Files
FlaxEngine/Source/Engine/Animations/Graph/AnimGroup.Animation.cpp

2228 lines
84 KiB
C++

// Copyright (c) 2012-2023 Wojciech Figat. All rights reserved.
#include "AnimGraph.h"
#include "Engine/Core/Types/VariantValueCast.h"
#include "Engine/Content/Assets/Animation.h"
#include "Engine/Content/Assets/SkeletonMask.h"
#include "Engine/Content/Assets/AnimationGraphFunction.h"
#include "Engine/Animations/AlphaBlend.h"
#include "Engine/Animations/AnimEvent.h"
#include "Engine/Animations/InverseKinematics.h"
#include "Engine/Level/Actors/AnimatedModel.h"
namespace
{
FORCE_INLINE void BlendAdditiveWeightedRotation(Quaternion& base, Quaternion& additive, float weight)
{
// Pick a shortest path between rotation to fix blending artifacts
additive *= weight;
if (Quaternion::Dot(base, additive) < 0)
additive *= -1;
base += additive;
}
FORCE_INLINE void NormalizeRotations(AnimGraphImpulse* nodes, RootMotionMode rootMotionMode)
{
for (int32 i = 0; i < nodes->Nodes.Count(); i++)
{
nodes->Nodes[i].Orientation.Normalize();
}
if (rootMotionMode != RootMotionMode::NoExtraction)
{
nodes->RootMotion.Orientation.Normalize();
}
}
}
void RetargetSkeletonNode(const SkeletonData& sourceSkeleton, const SkeletonData& targetSkeleton, const SkinnedModel::SkeletonMapping& mapping, Transform& node, int32 i)
{
const int32 nodeToNode = mapping.NodesMapping[i];
if (nodeToNode == -1)
return;
// Map source skeleton node to the target skeleton (use ref pose difference)
const auto& sourceNode = sourceSkeleton.Nodes[nodeToNode];
const auto& targetNode = targetSkeleton.Nodes[i];
Transform value = node;
const Transform sourceToTarget = targetNode.LocalTransform - sourceNode.LocalTransform;
value.Translation += sourceToTarget.Translation;
value.Scale *= sourceToTarget.Scale;
value.Orientation = sourceToTarget.Orientation * value.Orientation; // TODO: find out why this doesn't match referenced animation when played on that skeleton originally
value.Orientation.Normalize();
node = value;
}
int32 AnimGraphExecutor::GetRootNodeIndex(Animation* anim)
{
// TODO: cache the root node index (use dictionary with Animation* -> int32 for fast lookups)
int32 rootNodeIndex = 0;
if (anim->Data.RootNodeName.HasChars())
{
auto& skeleton = _graph.BaseModel->Skeleton;
for (int32 i = 0; i < skeleton.Nodes.Count(); i++)
{
if (skeleton.Nodes[i].Name == anim->Data.RootNodeName)
{
rootNodeIndex = i;
break;
}
}
}
return rootNodeIndex;
}
void AnimGraphExecutor::ProcessAnimEvents(AnimGraphNode* node, bool loop, float length, float animPos, float animPrevPos, Animation* anim, float speed)
{
if (anim->Events.Count() == 0)
return;
ANIM_GRAPH_PROFILE_EVENT("Events");
auto& context = Context.Get();
float eventTimeMin = animPrevPos;
float eventTimeMax = animPos;
if (loop && context.DeltaTime * speed < 0)
{
// Check if animation looped (for anim events shooting during backwards playback)
//const float posNotLooped = startTimePos + oldTimePos;
//if (posNotLooped < 0.0f || posNotLooped > length)
//const int32 animPosCycle = Math::CeilToInt(animPos / anim->GetDuration());
//const int32 animPrevPosCycle = Math::CeilToInt(animPrevPos / anim->GetDuration());
//if (animPosCycle != animPrevPosCycle)
{
Swap(eventTimeMin, eventTimeMax);
}
}
const float eventTime = animPos / static_cast<float>(anim->Data.FramesPerSecond);
const float eventDeltaTime = (animPos - animPrevPos) / static_cast<float>(anim->Data.FramesPerSecond);
for (const auto& track : anim->Events)
{
for (const auto& k : track.Second.GetKeyframes())
{
if (!k.Value.Instance)
continue;
