// Copyright (c) 2012-2023 Wojciech Figat. All rights reserved.
using System;
using System.ComponentModel;
namespace FlaxEngine
{
///
/// A collection of common math functions on single floating-points.
///
[HideInEditor]
public static class Mathf
{
///
/// The value for which all absolute numbers smaller than are considered equal to zero.
///
public const float Epsilon = 1e-6f;
///
/// A value specifying the approximation of π which is 180 degrees.
///
public const float Pi = (float)Math.PI;
///
/// A value specifying the approximation of 2π which is 360 degrees.
///
public const float TwoPi = (float)(2 * Math.PI);
///
/// A value specifying the approximation of π/2 which is 90 degrees.
///
public const float PiOverTwo = (float)(Math.PI / 2);
///
/// A value specifying the approximation of π/4 which is 45 degrees.
///
public const float PiOverFour = (float)(Math.PI / 4);
///
/// A value specifying the golden mean
///
public const float GoldenRatio = 1.6180339887f;
///
/// Returns the absolute value of f.
///
///
public static float Abs(float f)
{
return Math.Abs(f);
}
///
/// Returns the absolute value of f.
///
///
public static double Abs(double f)
{
return Math.Abs(f);
}
///
/// Returns the absolute value of value.
///
///
public static int Abs(int value)
{
return Math.Abs(value);
}
///
/// Returns the arc-cosine of f - the angle in radians whose cosine is f.
///
///
public static float Acos(float f)
{
return (float)Math.Acos(f);
}
///
/// Compares two floating point values if they are similar.
///
///
///
public static bool Approximately(float a, float b)
{
return Abs(b - a) < Max(1E-06f * Max(Abs(a), Abs(b)), Epsilon * 8f);
}
///
/// Returns the arc-sine of f - the angle in radians whose sine is f.
///
///
public static float Asin(float f)
{
return (float)Math.Asin(f);
}
///
/// Returns the arc-tangent of f - the angle in radians whose tangent is f.
///
///
public static float Atan(float f)
{
return (float)Math.Atan(f);
}
///
/// Returns the angle in radians whose Tan is y/x.
///
///
///
public static float Atan2(float y, float x)
{
return (float)Math.Atan2(y, x);
}
///
/// Returns the smallest integer greater to or equal to f.
///
///
public static float Ceil(float f)
{
return (float)Math.Ceiling(f);
}
///
/// Returns the smallest integer greater to or equal to f.
///
///
public static int CeilToInt(float f)
{
return (int)Math.Ceiling(f);
}
///
/// Clamps value between 0 and 1 and returns value.
///
/// Value to clamp
/// Result value
public static float Saturate(float value)
{
if (value < 0f)
return 0f;
return value > 1f ? 1f : value;
}
///
/// Clamps value between 0 and 1 and returns value.
///
/// Value to clamp
/// Result value
public static double Saturate(double value)
{
if (value < 0f)
return 0f;
return value > 1f ? 1f : value;
}
///
/// Returns the cosine of angle f in radians.
///
///
public static float Cos(float f)
{
return (float)Math.Cos(f);
}
///
/// Calculates the shortest difference between two given angles given in degrees.
///
///
///
public static float DeltaAngle(float current, float target)
{
float t = Repeat(target - current, 360f);
if (t > 180f)
t -= 360f;
return t;
}
///
/// Returns e raised to the specified power.
///
///
public static float Exp(float power)
{
return (float)Math.Exp(power);
}
///
/// Returns the largest integer smaller to or equal to f.
///
///
public static float Floor(float f)
{
return (float)Math.Floor(f);
}
///
/// Returns the largest integer smaller to or equal to f.
///
///
public static int FloorToInt(float f)
{
return (int)Math.Floor(f);
}
///
/// Remaps the specified value from the specified range to another.
///
/// The value to remap.
/// The source range minimum.
/// The source range maximum.
/// The destination range minimum.
/// The destination range maximum.
/// The remapped value.
public static float Remap(float value, float fromMin, float fromMax, float toMin, float toMax)
{
return (value - fromMin) / (fromMax - fromMin) * (toMax - toMin) + toMin;
}
///
/// Calculates the linear parameter t that produces the interpolation value within the range [a, b].
///
///
///
///
public static float InverseLerp(float a, float b, float value)
{
if (a == b)
return 0f;
return Saturate((value - a) / (b - a));
}
///
/// Same as Lerp but makes sure the values interpolate correctly when they wrap around 360 degrees.
///
///
///
///
public static float LerpAngle(float a, float b, float t)
{
float c = Repeat(b - a, 360f);
if (c > 180f)
c -= 360f;
return a + c * Saturate(t);
}
///
/// Returns the logarithm of a specified number in a specified base.
