue("Time.DeltaTime")] double deltaTime)
{
target = current + DeltaAngle(current, target);
return SmoothDamp(current, target, ref currentVelocity, smoothTime, maxSpeed, deltaTime);
}
///
/// Interpolates between min and max with smoothing at the limits.
///
///
///
///
public static double SmoothStep(double from, double to, double t)
{
t = Saturate(t);
t = -2d * t * t * t + 3d * t * t;
return to * t + from * (1d - t);
}
///
/// Performs a cubic interpolation.
///
/// The first point.
/// The tangent direction at first point.
/// The second point.
/// The tangent direction at second point.
/// The distance along the spline.
/// The interpolated value.
public static double CubicInterp(double p0, double t0, double p1, double t1, double alpha)
{
double alpha2 = alpha * alpha;
double alpha3 = alpha2 * alpha;
return (((2d * alpha3) - (3d * alpha2) + 1d) * p0) + ((alpha3 - (2d * alpha2) + alpha) * t0) + ((alpha3 - alpha2) * t1) + (((-2d * alpha3) + (3d * alpha2)) * p1);
}
///
/// Interpolate between A and B, applying an ease in function. Exponent controls the degree of the curve.
///
public static double InterpEaseIn(double a, double b, double alpha, double exponent)
{
double modifiedAlpha = Pow(alpha, exponent);
return Lerp(a, b, modifiedAlpha);
}
///
/// Interpolate between A and B, applying an ease out function. Exponent controls the degree of the curve.
///
public static double InterpEaseOut(double a, double b, double alpha, double exponent)
{
double modifiedAlpha = 1d - Pow(1d - alpha, exponent);
return Lerp(a, b, modifiedAlpha);
}
///
/// Interpolate between A and B, applying an ease in/out function. Exponent controls the degree of the curve.
///
public static double InterpEaseInOut(double a, double b, double alpha, double exponent)
{
return Lerp(a, b, (alpha < 0.5d) ? InterpEaseIn(0d, 1d, alpha * 2d, exponent) * 0.5d : InterpEaseOut(0d, 1d, alpha * 2d - 1d, exponent) * 0.5d + 0.5d);
}
///
/// Interpolation between A and B, applying a sinusoidal in function.
///
public static double InterpSinIn(double a, double b, double alpha)
{
double modifiedAlpha = -1d * Cos(alpha * PiOverTwo) + 1d;
return Lerp(a, b, modifiedAlpha);
}
///
/// Interpolation between A and B, applying a sinusoidal out function.
///
public static double InterpSinOut(double a, double b, double alpha)
{
double modifiedAlpha = Sin(alpha * PiOverTwo);
return Lerp(a, b, modifiedAlpha);
}
///
/// Interpolation between A and B, applying a sinusoidal in/out function.
///
public static double InterpSinInOut(double a, double b, double alpha)
{
return Lerp(a, b, (alpha < 0.5d) ? InterpSinIn(0d, 1d, alpha * 2d) * 0.5d : InterpSinOut(0d, 1d, alpha * 2d - 1d) * 0.5d + 0.5d);
}
///
/// Interpolation between A and B, applying an exponential in function.
///
public static double InterpExpoIn(double a, double b, double alpha)
{
double modifiedAlpha = (alpha == 0d) ? 0d : Pow(2d, 10d * (alpha - 1d));
return Lerp(a, b, modifiedAlpha);
}
///
/// Interpolation between A and B, applying an exponential out function.
///
public static double InterpExpoOut(double a, double b, double alpha)
{
double modifiedAlpha = (alpha == 1d) ? 1d : -Pow(2d, -10d * alpha) + 1d;
return Lerp(a, b, modifiedAlpha);
}
///
/// Interpolation between A and B, applying an exponential in/out function.
///
public static double InterpExpoInOut(double a, double b, double alpha)
{
return Lerp(a, b, (alpha < 0.5d) ? InterpExpoIn(0d, 1d, alpha * 2d) * 0.5d : InterpExpoOut(0d, 1d, alpha * 2d - 1d) * 0.5d + 0.5d);
}
///
/// Interpolation between A and B, applying a circular in function.