const float duration = k.Value.Duration > 1 ? k.Value.Duration : 0.0f;
if (k.Time <= eventTimeMax && eventTimeMin <= k.Time + duration)
{
int32 stateIndex = -1;
if (duration > 1)
{
// Begin for continuous event
for (stateIndex = 0; stateIndex < context.Data->Events.Count(); stateIndex++)
{
const auto& e = context.Data->Events[stateIndex];
if (e.Instance == k.Value.Instance && e.Node == node)
break;
}
if (stateIndex == context.Data->Events.Count())
{
auto& e = context.Data->Events.AddOne();
e.Instance = k.Value.Instance;
e.Anim = anim;
e.Node = node;
ASSERT(k.Value.Instance->Is<AnimContinuousEvent>());
((AnimContinuousEvent*)k.Value.Instance)->OnBegin((AnimatedModel*)context.Data->Object, anim, eventTime, eventDeltaTime);
}
}
// Event
k.Value.Instance->OnEvent((AnimatedModel*)context.Data->Object, anim, eventTime, eventDeltaTime);
if (stateIndex != -1)
context.Data->Events[stateIndex].Hit = true;
}
else if (duration > 1)
{
// End for continuous event
for (int32 i = 0; i < context.Data->Events.Count(); i++)
{
const auto& e = context.Data->Events[i];
if (e.Instance == k.Value.Instance && e.Node == node)
{
((AnimContinuousEvent*)k.Value.Instance)->OnEnd((AnimatedModel*)context.Data->Object, anim, eventTime, eventDeltaTime);
context.Data->Events.RemoveAt(i);
break;
}
}
}
}
}
}
float GetAnimPos(float& timePos, float startTimePos, bool loop, float length)
{
// Apply animation offset and looping to calculate the animation sampling position within [0;length]
float result = startTimePos + timePos;
if (result < 0.0f)
{
if (loop)
{
// Animation looped (revered playback)
result = length - result;
}
else
{
// Animation ended (revered playback)
result = 0;
}
timePos = result;
}
else if (result > length)
{
if (loop)
{
// Animation looped
result = Math::Mod(result, length);
// Remove start time offset to properly loop from animation start during the next frame
timePos = result - startTimePos;
}
else
{
// Animation ended
timePos = result = length;
}
}
return result;
}
float GetAnimSamplePos(float length, Animation* anim, float pos, float speed)
{
// Convert into animation local time (track length may be bigger so fill the gaps with animation clip and include playback speed)
// Also, scale the animation to fit the total animation node length without cut in a middle
const auto animLength = anim->GetLength();
const int32 cyclesCount = Math::FloorToInt(length / animLength);
const float cycleLength = animLength * (float)cyclesCount;
const float adjustRateScale = length / cycleLength;
auto animPos = pos * speed * adjustRateScale;
while (animPos > animLength)
{
animPos -= animLength;
}
if (animPos < 0)
animPos = animLength + animPos;
animPos *= static_cast<float>(anim->Data.FramesPerSecond);
return animPos;
}
FORCE_INLINE void GetAnimSamplePos(bool loop, float length, float startTimePos, float prevTimePos, float& newTimePos, float& pos, float& prevPos)
{
// Calculate actual time position within the animation node (defined by length and loop mode)
pos = GetAnimPos(newTimePos, startTimePos, loop, length);
prevPos = GetAnimPos(prevTimePos, startTimePos, loop, length);
}
void AnimGraphExecutor::ProcessAnimation(AnimGraphImpulse* nodes, AnimGraphNode* node, bool loop, float length, float pos, float prevPos, Animation* anim, float speed, float weight, ProcessAnimationMode mode)
{
PROFILE_CPU_ASSET(anim);
// Get animation position (animation track position for channels sampling)
const float animPos = GetAnimSamplePos(length, anim, pos, speed);
const float animPrevPos = GetAnimSamplePos(length, anim, prevPos, speed);