///
///
///
public static float Log(float f, float p)
{
return (float)Math.Log(f, p);
}
///
/// Returns the natural (base e) logarithm of a specified number.
///
///
public static float Log(float f)
{
return (float)Math.Log(f);
}
///
/// Returns the base 10 logarithm of a specified number.
///
///
public static float Log10(float f)
{
return (float)Math.Log10(f);
}
///
/// Returns largest of two or more values.
///
///
///
public static float Max(float a, float b)
{
return a <= b ? b : a;
}
///
/// Returns largest of two or more values.
///
///
///
public static double Max(double a, double b)
{
return a <= b ? b : a;
}
///
/// Returns largest of two or more values.
///
///
///
public static long Max(long a, long b)
{
return a <= b ? b : a;
}
///
/// Returns largest of two or more values.
///
///
///
public static ulong Max(ulong a, ulong b)
{
return a <= b ? b : a;
}
///
/// Returns largest of two or more values.
///
///
public static float Max(params float[] values)
{
int length = values.Length;
if (length == 0)
return 0f;
float t = values[0];
for (var i = 1; i < length; i++)
if (values[i] > t)
t = values[i];
return t;
}
///
/// Returns the largest of two or more values.
///
///
///
public static int Max(int a, int b)
{
return a <= b ? b : a;
}
///
/// Returns the largest of two or more values.
///
///
///
public static uint Max(uint a, uint b)
{
return a <= b ? b : a;
}
///
/// Returns the largest of two or more values.
///
///
public static int Max(params int[] values)
{
int length = values.Length;
if (length == 0)
return 0;
int t = values[0];
for (var i = 1; i < length; i++)
if (values[i] > t)
t = values[i];
return t;
}
///
/// Returns the smallest of two or more values.
///
///
///
public static float Min(float a, float b)
{
return a >= b ? b : a;
}
///
/// Returns the smallest of two or more values.
///
///
///
public static double Min(double a, double b)
{
return a >= b ? b : a;
}
///
/// Returns the smallest of two or more values.
///
///
///
public static long Min(long a, long b)
{
return a >= b ? b : a;
}
///
/// Returns the smallest of two or more values.
///
///
///
public static ulong Min(ulong a, ulong b)
{
return a >= b ? b : a;
}
///
/// Returns the smallest of two or more values.
///
///
public static float Min(params float[] values)
{
int length = values.Length;
if (length == 0)
return 0f;
float t = values[0];
for (var i = 1; i < length; i++)
if (values[i] < t)
t = values[i];
return t;
}
///
/// Returns the smallest of two or more values.
///
///
///
public static int Min(int a, int b)
{
return a >= b ? b : a;
}
///
/// Returns the smallest of two or more values.
///
///
///
public static uint Min(uint a, uint b)
{
return a >= b ? b : a;
}
///
/// Returns the smallest of two or more values.
///
///
public static int Min(params int[] values)
{
int length = values.Length;
if (length == 0)
return 0;
int num = values[0];
for (var i = 1; i < length; i++)
if (values[i] < num)
num = values[i];
return num;
}
///
/// Moves a value current towards target.
///
/// The current value.
/// The value to move towards.
/// The maximum change that should be applied to the value.
public static float MoveTowards(float current, float target, float maxDelta)
{
if (Abs(target - current) <= maxDelta)
return target;
return current + Sign(target - current) * maxDelta;
}
///
/// Same as MoveTowards but makes sure the values interpolate correctly when they wrap around 360 degrees.
///
///
///
///
public static float MoveTowardsAngle(float current, float target, float maxDelta)
{
float delta = DeltaAngle(current, target);
if ((-maxDelta < delta) && (delta < maxDelta))
return target;
target = current + delta;
return MoveTowards(current, target, maxDelta);
}
///
/// PingPongs the value t, so that it is never larger than length and never smaller than 0.
///
///
///
public static float PingPong(float t, float length)
{
t = Repeat(t, length * 2f);
return length - Abs(t - length);
}
///
/// Returns f raised to power p.
///
///
///
public static float Pow(float f, float p)
{
return (float)Math.Pow(f, p);
}
///
/// Loops the value t, so that it is never larger than length and never smaller than 0.
///
///
///
public static float Repeat(float t, float length)
{
return t - Floor(t / length) * length;
}
///
/// Returns f rounded to the nearest integer.
///
///
public static float Round(float f)
{
return (float)Math.Round(f);
}
///
/// Returns f rounded to the nearest integer.
///
///
public static int RoundToInt(float f)
{
return (int)Math.Round(f);
}
///
/// Returns the sign of f.
///
///
public static float Sign(float f)
{
return f > 0.0f ? 1.0f : f < 0.0f ? -1.0f : 0.0f;
}
///
/// Returns the sine of angle f in radians.