///
public static double InterpCircularIn(double a, double b, double alpha)
{
double modifiedAlpha = -1d * (Sqrt(1d - alpha * alpha) - 1d);
return Lerp(a, b, modifiedAlpha);
}
///
/// Interpolation between A and B, applying a circular out function.
///
public static double InterpCircularOut(double a, double b, double alpha)
{
alpha -= 1d;
double modifiedAlpha = Sqrt(1d - alpha * alpha);
return Lerp(a, b, modifiedAlpha);
}
///
/// Interpolation between A and B, applying a circular in/out function.
///
public static double InterpCircularInOut(double a, double b, double alpha)
{
return Lerp(a, b, (alpha < 0.5d) ? InterpCircularIn(0d, 1d, alpha * 2d) * 0.5d : InterpCircularOut(0d, 1d, alpha * 2d - 1d) * 0.5d + 0.5d);
}
///
/// Maps the specified value from the given range into another.
///
/// The value to map from range [fromMin; fromMax].
/// The source range minimum value.
/// The source range maximum value.
/// The destination range minimum value.
/// The destination range maximum value.
/// The mapped value in range [toMin; toMax].
// [Deprecated on 17.04.2023, expires on 17.04.2024]
[Obsolete("Please use Remap to upkeep the API consistency")]
public static double Map(double value, double fromMin, double fromMax, double toMin, double toMax)
{
double t = (value - fromMin) / (fromMax - fromMin);
return toMin + t * (toMax - toMin);
}
///
/// Get the next power of two for a size.
///
/// The size.
/// System.Int32.
public static double NextPowerOfTwo(double size)
{
return Math.Pow(2d, Math.Ceiling(Math.Log(size, 2d)));
}
///
/// Converts a float value from sRGB to linear.
///
/// The sRGB value.
/// A linear value.
public static double SRgbToLinear(double sRgbValue)
{
if (sRgbValue < 0.04045d)
return sRgbValue / 12.92d;
return Math.Pow((sRgbValue + 0.055d) / 1.055d, 2.4d);
}
///
/// Converts a float value from linear to sRGB.
///
/// The linear value.
/// The encoded sRGB value.
public static double LinearToSRgb(double linearValue)
{
if (linearValue < 0.0031308d)
return linearValue * 12.92d;
return 1.055d * Math.Pow(linearValue, 1d / 2.4d) - 0.055d;
}
///
/// Returns square root of f.
///
///
public static double Sqrt(double f)
{
return Math.Sqrt(f);
}
///
/// Returns square of the given value.
///
/// The value.
/// The value * value.
public static double Square(double f)
{
return f * f;
}
///
/// Returns the tangent of angle f in radians.
///
///
public static double Tan(double f)
{
return Math.Tan(f);
}
///
/// Checks if a and b are almost equals, taking into account the magnitude of floating point numbers (unlike method). See Remarks. See remarks.
///
/// The left value to compare.
/// The right value to compare.
/// true if a almost equal to b, false otherwise
/// The code is using the technique described by Bruce Dawson in Comparing Floating point numbers 2012 edition.
public static unsafe bool NearEqual(double a, double b)
{
// Check if the numbers are really close -- needed
// when comparing numbers near zero.
if (IsZero(a - b))
return true;
// Original from Bruce Dawson: http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
long aInt = *(long*)&a;
long bInt = *(long*)&b;
// Different signs means they do not match.
if (aInt < 0 != bInt < 0)
return false;
// Find the difference in ULPs.
long ulp = Math.Abs(aInt - bInt);
// Choose of maxUlp = 4
// according to http://code.google.com/p/googletest/source/browse/trunk/include/gtest/internal/gtest-internal.h
const long maxUlp = 4;
return ulp <= maxUlp;
}
///
/// Determines whether the specified value is close to zero (0.0f).
///
/// The floating value.
/// true if the specified value is close to zero (0.0f); otherwise, false.
public static bool IsZero(double a)
{
return Math.Abs(a) < Epsilon;
}
///
/// Determines whether the specified value is close to one (1.0f).
///
/// The floating value.
/// true if the specified value is close to one (1.0f); otherwise, false.
public static bool IsOne(double a)
{
return IsZero(a - 1d);
}
///
/// Checks if a - b are almost equals within a float epsilon.
///
/// The left value to compare.
/// The right value to compare.