// Evaluate nested animations
bool hasNested = false;
if (anim->NestedAnims.Count() != 0)
{
for (auto& e : anim->NestedAnims)
{
const auto& nestedAnim = e.Second;
float nestedAnimPos = animPos - nestedAnim.Time;
if (nestedAnimPos >= 0.0f &&
nestedAnimPos < nestedAnim.Duration &&
nestedAnim.Enabled &&
nestedAnim.Anim &&
nestedAnim.Anim->IsLoaded())
{
// Get nested animation time position
float nestedAnimPrevPos = animPrevPos - nestedAnim.Time;
const float nestedAnimLength = nestedAnim.Anim->GetLength();
const float nestedAnimSpeed = nestedAnim.Speed * speed;
const float frameRateMatchScale = nestedAnimSpeed / (float)anim->Data.FramesPerSecond;
nestedAnimPos = nestedAnimPos * frameRateMatchScale;
nestedAnimPrevPos = nestedAnimPrevPos * frameRateMatchScale;
GetAnimSamplePos(nestedAnim.Loop, nestedAnimLength, nestedAnim.StartTime, nestedAnimPrevPos, nestedAnimPos, nestedAnimPos, nestedAnimPrevPos);
ProcessAnimation(nodes, node, true, nestedAnimLength, nestedAnimPos, nestedAnimPrevPos, nestedAnim.Anim, 1.0f, weight, mode);
hasNested = true;
}
}
}
// Get skeleton nodes mapping descriptor
const SkinnedModel::SkeletonMapping mapping = _graph.BaseModel->GetSkeletonMapping(anim);
if (mapping.NodesMapping.IsInvalid())
return;
// Evaluate nodes animations
const bool weighted = weight < 1.0f;
const bool retarget = mapping.SourceSkeleton && mapping.SourceSkeleton != mapping.TargetSkeleton;
const auto emptyNodes = GetEmptyNodes();
SkinnedModel::SkeletonMapping sourceMapping;
if (retarget)
sourceMapping = _graph.BaseModel->GetSkeletonMapping(mapping.SourceSkeleton);
for (int32 i = 0; i < nodes->Nodes.Count(); i++)
{
const int32 nodeToChannel = mapping.NodesMapping[i];
Transform& dstNode = nodes->Nodes[i];
Transform srcNode = emptyNodes->Nodes[i];
if (nodeToChannel != -1)
{
// Calculate the animated node transformation
anim->Data.Channels[nodeToChannel].Evaluate(animPos, &srcNode, false);
// Optionally retarget animation into the skeleton used by the Anim Graph
if (retarget)
{
RetargetSkeletonNode(mapping.SourceSkeleton->Skeleton, mapping.TargetSkeleton->Skeleton, sourceMapping, srcNode, i);
}
}
// Blend node
if (mode == ProcessAnimationMode::BlendAdditive)
{
dstNode.Translation += srcNode.Translation * weight;
dstNode.Scale += srcNode.Scale * weight;
BlendAdditiveWeightedRotation(dstNode.Orientation, srcNode.Orientation, weight);
}
else if (mode == ProcessAnimationMode::Add)
{
dstNode.Translation += srcNode.Translation * weight;
dstNode.Scale += srcNode.Scale * weight;
dstNode.Orientation += srcNode.Orientation * weight;
}
else if (weighted)
{
dstNode.Translation = srcNode.Translation * weight;
dstNode.Scale = srcNode.Scale * weight;
dstNode.Orientation = srcNode.Orientation * weight;
}
else if (!hasNested)
{
dstNode = srcNode;
}
}
// Handle root motion
if (_rootMotionMode != RootMotionMode::NoExtraction && anim->Data.EnableRootMotion)
{
// Calculate the root motion node transformation
const int32 rootNodeIndex = GetRootNodeIndex(anim);
const Transform& refPose = emptyNodes->Nodes[rootNodeIndex];
Transform& rootNode = nodes->Nodes[rootNodeIndex];
Transform& dstNode = nodes->RootMotion;
Transform srcNode = Transform::Identity;
const int32 nodeToChannel = mapping.NodesMapping[rootNodeIndex];
if (_rootMotionMode == RootMotionMode::Enable && nodeToChannel != -1)
{
// Get the root bone transformation
Transform rootBefore = refPose;
const NodeAnimationData& rootChannel = anim->Data.Channels[nodeToChannel];
rootChannel.Evaluate(animPrevPos, &rootBefore, false);
// Check if animation looped
if (animPos < animPrevPos)