///
///
public static float Sin(float f)
{
return (float)Math.Sin(f);
}
///
/// Returns signed fractional part of a float.
///
/// Floating point value to convert.
/// A float between [0 ; 1) for nonnegative input. A float between [-1; 0) for negative input.
public static float Frac(float value)
{
return value - (int)value;
}
///
/// Gradually changes a value towards a desired goal over time with smoothing.
///
/// The current value.
/// The target value.
/// The current velocity.
/// The smoothing time. Smaller values increase blending time.
/// The maximum speed.
/// The smoothed value.
public static float SmoothDamp(float current, float target, ref float currentVelocity, float smoothTime, float maxSpeed)
{
return SmoothDamp(current, target, ref currentVelocity, smoothTime, maxSpeed, Time.DeltaTime);
}
///
/// Gradually changes a value towards a desired goal over time with smoothing.
///
/// The current value.
/// The target value.
/// The current velocity.
/// The smoothing time. Smaller values increase blending time.
/// The smoothed value.
public static float SmoothDamp(float current, float target, ref float currentVelocity, float smoothTime)
{
return SmoothDamp(current, target, ref currentVelocity, smoothTime, float.PositiveInfinity, Time.DeltaTime);
}
///
/// Gradually changes a value towards a desired goal over time with smoothing.
///
/// The current value.
/// The target value.
/// The current velocity.
/// The smoothing time. Smaller values increase blending time.
/// The maximum speed.
/// The delta time (in seconds) since last update.
/// The smoothed value.
public static float SmoothDamp(float current, float target, ref float currentVelocity, float smoothTime, [DefaultValue("float.PositiveInfinity")] float maxSpeed, [DefaultValue("Time.DeltaTime")] float deltaTime)
{
smoothTime = Max(0.0001f, smoothTime);
float a = 2f / smoothTime;
float b = a * deltaTime;
float c = 1f / (1f + b + 0.48f * b * b + 0.235f * b * b * b);
float d = current - target;
float e = target;
float f = maxSpeed * smoothTime;
d = Clamp(d, -f, f);
target = current - d;
float g = (currentVelocity + a * d) * deltaTime;
currentVelocity = (currentVelocity - a * g) * c;
float h = target + (d + g) * c;
if (e - current > 0f == h > e)
{
h = e;
currentVelocity = (h - e) / deltaTime;
}
return h;
}
///
/// Gradually changes an angle towards a desired goal over time with smoothing.
///
/// The current angle.
/// The target angle.
/// The current velocity.
/// The smoothing time. Smaller values increase blending time.
/// The maximum speed.
/// The smoothed value.
public static float SmoothDampAngle(float current, float target, ref float currentVelocity, float smoothTime, float maxSpeed)
{
return SmoothDampAngle(current, target, ref currentVelocity, smoothTime, maxSpeed, Time.DeltaTime);
}
///
/// Gradually changes an angle towards a desired goal over time with smoothing.
///
/// The current angle.
/// The target angle.
/// The current velocity.
/// The smoothing time. Smaller values increase blending time.
/// The smoothed value.
public static float SmoothDampAngle(float current, float target, ref float currentVelocity, float smoothTime)
{
return SmoothDampAngle(current, target, ref currentVelocity, smoothTime, float.PositiveInfinity, Time.DeltaTime);
}
///
/// Gradually changes an angle towards a desired goal over time with smoothing.
///
/// The current angle.
/// The target angle.
/// The current velocity.
/// The smoothing time. Smaller values increase blending time.
/// The maximum speed.
/// The delta time (in seconds) since last update.
/// The smoothed value.
public static float SmoothDampAngle(float current, float target, ref float currentVelocity, float smoothTime, [DefaultValue("float.PositiveInfinity")] float maxSpeed, [DefaultValue("Time.DeltaTime")] float deltaTime)
{
target = current + DeltaAngle(current, target);
return SmoothDamp(current, target, ref currentVelocity, smoothTime, maxSpeed, deltaTime);
}
///
/// Interpolates between min and max with smoothing at the limits.
///
///
///
///
public static float SmoothStep(float from, float to, float t)
{
t = Saturate(t);
t = -2f * t * t * t + 3f * t * t;
return to * t + from * (1f - t);
}
///
/// Performs a cubic interpolation.
///
/// The first point.
/// The tangent direction at first point.
/// The second point.
/// The tangent direction at second point.
/// The distance along the spline.
/// The interpolated value.
public static float CubicInterp(float p0, float t0, float p1, float t1, float alpha)
{
float alpha2 = alpha * alpha;
float alpha3 = alpha2 * alpha;
return (((2 * alpha3) - (3 * alpha2) + 1) * p0) + ((alpha3 - (2 * alpha2) + alpha) * t0) + ((alpha3 - alpha2) * t1) + (((-2 * alpha3) + (3 * alpha2)) * p1);
}
///
/// Interpolate between A and B, applying an ease in function. Exponent controls the degree of the curve.
