Files
FlaxEngine/Source/Engine/Core/Math/Int3.h
Jean-Baptiste Perrier e9c5ffa736 Add Int3 Min/Max.
2021-04-08 18:54:55 +02:00

412 lines
8.9 KiB
C++

// Copyright (c) 2012-2021 Wojciech Figat. All rights reserved.
#pragma once
#include "Math.h"
#include "Engine/Core/Formatting.h"
#include "Engine/Core/Templates.h"
/// <summary>
/// Three-components vector (32 bit integer type).
/// </summary>
API_STRUCT() struct FLAXENGINE_API Int3
{
DECLARE_SCRIPTING_TYPE_MINIMAL(Int3);
public:
union
{
struct
{
/// <summary>
/// The X component.
/// </summary>
API_FIELD() int32 X;
/// <summary>
/// The Y component.
/// </summary>
API_FIELD() int32 Y;
/// <summary>
/// The Z component.
/// </summary>
API_FIELD() int32 Z;
};
// Raw values
int32 Raw[3];
};
public:
// Vector with all components equal 0
static const Int3 Zero;
// Vector with all components equal 1
static const Int3 One;
// A minimum Int3
static const Int3 Minimum;
// A maximum Int3
static const Int3 Maximum;
public:
/// <summary>
/// Empty constructor.
/// </summary>
Int3()
{
}
// Init
// @param xy Value to assign to the all components
Int3(int32 xyz)
: X(xyz)
, Y(xyz)
, Z(xyz)
{
}
// Init
// @param x X component value
// @param y Y component value
// @param z Z component value
Int3(int32 x, int32 y, int32 z)
: X(x)
, Y(y)
, Z(z)
{
}
// Init
// @param v Int2 to use X and Y components
// @param z Z component value
Int3(const Int2& xy, int32 z);
// Init
// @param v Int4 to use X and Y components
Int3(const Int4& xyzw);
// Init
// @param v Vector2 to use X and Y components
// @param z Z component value
explicit Int3(const Vector2& xy, int32 z);
// Init
// @param v Vector3 to use X, Y and Z components
explicit Int3(const Vector3& xyz);
// Init
// @param v Vector4 to use X and Y components
explicit Int3(const Vector4& xyzw);
public:
String ToString() const;
public:
// Arithmetic operators with Int2
Int3 operator+(const Int3& b) const
{
return Add(*this, b);
}
Int3 operator-(const Int3& b) const
{
return Subtract(*this, b);
}
Int3 operator*(const Int3& b) const
{
return Multiply(*this, b);
}
Int3 operator/(const Int3& b) const
{
return Divide(*this, b);
}
Int3 operator-() const
{
return Int3(-X, -Y, -Z);
}
// op= operators with Int2
Int3& operator+=(const Int3& b)
{
*this = Add(*this, b);
return *this;
}
Int3& operator-=(const Int3& b)
{
*this = Subtract(*this, b);
return *this;
}
Int3& operator*=(const Int3& b)
{
*this = Multiply(*this, b);
return *this;
}
Int3& operator/=(const Int3& b)
{
*this = Divide(*this, b);
return *this;
}
// Arithmetic operators with int32
Int3 operator+(int32 b) const
{
return Add(*this, b);
}
Int3 operator-(int32 b) const
{
return Subtract(*this, b);
}
Int3 operator*(int32 b) const
{
return Multiply(*this, b);
}
Int3 operator/(int32 b) const
{
return Divide(*this, b);
}
// op= operators with int32
Int3& operator+=(int32 b)
{
*this = Add(*this, b);
return *this;
}
Int3& operator-=(int32 b)
{
*this = Subtract(*this, b);
return *this;
}
Int3& operator*=(int32 b)
{
*this = Multiply(*this, b);
return *this;
}
Int3& operator/=(int32 b)
{
*this = Divide(*this, b);
return *this;
}
// Comparison operators
bool operator==(const Int3& b) const
{
return X == b.X && Y == b.Y;
}
bool operator!=(const Int3& b) const
{
return X != b.X || Y != b.Y;
}
bool operator>(const Int3& b) const
{
return X > b.X && Y > b.Y;
}
bool operator>=(const Int3& b) const
{
return X >= b.X && Y >= b.Y;
}
bool operator<(const Int3& b) const
{
return X < b.X && Y < b.Y;
}
bool operator<=(const Int3& b) const
{
return X <= b.X && Y <= b.Y;
}
public:
static void Add(const Int3& a, const Int3& b, Int3& result)
{
result.X = a.X + b.X;
result.Y = a.Y + b.Y;
result.Z = a.Z + b.Z;
}
static Int3 Add(const Int3& a, const Int3& b)
{
Int3 result;
Add(a, b, result);
return result;
}
static void Subtract(const Int3& a, const Int3& b, Int3& result)
{
result.X = a.X - b.X;
result.Y = a.Y - b.Y;
result.Z = a.Z - b.Z;
}
static Int3 Subtract(const Int3& a, const Int3& b)
{
Int3 result;
Subtract(a, b, result);
return result;
}
static Int3 Multiply(const Int3& a, const Int3& b)
{
return Int3(a.X * b.X, a.Y * b.Y, a.Z * b.Z);
}
static Int3 Multiply(const Int3& a, int32 b)
{
return Int3(a.X * b, a.Y * b, a.Z * b);
}
static Int3 Divide(const Int3& a, const Int3& b)
{
return Int3(a.X / b.X, a.Y / b.Y, a.Z / b.Z);
}
static Int3 Divide(const Int3& a, int32 b)
{
return Int3(a.X / b, a.Y / b, a.Z / b);
}
public:
/// <summary>
/// Gets a value indicting whether this vector is zero.