{
const float endPos = anim->GetLength() * static_cast<float>(anim->Data.FramesPerSecond);
const float timeToEnd = endPos - animPrevPos;
Transform rootBegin = refPose;
rootChannel.Evaluate(0, &rootBegin, false);
Transform rootEnd = refPose;
rootChannel.Evaluate(endPos, &rootEnd, false);
//rootChannel.Evaluate(animPos - timeToEnd, &rootNow, true);
// Complex motion calculation to preserve the looped movement
// (end - before + now - begin)
// It sums the motion since the last update to anim end and since the start to now
srcNode.Translation = rootEnd.Translation - rootBefore.Translation + rootNode.Translation - rootBegin.Translation;
srcNode.Orientation = rootEnd.Orientation * rootBefore.Orientation.Conjugated() * (rootNode.Orientation * rootBegin.Orientation.Conjugated());
//srcNode.Orientation = Quaternion::Identity;
}
else
{
// Simple motion delta
// (now - before)
srcNode.Translation = rootNode.Translation - rootBefore.Translation;
srcNode.Orientation = rootBefore.Orientation.Conjugated() * rootNode.Orientation;
}
// Convert root motion from local-space to the actor-space (eg. if root node is not actually a root and its parents have rotation/scale)
auto& skeleton = _graph.BaseModel->Skeleton;
int32 parentIndex = skeleton.Nodes[rootNodeIndex].ParentIndex;
while (parentIndex != -1)
{
const Transform& parentNode = nodes->Nodes[parentIndex];
srcNode.Translation = parentNode.LocalToWorld(srcNode.Translation);
parentIndex = skeleton.Nodes[parentIndex].ParentIndex;
}
}
// Remove root node motion after extraction
rootNode = refPose;
// Blend root motion
if (mode == ProcessAnimationMode::BlendAdditive)
{
dstNode.Translation += srcNode.Translation * weight;
BlendAdditiveWeightedRotation(dstNode.Orientation, srcNode.Orientation, weight);
}
else if (mode == ProcessAnimationMode::Add)
{
dstNode.Translation += srcNode.Translation * weight;
dstNode.Orientation += srcNode.Orientation * weight;
}
else if (weighted)
{
dstNode.Translation = srcNode.Translation * weight;
dstNode.Orientation = srcNode.Orientation * weight;
}
else
{
dstNode = srcNode;
}
}
// Collect events
if (weight > 0.5f)
{
ProcessAnimEvents(node, loop, length, animPos, animPrevPos, anim, speed);
}
}
Variant AnimGraphExecutor::SampleAnimation(AnimGraphNode* node, bool loop, float length, float startTimePos, float prevTimePos, float& newTimePos, Animation* anim, float speed)
{
if (anim == nullptr || !anim->IsLoaded())
return Value::Null;
float pos, prevPos;
GetAnimSamplePos(loop, length, startTimePos, prevTimePos, newTimePos, pos, prevPos);
const auto nodes = node->GetNodes(this);
InitNodes(nodes);
nodes->Position = pos;
nodes->Length = length;
ProcessAnimation(nodes, node, loop, length, pos, prevPos, anim, speed);
NormalizeRotations(nodes, _rootMotionMode);
return nodes;
}
Variant AnimGraphExecutor::SampleAnimationsWithBlend(AnimGraphNode* node, bool loop, float length, float startTimePos, float prevTimePos, float& newTimePos, Animation* animA, Animation* animB, float speedA, float speedB, float alpha)
{
// Skip if any animation is not ready to use
if (animA == nullptr || !animA->IsLoaded() ||
animB == nullptr || !animB->IsLoaded())
return Value::Null;
float pos, prevPos;
GetAnimSamplePos(loop, length, startTimePos, prevTimePos, newTimePos, pos, prevPos);
// Sample the animations with blending
const auto nodes = node->GetNodes(this);
InitNodes(nodes);
nodes->Position = pos;
nodes->Length = length;
ProcessAnimation(nodes, node, loop, length, pos, prevPos, animA, speedA, 1.0f - alpha, ProcessAnimationMode::Override);