///
public static float InterpEaseIn(float a, float b, float alpha, float exponent)
{
float modifiedAlpha = Pow(alpha, exponent);
return Lerp(a, b, modifiedAlpha);
}
///
/// Interpolate between A and B, applying an ease out function. Exponent controls the degree of the curve.
///
public static float InterpEaseOut(float a, float b, float alpha, float exponent)
{
float modifiedAlpha = 1.0f - Pow(1.0f - alpha, exponent);
return Lerp(a, b, modifiedAlpha);
}
///
/// Interpolate between A and B, applying an ease in/out function. Exponent controls the degree of the curve.
///
public static float InterpEaseInOut(float a, float b, float alpha, float exponent)
{
return Lerp(a, b, (alpha < 0.5f) ? InterpEaseIn(0.0f, 1.0f, alpha * 2.0f, exponent) * 0.5f : InterpEaseOut(0.0f, 1.0f, alpha * 2.0f - 1.0f, exponent) * 0.5f + 0.5f);
}
///
/// Interpolation between A and B, applying a sinusoidal in function.
///
public static float InterpSinIn(float a, float b, float alpha)
{
float modifiedAlpha = -1.0f * Cos(alpha * PiOverTwo) + 1.0f;
return Lerp(a, b, modifiedAlpha);
}
///
/// Interpolation between A and B, applying a sinusoidal out function.
///
public static float InterpSinOut(float a, float b, float alpha)
{
float modifiedAlpha = Sin(alpha * PiOverTwo);
return Lerp(a, b, modifiedAlpha);
}
///
/// Interpolation between A and B, applying a sinusoidal in/out function.
///
public static float InterpSinInOut(float a, float b, float alpha)
{
return Lerp(a, b, (alpha < 0.5f) ? InterpSinIn(0.0f, 1.0f, alpha * 2.0f) * 0.5f : InterpSinOut(0.0f, 1.0f, alpha * 2.0f - 1.0f) * 0.5f + 0.5f);
}
///
/// Interpolation between A and B, applying an exponential in function.
///
public static float InterpExpoIn(float a, float b, float alpha)
{
float modifiedAlpha = (alpha == 0.0f) ? 0.0f : Pow(2.0f, 10.0f * (alpha - 1.0f));
return Lerp(a, b, modifiedAlpha);
}
///
/// Interpolation between A and B, applying an exponential out function.
///
public static float InterpExpoOut(float a, float b, float alpha)
{
float modifiedAlpha = (alpha == 1.0f) ? 1.0f : -Pow(2.0f, -10.0f * alpha) + 1.0f;
return Lerp(a, b, modifiedAlpha);
}
///
/// Interpolation between A and B, applying an exponential in/out function.
///
public static float InterpExpoInOut(float a, float b, float alpha)
{
return Lerp(a, b, (alpha < 0.5f) ? InterpExpoIn(0.0f, 1.0f, alpha * 2.0f) * 0.5f : InterpExpoOut(0.0f, 1.0f, alpha * 2.0f - 1.0f) * 0.5f + 0.5f);
}
///
/// Interpolation between A and B, applying a circular in function.
///
public static float InterpCircularIn(float a, float b, float alpha)
{
float modifiedAlpha = -1.0f * (Sqrt(1.0f - alpha * alpha) - 1.0f);
return Lerp(a, b, modifiedAlpha);
}
///
/// Interpolation between A and B, applying a circular out function.
///
public static float InterpCircularOut(float a, float b, float alpha)
{
alpha -= 1.0f;
float modifiedAlpha = Sqrt(1.0f - alpha * alpha);
return Lerp(a, b, modifiedAlpha);
}
///
/// Interpolation between A and B, applying a circular in/out function.
///
public static float InterpCircularInOut(float a, float b, float alpha)
{
return Lerp(a, b, (alpha < 0.5f) ? InterpCircularIn(0.0f, 1.0f, alpha * 2.0f) * 0.5f : InterpCircularOut(0.0f, 1.0f, alpha * 2.0f - 1.0f) * 0.5f + 0.5f);
}
///
/// Maps the specified value from the given range into another.
///
/// The value to map from range [fromMin; fromMax].
/// The source range minimum value.
/// The source range maximum value.
/// The destination range minimum value.
/// The destination range maximum value.
/// The mapped value in range [toMin; toMax].
// [Deprecated on 17.04.2023, expires on 17.04.2024]
[Obsolete("Please use Remap to upkeep the API consistency")]
public static float Map(float value, float fromMin, float fromMax, float toMin, float toMax)
{
float t = (value - fromMin) / (fromMax - fromMin);
return toMin + t * (toMax - toMin);
}
///
/// Determines whether the specified x is pow of 2.