/// Epsilon value
/// true if a almost equal to b within a float epsilon, false otherwise
public static bool WithinEpsilon(double a, double b, double epsilon)
{
double num = a - b;
return (-epsilon <= num) && (num <= epsilon);
}
///
/// Determines whether the specified value is in a given range [min; max].
///
/// The value.
/// The minimum.
/// The maximum.
///
/// true if the specified value is in a given range; otherwise, false.
///
public static bool IsInRange(double value, double min, double max)
{
return value >= min && value <= max;
}
///
/// Determines whether the specified value is NOT in a given range [min; max].
///
/// The value.
/// The minimum.
/// The maximum.
///
/// true if the specified value is NOT in a given range; otherwise, false.
///
public static bool IsNotInRange(double value, double min, double max)
{
return value < min || value > max;
}
#region Angle units conversions
///
/// Converts revolutions to degrees.
///
public static double RevolutionsToDegrees = 360d;
///
/// Converts revolutions to radians.
///
public static double RevolutionsToRadians = TwoPi;
///
/// Converts revolutions to gradians.
///
public static double RevolutionsToGradians = 400d;
///
/// Converts degrees to revolutions.
///
public static double DegreesToRevolutions = (1d / 360d);
///
/// Converts degrees to radians.
///
public static double DegreesToRadians = (Pi / 180d);
///
/// Converts radians to revolutions.
///
public static double RadiansToRevolutions = (1d / TwoPi);
///
/// Converts radians to gradians.
///
public static double RadiansToGradians = (200d / Pi);
///
/// Converts gradians to revolutions.
///
public static double GradiansToRevolutions = (1d / 400d);
///
/// Converts gradians to degrees.
///
public static double GradiansToDegrees = (9.0f / 10d);
///
/// Converts gradians to radians.
///
public static double GradiansToRadians = (Pi / 200d);
///
/// Converts radians to degrees.
///
public static double RadiansToDegrees = (180d / Pi);
#endregion
///
/// Given a heading which may be outside the +/- PI range, 'unwind' it back into that range.
///
/// Optimized version of that is it faster and has fixed cost but with large angle values (100 for example) starts to lose accuracy floating point problem.
/// Angle in radians to unwind.
/// Valid angle in radians.
public static double UnwindRadians(double angle)
{
var a = angle - Math.Floor(angle / TwoPi) * TwoPi; // Loop function between 0 and TwoPi
return a > Pi ? a - TwoPi : a; // Change range so it become Pi and -Pi
}
///
/// The same as but is more computation intensive with large and has better accuracy with large .
///
cost of this function is %
///
/// Angle in radians to unwind.
/// Valid angle in radians.
public static double UnwindRadiansAccurate(double angle)
{
while (angle > Pi)
angle -= TwoPi;
while (angle < -Pi)
angle += TwoPi;
return angle;
}
///
/// Utility to ensure angle is between +/- 180 degrees by unwinding.
///
/// Optimized version of that is it faster and has fixed cost but with large angle values (100 for example) starts to lose accuracy floating point problem.
/// Angle in degrees to unwind.
/// Valid angle in degrees.
public static double UnwindDegrees(double angle)
{
var a = angle - Math.Floor(angle / 360.0) * 360.0; // Loop function between 0 and 360
return a > 180 ? a - 360.0 : a; // Change range so it become 180 and -180
}
///
/// The same as but is more computation intensive with large and has better accuracy with large .
///
cost of this function is % 180.0f
///
/// Angle in radians to unwind.
/// Valid angle in radians.
public static double UnwindDegreesAccurate(double angle)
{
while (angle > 180.0)
angle -= 360.0;
while (angle < -180.0)
angle += 360.0;
return angle;
}
///
/// Clamps the specified value.
///
/// The value.
/// The min.
/// The max.
/// The result of clamping a value between min and max
public static double Clamp(double value, double min, double max)
{
return value < min ? min : value > max ? max : value;
}
///
/// Interpolates between two values using a linear function by a given amount.
///
///
/// See:
///
///
///
/// Value to interpolate from.
/// Value to interpolate to.
/// Interpolation amount.
/// The result of linear interpolation of values based on the amount.
public static double Lerp(double from, double to, double amount)
{
return from + (to - from) * amount;
}
///
/// Performs smooth (cubic Hermite) interpolation between 0 and 1.