ProcessAnimation(nodes, node, loop, length, pos, prevPos, animB, speedB, alpha, ProcessAnimationMode::BlendAdditive);
NormalizeRotations(nodes, _rootMotionMode);
return nodes;
}
Variant AnimGraphExecutor::SampleAnimationsWithBlend(AnimGraphNode* node, bool loop, float length, float startTimePos, float prevTimePos, float& newTimePos, Animation* animA, Animation* animB, Animation* animC, float speedA, float speedB, float speedC, float alphaA, float alphaB, float alphaC)
{
// Skip if any animation is not ready to use
if (animA == nullptr || !animA->IsLoaded() ||
animB == nullptr || !animB->IsLoaded() ||
animC == nullptr || !animC->IsLoaded())
return Value::Null;
float pos, prevPos;
GetAnimSamplePos(loop, length, startTimePos, prevTimePos, newTimePos, pos, prevPos);
// Sample the animations with blending
const auto nodes = node->GetNodes(this);
InitNodes(nodes);
nodes->Position = pos;
nodes->Length = length;
ASSERT(Math::Abs(alphaA + alphaB + alphaC - 1.0f) <= ANIM_GRAPH_BLEND_THRESHOLD); // Assumes weights are normalized
ProcessAnimation(nodes, node, loop, length, pos, prevPos, animA, speedA, alphaA, ProcessAnimationMode::Override);
ProcessAnimation(nodes, node, loop, length, pos, prevPos, animB, speedB, alphaB, ProcessAnimationMode::BlendAdditive);
ProcessAnimation(nodes, node, loop, length, pos, prevPos, animC, speedC, alphaC, ProcessAnimationMode::BlendAdditive);
NormalizeRotations(nodes, _rootMotionMode);
return nodes;
}
Variant AnimGraphExecutor::Blend(AnimGraphNode* node, const Value& poseA, const Value& poseB, float alpha, AlphaBlendMode alphaMode)
{
ANIM_GRAPH_PROFILE_EVENT("Blend Pose");
alpha = AlphaBlend::Process(alpha, alphaMode);
const auto nodes = node->GetNodes(this);
auto nodesA = static_cast<AnimGraphImpulse*>(poseA.AsPointer);
auto nodesB = static_cast<AnimGraphImpulse*>(poseB.AsPointer);
if (!ANIM_GRAPH_IS_VALID_PTR(poseA))
nodesA = GetEmptyNodes();
if (!ANIM_GRAPH_IS_VALID_PTR(poseB))
nodesB = GetEmptyNodes();
for (int32 i = 0; i < nodes->Nodes.Count(); i++)
{
Transform::Lerp(nodesA->Nodes[i], nodesB->Nodes[i], alpha, nodes->Nodes[i]);
}
Transform::Lerp(nodesA->RootMotion, nodesB->RootMotion, alpha, nodes->RootMotion);
nodes->Position = Math::Lerp(nodesA->Position, nodesB->Position, alpha);
nodes->Length = Math::Lerp(nodesA->Length, nodesB->Length, alpha);
return nodes;
}
Variant AnimGraphExecutor::SampleState(AnimGraphNode* state)
{
// Prepare
auto& data = state->Data.State;
if (data.Graph == nullptr || data.Graph->GetRootNode() == nullptr)
{
// Invalid state graph
return Value::Null;
}
ANIM_GRAPH_PROFILE_EVENT("Evaluate State");
// Evaluate state
auto rootNode = data.Graph->GetRootNode();
auto result = eatBox((Node*)rootNode, &rootNode->Boxes[0]);
return result;
}
void AnimGraphExecutor::UpdateStateTransitions(AnimGraphContext& context, const AnimGraphNode::StateMachineData& stateMachineData, AnimGraphInstanceData::StateMachineBucket& stateMachineBucket, const AnimGraphNode::StateBaseData& stateData)
{
int32 transitionIndex = 0;
while (transitionIndex < ANIM_GRAPH_MAX_STATE_TRANSITIONS && stateData.Transitions[transitionIndex] != AnimGraphNode::StateData::InvalidTransitionIndex)
{
const uint16 idx = stateData.Transitions[transitionIndex];
ASSERT(idx < stateMachineData.Graph->StateTransitions.Count());
auto& transition = stateMachineData.Graph->StateTransitions[idx];
if (transition.Destination == stateMachineBucket.CurrentState)
{
// Ignore transition to the current state
transitionIndex++;
continue;
}
// Evaluate source state transition data (position, length, etc.)