///
/// The x.
/// true if the specified x is pow2; otherwise, false.
public static bool IsPowerOfTwo(int x)
{
return ((x != 0) && (x & (x - 1)) == 0);
}
///
/// Get the next power of two for a size.
///
/// The size.
/// System.Int32.
public static int NextPowerOfTwo(int size)
{
return 1 << (int)Math.Ceiling(Math.Log(size, 2));
}
///
/// Get the next power of two for a size.
///
/// The size.
/// System.Int32.
public static float NextPowerOfTwo(float size)
{
return (float)Math.Pow(2, Math.Ceiling(Math.Log(size, 2)));
}
///
/// Converts a float value from sRGB to linear.
///
/// The sRGB value.
/// A linear value.
public static float SRgbToLinear(float sRgbValue)
{
if (sRgbValue < 0.04045f)
return sRgbValue / 12.92f;
return (float)Math.Pow((sRgbValue + 0.055) / 1.055, 2.4);
}
///
/// Converts a float value from linear to sRGB.
///
/// The linear value.
/// The encoded sRGB value.
public static float LinearToSRgb(float linearValue)
{
if (linearValue < 0.0031308f)
return linearValue * 12.92f;
return (float)(1.055 * Math.Pow(linearValue, 1 / 2.4) - 0.055);
}
///
/// Returns square root of f.
///
///
public static float Sqrt(float f)
{
return (float)Math.Sqrt(f);
}
///
/// Returns square root of f.
///
///
public static double Sqrt(double f)
{
return Math.Sqrt(f);
}
///
/// Returns square of the given value.
///
/// The value.
/// The value * value.
public static int Square(int f)
{
return f * f;
}
///
/// Returns square of the given value.
///
/// The value.
/// The value * value.
public static double Square(double f)
{
return f * f;
}
///
/// Returns square of the given value.
///
/// The value.
/// The value * value.
public static float Square(float f)
{
return f * f;
}
///
/// Returns the tangent of angle f in radians.
///
///
public static float Tan(float f)
{
return (float)Math.Tan(f);
}
///
/// Checks if a and b are almost equals, taking into account the magnitude of floating point numbers (unlike method).
///
/// The left value to compare.
/// The right value to compare.
/// true if a almost equal to b, false otherwise
/// The code is using the technique described by Bruce Dawson in Comparing Floating point numbers 2012 edition.
public static unsafe bool NearEqual(float a, float b)
{
// Check if the numbers are really close -- needed when comparing numbers near zero.
if (Math.Abs(a - b) < Epsilon)
return true;
// Original from Bruce Dawson: http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
int aInt = *(int*)&a;
int bInt = *(int*)&b;
// Different signs means they do not match.
if (aInt < 0 != bInt < 0)
return false;
// Find the difference in ULPs.
int ulp = Math.Abs(aInt - bInt);
// Choose of maxUlp = 4
// according to http://code.google.com/p/googletest/source/browse/trunk/include/gtest/internal/gtest-internal.h
const int maxUlp = 4;
return ulp <= maxUlp;
}
///
/// Checks if a and b are almost equals, taking into account the magnitude of floating point numbers .
/// See remarks.
///
/// The left value to compare.
/// The right value to compare.
/// true if a almost equal to b, false otherwise
public static bool NearEqual(double a, double b)
{
return Math.Abs(a - b) < Mathd.Epsilon;
}
///
/// Determines whether the specified value is close to zero (0.0f).
///
/// The floating value.
/// true if the specified value is close to zero (0.0f); otherwise, false.
public static bool IsZero(float a)
{
return Math.Abs(a) < Epsilon;
}
///
/// Determines whether the specified value is close to one (1.0f).
///
/// The floating value.
/// true if the specified value is close to one (1.0f); otherwise, false.
public static bool IsOne(float a)
{
return Math.Abs(a - 1.0f) < Epsilon;
}
///
/// Determines whether the specified value is close to zero (0.0f).
///
/// The floating value.
/// true if the specified value is close to zero (0.0f); otherwise, false.
public static bool IsZero(double a)
{
return Math.Abs(a) < Mathd.Epsilon;
}
///
/// Determines whether the specified value is close to one (1.0f).
///
/// The floating value.
/// true if the specified value is close to one (1.0f); otherwise, false.
public static bool IsOne(double a)
{
return Math.Abs(a - 1.0f) < Mathd.Epsilon;
}
///
/// Checks if a - b are almost equals within a float epsilon.
///
/// The left value to compare.
/// The right value to compare.