///
///
/// See:
///
///
/// Value between 0 and 1 indicating interpolation amount.
public static double SmoothStep(double amount)
{
return amount <= 0d ? 0d : amount >= 1d ? 1d : amount * amount * (3d - 2d * amount);
}
///
/// Performs a smooth(er) interpolation between 0 and 1 with 1st and 2nd order derivatives of zero at endpoints.
///
///
/// See:
///
///
/// Value between 0 and 1 indicating interpolation amount.
public static double SmootherStep(double amount)
{
return amount <= 0d ? 0d : amount >= 1d ? 1d : amount * amount * amount * (amount * (amount * 6d - 15d) + 10d);
}
///
/// Calculates the modulo of the specified value.
///
/// The value.
/// The modulo.
/// The result of the modulo applied to value
public static double Mod(double value, double modulo)
{
if (modulo == 0d)
return value;
return value % modulo;
}
///
/// Calculates the modulo 2*PI of the specified value.
///
/// The value.
/// The result of the modulo applied to value
public static double Mod2PI(double value)
{
return Mod(value, TwoPi);
}
///
/// Wraps the specified value into a range [min, max]
///
/// The value.
/// The min.
/// The max.
/// Result of the wrapping.
/// Is thrown when is greater than .
public static double Wrap(double value, double min, double max)
{
if (NearEqual(min, max))
return min;
double mind = min;
double maxd = max;
double valued = value;
if (mind > maxd)
throw new ArgumentException(string.Format("min {0} should be less than or equal to max {1}", min, max), nameof(min));
double rangeSize = maxd - mind;
return mind + (valued - mind) - rangeSize * Math.Floor((valued - mind) / rangeSize);
}
///
/// Gauss function.
///
///
/// Curve amplitude.
/// Position X.
/// Position Y
/// Center X.
/// Center Y.
/// Curve sigma X.
/// Curve sigma Y.
/// The result of Gaussian function.
public static double Gauss(double amplitude, double x, double y, double centerX, double centerY, double sigmaX, double sigmaY)
{
double cx = x - centerX;
double cy = y - centerY;
double componentX = cx * cx / (2 * sigmaX * sigmaX);
double componentY = cy * cy / (2 * sigmaY * sigmaY);
return amplitude * Math.Exp(-(componentX + componentY));
}
///
/// Converts the input alpha value from a linear 0-1 value into the output alpha described by blend mode.
///
/// The alpha (normalized to 0-1).
/// The mode.
/// The output alpha (normalized to 0-1).
public static double InterpolateAlphaBlend(double alpha, AlphaBlendMode mode)
{
switch (mode)
{
case AlphaBlendMode.Sinusoidal:
alpha = (Sin(alpha * Pi - PiOverTwo) + 1d) / 2d;
break;
case AlphaBlendMode.Cubic:
alpha = CubicInterp(0d, 0d, 1d, 0d, alpha);
break;
case AlphaBlendMode.QuadraticInOut:
alpha = InterpEaseInOut(0d, 1d, alpha, 2d);
break;
case AlphaBlendMode.CubicInOut:
alpha = InterpEaseInOut(0d, 1d, alpha, 3d);
break;
case AlphaBlendMode.HermiteCubic:
alpha = SmoothStep(0d, 1d, alpha);
break;
case AlphaBlendMode.QuarticInOut:
alpha = InterpEaseInOut(0d, 1d, alpha, 4d);
break;
case AlphaBlendMode.QuinticInOut:
alpha = InterpEaseInOut(0d, 1d, alpha, 5d);
break;
case AlphaBlendMode.CircularIn:
alpha = InterpCircularIn(0d, 1d, alpha);
break;
case AlphaBlendMode.CircularOut:
alpha = InterpCircularOut(0d, 1d, alpha);
break;
case AlphaBlendMode.CircularInOut:
alpha = InterpCircularInOut(0d, 1d, alpha);
break;
case AlphaBlendMode.ExpIn:
alpha = InterpExpoIn(0d, 1d, alpha);
break;
case AlphaBlendMode.ExpOut:
alpha = InterpExpoOut(0d, 1d, alpha);
break;
case AlphaBlendMode.ExpInOut:
alpha = InterpExpoInOut(0d, 1d, alpha);
break;
}
return Saturate(alpha);
}
}
}