const Value sourceStatePtr = SampleState(stateMachineBucket.CurrentState);
auto& transitionData = context.TransitionData; // Note: this could support nested transitions but who uses state machine inside transition rule?
if (ANIM_GRAPH_IS_VALID_PTR(sourceStatePtr))
{
// Use source state as data provider
const auto sourceState = (AnimGraphImpulse*)sourceStatePtr.AsPointer;
auto sourceLength = Math::Max(sourceState->Length, 0.0f);
transitionData.Position = Math::Clamp(sourceState->Position, 0.0f, sourceLength);
transitionData.Length = sourceLength;
}
else
{
// Reset
transitionData.Position = 0;
transitionData.Length = ZeroTolerance;
}
const bool useDefaultRule = EnumHasAnyFlags(transition.Flags, AnimGraphStateTransition::FlagTypes::UseDefaultRule);
if (transition.RuleGraph && !useDefaultRule)
{
// Execute transition rule
auto rootNode = transition.RuleGraph->GetRootNode();
ASSERT(rootNode);
if (!(bool)eatBox((Node*)rootNode, &rootNode->Boxes[0]))
{
transitionIndex++;
continue;
}
}
// Check if can trigger the transition
bool canEnter = false;
if (useDefaultRule)
{
// Start transition when the current state animation is about to end (split blend duration evenly into two states)
const auto transitionDurationHalf = transition.BlendDuration * 0.5f + ZeroTolerance;
const auto endPos = transitionData.Length - transitionDurationHalf;
canEnter = transitionData.Position >= endPos;
}
else if (transition.RuleGraph)
canEnter = true;
if (canEnter)
{
// Start transition
stateMachineBucket.ActiveTransition = &transition;
stateMachineBucket.TransitionPosition = 0.0f;
break;
}
// Skip after Solo transition
// TODO: don't load transitions after first enabled Solo transition and remove this check here
if (EnumHasAnyFlags(transition.Flags, AnimGraphStateTransition::FlagTypes::Solo))
break;
transitionIndex++;
}
}
void ComputeMultiBlendLength(float& length, AnimGraphNode* node)
{
ANIM_GRAPH_PROFILE_EVENT("Setup Mutli Blend Length");
// TODO: lock graph or graph asset here? make it thread safe
length = 0.0f;
for (int32 i = 0; i < ARRAY_COUNT(node->Assets); i++)
{
if (node->Assets[i])
{
// TODO: maybe don't update if not all anims are loaded? just skip the node with the bind pose?