/// Epsilon value
/// true if a almost equal to b within a float epsilon, false otherwise
public static bool WithinEpsilon(float a, float b, float epsilon)
{
float num = a - b;
return (-epsilon <= num) && (num <= epsilon);
}
///
/// Checks if a - b are almost equals within a float epsilon.
///
/// The left value to compare.
/// The right value to compare.
/// Epsilon value
/// true if a almost equal to b within a float epsilon, false otherwise
public static bool WithinEpsilon(double a, double b, double epsilon)
{
double num = a - b;
return (-epsilon <= num) && (num <= epsilon);
}
///
/// Determines whether the specified value is in a given range [min; max].
///
/// The value.
/// The minimum.
/// The maximum.
/// true if the specified value is in a given range; otherwise, false.
public static bool IsInRange(float value, float min, float max)
{
return value >= min && value <= max;
}
///
/// Determines whether the specified value is NOT in a given range [min; max].
///
/// The value.
/// The minimum.
/// The maximum.
/// true if the specified value is NOT in a given range; otherwise, false.
public static bool IsNotInRange(float value, float min, float max)
{
return value < min || value > max;
}
///
/// Determines whether the specified value is in a given range [min; max].
///
/// The value.
/// The minimum.
/// The maximum.
/// true if the specified value is in a given range; otherwise, false.
public static bool IsInRange(double value, double min, double max)
{
return value >= min && value <= max;
}
///
/// Determines whether the specified value is NOT in a given range [min; max].
///
/// The value.
/// The minimum.
/// The maximum.
/// true if the specified value is NOT in a given range; otherwise, false.
public static bool IsNotInRange(double value, double min, double max)
{
return value < min || value > max;
}
///
/// Determines whether the specified value is in a given range [min; max].
///
/// The value.
/// The minimum.
/// The maximum.
/// true if the specified value is in a given range; otherwise, false.
public static bool IsInRange(int value, int min, int max)
{
return value >= min && value <= max;
}
///
/// Determines whether the specified value is NOT in a given range [min; max].
///
/// The value.
/// The minimum.
/// The maximum.
/// true if the specified value is NOT in a given range; otherwise, false.
public static bool IsNotInRange(int value, int min, int max)
{
return value < min || value > max;
}
#region Angle units conversions
///
/// Converts revolutions to degrees.
///
public static float RevolutionsToDegrees = 360.0f;
///
/// Converts revolutions to radians.
///
public static float RevolutionsToRadians = TwoPi;
///
/// Converts revolutions to gradians.
///
public static float RevolutionsToGradians = 400.0f;
///
/// Converts degrees to revolutions.
///
public static float DegreesToRevolutions = (1.0f / 360.0f);
///
/// Converts degrees to radians.
///
public static float DegreesToRadians = (Pi / 180.0f);
///
/// Converts radians to revolutions.
///
public static float RadiansToRevolutions = (1.0f / TwoPi);
///
/// Converts radians to gradians.
///
public static float RadiansToGradians = (200.0f / Pi);
///
/// Converts gradians to revolutions.
///
public static float GradiansToRevolutions = (1.0f / 400.0f);
///
/// Converts gradians to degrees.
///
public static float GradiansToDegrees = (9.0f / 10.0f);
///
/// Converts gradians to radians.
///
public static float GradiansToRadians = (Pi / 200.0f);
///
/// Converts radians to degrees.
///
public static float RadiansToDegrees = (180.0f / Pi);
#endregion
///
/// Given a heading which may be outside the +/- PI range, 'unwind' it back into that range.
///
/// Optimized version of that is it faster and has fixed cost but with large angle values (100 for example) starts to lose accuracy floating point problem.
/// Angle in radians to unwind.
/// Valid angle in radians.
public static float UnwindRadians(float angle)
{
var a = angle - (float)Math.Floor(angle / TwoPi) * TwoPi; // Loop function between 0 and TwoPi
return a > Pi ? a - TwoPi : a; // Change range so it become Pi and -Pi
}
///
/// The same as but is more computation intensive with large and has better accuracy with large .
///
cost of this function is %
///
/// Angle in radians to unwind.
/// Valid angle in radians.
public static float UnwindRadiansAccurate(float angle)
{
while (angle > Pi)
angle -= TwoPi;
while (angle < -Pi)
angle += TwoPi;
return angle;
}
///
/// Utility to ensure angle is between +/- 180 degrees by unwinding.
///
/// Optimized version of that is it faster and has fixed cost but with large angle values (100 for example) starts to lose accuracy floating point problem.
/// Angle in degrees to unwind.
/// Valid angle in degrees.
public static float UnwindDegrees(float angle)
{
var a = angle - (float)Math.Floor(angle / 360.0f) * 360.0f; // Loop function between 0 and 360
return a > 180 ? a - 360.0f : a; // Change range so it become 180 and -180
}
///
/// The same as but is more computation intensive with large and has better accuracy with large .