/// </summary>
/// <returns> True if the vector is zero, otherwise false.</returns>
bool IsZero() const
{
return X == 0 && Y == 0 && Z == 0;
}
/// <summary>
/// Gets a value indicting whether any vector component is zero.
/// </summary>
/// <returns> True if a component is zero, otherwise false.</returns>
bool IsAnyZero() const
{
return X == 0 || Y == 0 || Z == 0;
}
/// <summary>
/// Gets a value indicting whether this vector is one.
/// </summary>
/// <returns> True if the vector is one, otherwise false.</returns>
bool IsOne() const
{
return X == 1 && Y == 1 && Z == 1;
}
/// <summary>
/// Calculates a vector with values being opposite to values of that vector
/// </summary>
/// <returns>Negative vector</returns>
Int3 GetNegative() const
{
return Int3(-X, -Y, -Z);
}
/// <summary>
/// Returns average arithmetic of all the components
/// </summary>
/// <returns>Average arithmetic of all the components</returns>
float AverageArithmetic() const
{
return (X + Y + Z) / 3.0f;
}
/// <summary>
/// Gets sum of all vector components values
/// </summary>
/// <returns>Sum of X, Y, Z and W</returns>
int32 SumValues() const
{
return X + Y + Z;
}
/// <summary>
/// Returns minimum value of all the components
/// </summary>
/// <returns>Minimum value</returns>
int32 MinValue() const
{
return Math::Min(X, Y, Z);
}
/// <summary>
/// Returns maximum value of all the components
/// </summary>
/// <returns>Maximum value</returns>
int32 MaxValue() const
{
return Math::Max(X, Y, Z);
}
// Returns a vector containing the largest components of the specified vectors
// @param a The first source vector
// @param b The second source vector
static Int3 Max(const Int3& a, const Int3& b)
{
return Int3(a.X > b.X ? a.X : b.X, a.Y > b.Y ? a.Y : b.Y, a.Z > b.Z ? a.Z : b.Z);
}
// Returns a vector containing the smallest components of the specified vectors
// @param a The first source vector
// @param b The second source vector
static Int3 Min(const Int3& a, const Int3& b)
{
return Int3(a.X < b.X ? a.X : b.X, a.Y < b.Y ? a.Y : b.Y, a.Z < b.Z ? a.Z : b.Z);
}
// Returns a vector containing the largest components of the specified vectors
// @param a The first source vector
// @param b The second source vector
// @param result When the method completes, contains an new vector composed of the largest components of the source vectors
static void Max(const Int3& a, const Int3& b, Int3& result)
{
result = Int3(a.X > b.X ? a.X : b.X, a.Y > b.Y ? a.Y : b.Y, a.Z > b.Z ? a.Z : b.Z);
}
// Returns a vector containing the smallest components of the specified vectors
// @param a The first source vector
// @param b The second source vector
// @param result When the method completes, contains an new vector composed of the smallest components of the source vectors
static void Min(const Int3& a, const Int3& b, Int3 result)
{
result = Int3(a.X < b.X ? a.X : b.X, a.Y < b.Y ? a.Y : b.Y, a.Z < b.Z ? a.Z : b.Z);
}
};
template<>
struct TIsPODType<Int3>
{
enum { Value = true };
};
DEFINE_DEFAULT_FORMATTING(Int3, "X:{0} Y:{1} Z:{2}", v.X, v.Y, v.Z);