if (node->Assets[i]->WaitForLoaded())
{
node->Assets[i] = nullptr;
LOG(Warning, "Failed to load one of the animations.");
}
else
{
const auto anim = node->Assets[i].As<Animation>();
const auto aData = node->Values[4 + i * 2].AsFloat4();
length = Math::Max(length, anim->GetLength() * Math::Abs(aData.W));
}
}
}
}
void AnimGraphExecutor::ProcessGroupParameters(Box* box, Node* node, Value& value)
{
auto& context = Context.Get();
switch (node->TypeID)
{
// Get
case 1:
{
// Get parameter
int32 paramIndex;
const auto param = _graph.GetParameter((Guid)node->Values[0], paramIndex);
if (param)
{
value = context.Data->Parameters[paramIndex].Value;
switch (param->Type.Type)
{
case VariantType::Float2:
switch (box->ID)
{
case 1:
case 2:
value = value.AsFloat2().Raw[box->ID - 1];
break;
}
break;
case VariantType::Float3:
switch (box->ID)
{
case 1:
case 2:
case 3:
value = value.AsFloat3().Raw[box->ID - 1];
break;
}
break;
case VariantType::Float4:
case VariantType::Color:
switch (box->ID)
{
case 1:
case 2:
case 3:
case 4:
value = value.AsFloat4().Raw[box->ID - 1];
break;
}
break;
case VariantType::Double2:
switch (box->ID)
{
case 1:
case 2:
value = value.AsDouble2().Raw[box->ID - 1];
break;
}
break;
case VariantType::Double3:
switch (box->ID)
{
case 1:
case 2:
case 3:
value = value.AsDouble3().Raw[box->ID - 1];
break;
}
break;
case VariantType::Double4:
switch (box->ID)
{
case 1:
case 2:
case 3:
case 4:
value = value.AsDouble4().Raw[box->ID - 1];
break;
}
break;
case VariantType::Matrix:
{
auto& matrix = value.Type.Type == VariantType::Matrix && value.AsBlob.Data ? *(Matrix*)value.AsBlob.Data : Matrix::Identity;
switch (box->ID)
{
case 0:
value = matrix.GetRow1();
break;
case 1:
value = matrix.GetRow2();
break;
case 2:
value = matrix.GetRow3();
break;
case 3:
value = matrix.GetRow4();
break;
}
break;
}
}
}
else
{
// TODO: add warning that no parameter selected
value = Value::Zero;
}
break;
}
default:
break;
}
}
void AnimGraphExecutor::ProcessGroupTools(Box* box, Node* nodeBase, Value& value)
{
auto& context = Context.Get();
auto node = (AnimGraphNode*)nodeBase;
switch (node->TypeID)
{
// Time
case 5:
{
auto& bucket = context.Data->State[node->BucketIndex].Animation;
if (bucket.LastUpdateFrame != context.CurrentFrameIndex)
{
bucket.TimePosition += context.DeltaTime;
bucket.LastUpdateFrame = context.CurrentFrameIndex;
}
value = box->ID == 0 ? bucket.TimePosition : context.DeltaTime;
break;
}
default:
VisjectExecutor::ProcessGroupTools(box, nodeBase, value);
break;
}
}
void AnimGraphExecutor::ProcessGroupAnimation(Box* boxBase, Node* nodeBase, Value& value)
{
auto& context = Context.Get();
if (context.ValueCache.TryGet(boxBase, value))
return;
auto box = (AnimGraphBox*)boxBase;
auto node = (AnimGraphNode*)nodeBase;
switch (node->TypeID)
{
// Animation Output
case 1:
value = tryGetValue(box, Value::Null);
break;
// Animation
case 2:
{
auto anim = node->Assets[0].As<Animation>();
auto& bucket = context.Data->State[node->BucketIndex].Animation;
// Override animation when animation reference box is connected
auto animationAssetBox = node->TryGetBox(8);
if (animationAssetBox && animationAssetBox->HasConnection())
{
anim = TVariantValueCast<Animation*>::Cast(tryGetValue(animationAssetBox, Value::Null));
}
switch (box->ID)
{
// Animation
case 0:
{
ANIM_GRAPH_PROFILE_EVENT("Animation");
const float speed = (float)tryGetValue(node->GetBox(5), node->Values[1]);
const bool loop = (bool)tryGetValue(node->GetBox(6), node->Values[2]);
const float startTimePos = (float)tryGetValue(node->GetBox(7), node->Values[3]);
const float length = anim ? anim->GetLength() : 0.0f;
// Calculate new time position
if (speed < 0.0f && bucket.LastUpdateFrame < context.CurrentFrameIndex - 1)
{
// If speed is negative and it's the first node update then start playing from end
bucket.TimePosition = length;
}