///
cost of this function is % 180.0f
///
/// Angle in radians to unwind.
/// Valid angle in radians.
public static float UnwindDegreesAccurate(float angle)
{
while (angle > 180.0f)
angle -= 360.0f;
while (angle < -180.0f)
angle += 360.0f;
return angle;
}
///
/// Clamps the specified value.
///
/// The value.
/// The min.
/// The max.
/// The result of clamping a value between min and max
public static long Clamp(long value, long min, long max)
{
return value < min ? min : value > max ? max : value;
}
///
/// Clamps the specified value.
///
/// The value.
/// The min.
/// The max.
/// The result of clamping a value between min and max
public static ulong Clamp(ulong value, ulong min, ulong max)
{
return value < min ? min : value > max ? max : value;
}
///
/// Clamps the specified value.
///
/// The value.
/// The min.
/// The max.
/// The result of clamping a value between min and max
public static float Clamp(float value, float min, float max)
{
return value < min ? min : value > max ? max : value;
}
///
/// Clamps the specified value.
///
/// The value.
/// The min.
/// The max.
/// The result of clamping a value between min and max
public static double Clamp(double value, double min, double max)
{
return value < min ? min : value > max ? max : value;
}
///
/// Clamps the specified value.
///
/// The value.
/// The min.
/// The max.
/// The result of clamping a value between min and max
public static int Clamp(int value, int min, int max)
{
return value < min ? min : value > max ? max : value;
}
///
/// Clamps the specified value.
///
/// The value.
/// The min.
/// The max.
/// The result of clamping a value between min and max
public static uint Clamp(uint value, uint min, uint max)
{
return value < min ? min : value > max ? max : value;
}
///
/// Interpolates between two values using a linear function by a given amount.
///
/// See http://www.encyclopediaofmath.org/index.php/Linear_interpolation and http://fgiesen.wordpress.com/2012/08/15/linear-interpolation-past-present-and-future/
/// Value to interpolate from.
/// Value to interpolate to.
/// Interpolation amount.
/// The result of linear interpolation of values based on the amount.
public static double Lerp(double from, double to, double amount)
{
return from + (to - from) * amount;
}
///
/// Interpolates between two values using a linear function by a given amount.
///
///
/// See:
///
///
///
/// /// Value to interpolate from.
/// Value to interpolate to.
/// Interpolation amount.
/// The result of linear interpolation of values based on the amount.
public static float Lerp(float from, float to, float amount)
{
return from + (to - from) * amount;
}
///
/// Interpolates between two values using a linear function by a given amount.
///
///
/// See:
///
///
///
/// /// Value to interpolate from.
/// Value to interpolate to.
/// Interpolation amount.
/// The result of linear interpolation of values based on the amount.
public static int Lerp(int from, int to, float amount)
{
return (int)(from + (to - from) * amount);
}
///
/// Interpolates between two values using a linear function by a given amount.
///
///
/// See:
///
///
///
/// /// Value to interpolate from.
/// Value to interpolate to.
/// Interpolation amount.
/// The result of linear interpolation of values based on the amount.
public static byte Lerp(byte from, byte to, float amount)
{
return (byte)(from + (to - from) * amount);
}
///
/// Performs smooth (cubic Hermite) interpolation between 0 and 1.
///
///
/// See:
///
///
/// Value between 0 and 1 indicating interpolation amount.
public static float SmoothStep(float amount)
{
return amount <= 0 ? 0 : amount >= 1 ? 1 : amount * amount * (3 - 2 * amount);
}
///
/// Performs smooth (cubic Hermite) interpolation between 0 and 1.
///
///
/// See:
///
///
/// Value between 0 and 1 indicating interpolation amount.
public static double SmoothStep(double amount)
{
return amount <= 0 ? 0 : amount >= 1 ? 1 : amount * amount * (3 - 2 * amount);
}
///
/// Performs a smooth(er) interpolation between 0 and 1 with 1st and 2nd order derivatives of zero at endpoints.
///
///
/// See:
///
///
/// Value between 0 and 1 indicating interpolation amount.
public static float SmootherStep(float amount)
{
return amount <= 0 ? 0 : amount >= 1 ? 1 : amount * amount * amount * (amount * (amount * 6 - 15) + 10);
}
///
/// Performs a smooth(er) interpolation between 0 and 1 with 1st and 2nd order derivatives of zero at endpoints.
///
///
/// See:
///
///
/// Value between 0 and 1 indicating interpolation amount.
public static double SmootherStep(double amount)
{
return amount <= 0 ? 0 : amount >= 1 ? 1 : amount * amount * amount * (amount * (amount * 6 - 15) + 10);
}
///
/// Calculates the modulo of the specified value.
///
/// The value.
/// The modulo.
/// The result of the modulo applied to value
public static float Mod(float value, float modulo)
{
if (modulo == 0.0f)
return value;
return value % modulo;
}
///
/// Calculates the modulo 2*PI of the specified value.
///
/// The value.
/// The result of the modulo applied to value
public static float Mod2PI(float value)
{
return Mod(value, TwoPi);
}
///
/// Wraps the specified value into a range [min, max]
///
/// The value to wrap.
/// The min.
/// The max.
/// Result of the wrapping.
/// Is thrown when is greater than .
public static int Wrap(int value, int min, int max)
{
if (min > max)
throw new ArgumentException(string.Format("min {0} should be less than or equal to max {1}", min, max), nameof(min));
// Code from http://stackoverflow.com/a/707426/1356325
int rangeSize = max - min + 1;
if (value < min)
value += rangeSize * ((min - value) / rangeSize + 1);
return min + (value - min) % rangeSize;
}
///
/// Wraps the specified value into a range [min, max]
///
/// The value.
/// The min.
/// The max.
/// Result of the wrapping.
/// Is thrown when is greater than .
public static float Wrap(float value, float min, float max)
{
if (NearEqual(min, max))
return min;
double mind = min;
double maxd = max;
double valued = value;
if (mind > maxd)
throw new ArgumentException(string.Format("min {0} should be less than or equal to max {1}", min, max), nameof(min));
double rangeSize = maxd - mind;
return (float)(mind + (valued - mind) - rangeSize * Math.Floor((valued - mind) / rangeSize));
}
///
/// Gauss function.
///
///
/// Curve amplitude.
/// Position X.
/// Position Y
/// Center X.
/// Center Y.
/// Curve sigma X.
/// Curve sigma Y.
/// The result of Gaussian function.
public static float Gauss(float amplitude, float x, float y, float centerX, float centerY, float sigmaX, float sigmaY)
{
return (float)Gauss((double)amplitude, x, y, centerX, centerY, sigmaX, sigmaY);
}
///
/// Gauss function.
///
///
/// Curve amplitude.
/// Position X.
/// Position Y
/// Center X.
/// Center Y.
/// Curve sigma X.
/// Curve sigma Y.
/// The result of Gaussian function.
public static double Gauss(double amplitude, double x, double y, double centerX, double centerY, double sigmaX, double sigmaY)
{
double cx = x - centerX;
double cy = y - centerY;
double componentX = cx * cx / (2 * sigmaX * sigmaX);
double componentY = cy * cy / (2 * sigmaY * sigmaY);
return amplitude * Math.Exp(-(componentX + componentY));
}
///
/// Converts the input alpha value from a linear 0-1 value into the output alpha described by blend mode.
///
/// The alpha (normalized to 0-1).
/// The mode.
/// The output alpha (normalized to 0-1).
public static float InterpolateAlphaBlend(float alpha, AlphaBlendMode mode)
{
switch (mode)
{
case AlphaBlendMode.Sinusoidal:
alpha = (Sin(alpha * Pi - PiOverTwo) + 1.0f) / 2.0f;
break;
case AlphaBlendMode.Cubic:
alpha = CubicInterp(0.0f, 0.0f, 1.0f, 0.0f, alpha);
break;
case AlphaBlendMode.QuadraticInOut:
alpha = InterpEaseInOut(0.0f, 1.0f, alpha, 2);
break;
case AlphaBlendMode.CubicInOut:
alpha = InterpEaseInOut(0.0f, 1.0f, alpha, 3);
break;
case AlphaBlendMode.HermiteCubic:
alpha = SmoothStep(0.0f, 1.0f, alpha);
break;
case AlphaBlendMode.QuarticInOut:
alpha = InterpEaseInOut(0.0f, 1.0f, alpha, 4);
break;
case AlphaBlendMode.QuinticInOut:
alpha = InterpEaseInOut(0.0f, 1.0f, alpha, 5);
break;
case AlphaBlendMode.CircularIn:
alpha = InterpCircularIn(0.0f, 1.0f, alpha);
break;
case AlphaBlendMode.CircularOut:
alpha = InterpCircularOut(0.0f, 1.0f, alpha);
break;
case AlphaBlendMode.CircularInOut:
alpha = InterpCircularInOut(0.0f, 1.0f, alpha);
break;
case AlphaBlendMode.ExpIn:
alpha = InterpExpoIn(0.0f, 1.0f, alpha);
break;
case AlphaBlendMode.ExpOut:
alpha = InterpExpoOut(0.0f, 1.0f, alpha);
break;
case AlphaBlendMode.ExpInOut:
alpha = InterpExpoInOut(0.0f, 1.0f, alpha);
break;
}
return Saturate(alpha);
}
}
}