float newTimePos = bucket.TimePosition + context.DeltaTime * speed;
value = SampleAnimation(node, loop, length, startTimePos, bucket.TimePosition, newTimePos, anim, 1.0f);
bucket.TimePosition = newTimePos;
bucket.LastUpdateFrame = context.CurrentFrameIndex;
break;
}
// Normalized Time
case 1:
{
const float startTimePos = (float)tryGetValue(node->GetBox(7), node->Values[3]);
value = startTimePos + bucket.TimePosition;
if (anim && anim->IsLoaded())
value.AsFloat /= anim->GetLength();
break;
}
// Time
case 2:
{
const float startTimePos = (float)tryGetValue(node->GetBox(7), node->Values[3]);
value = startTimePos + bucket.TimePosition;
break;
}
// Length
case 3:
value = anim ? anim->GetLength() : 0.0f;
break;
// Is Playing
case 4:
// If anim was updated during this or a previous frame
value = bucket.LastUpdateFrame >= context.CurrentFrameIndex - 1;
break;
}
break;
}
// Transform Bone (local/model space)
case 3:
case 4:
{
// [Deprecated on 13.05.2020, expires on 13.05.2021]
const auto inputBox = node->GetBox(1);
const auto boneIndex = (int32)node->Values[0];
const auto transformMode = static_cast<BoneTransformMode>((int32)node->Values[1]);
// Get the transformation
Transform transform;
transform.Translation = (Vector3)tryGetValue(node->GetBox(2), Vector3::Zero);
transform.Orientation = (Quaternion)tryGetValue(node->GetBox(3), Quaternion::Identity);
transform.Scale = (Float3)tryGetValue(node->GetBox(4), Float3::One);
// Skip if no change will be performed
auto& skeleton = _graph.BaseModel->Skeleton;
if (boneIndex < 0 || boneIndex >= skeleton.Bones.Count() || transformMode == BoneTransformMode::None || (transformMode == BoneTransformMode::Add && transform.IsIdentity()))
{
// Pass through the input
value = Value::Null;
if (inputBox->HasConnection())
value = eatBox(nodeBase, inputBox->FirstConnection());
context.ValueCache.Add(boxBase, value);
return;
}
const auto nodeIndex = _graph.BaseModel->Skeleton.Bones[boneIndex].NodeIndex;
const auto nodes = node->GetNodes(this);
// Prepare the input nodes
bool hasValidInput = false;
if (inputBox->HasConnection())
{
const auto input = eatBox(nodeBase, inputBox->FirstConnection());
hasValidInput = ANIM_GRAPH_IS_VALID_PTR(input);
if (hasValidInput)
CopyNodes(nodes, input);
}
if (!hasValidInput)
InitNodes(nodes);
// Apply the transformation
if (transformMode == BoneTransformMode::Add)
nodes->Nodes[nodeIndex] = nodes->Nodes[nodeIndex] * transform;
else
nodes->Nodes[nodeIndex] = transform;
value = nodes;
break;
}
// Local To Model
case 5:
{
// [Deprecated on 15.05.2020, expires on 15.05.2021]
value = tryGetValue(node->GetBox(1), Value::Null);
/*const AnimGraphImpulse* src;
AnimGraphImpulse* dst = node->GetNodes(this);
if (ANIM_GRAPH_IS_VALID_PTR(input))
{
src = (AnimGraphImpulse*)input.AsPointer;
}
else
{
src = GetEmptyNodes();
}
const auto srcNodes = src->Nodes.Get();
const auto dstNodes = dst->Nodes.Get();
// Transform every node
const auto& skeleton = BaseModel->Skeleton;
for (int32 i = 0; i < nodes->Nodes.Count(); i++)
{
const int32 parentIndex = skeleton.Nodes[i].ParentIndex;
if (parentIndex != -1)
dstNodes[parentIndex].LocalToWorld(srcNodes[i], dstNodes[i]);
else
dstNodes[i] = srcNodes[i];
}
value = dst;*/
break;
}
// Model To Local
case 6:
{
// [Deprecated on 15.05.2020, expires on 15.05.2021]
value = tryGetValue(node->GetBox(1), Value::Null);
/*// Get input and output
const auto input = tryGetValue(node->GetBox(1), Value::Null);
if (!ANIM_GRAPH_IS_VALID_PTR(input))
{
// Skip
value = Value::Null;
break;
}
const AnimGraphImpulse* src = (AnimGraphImpulse*)input.AsPointer;
if (src->PerNodeTransformationSpace.IsEmpty() && src->TransformationSpace == AnimGraphTransformationSpace::Local)
{
// Input is already in local space (eg. not modified)
value = input;
break;
}
const auto nodes = node->GetNodes(this);
AnimGraphImpulse* dst = nodes;
const auto srcNodes = src->Nodes.Get();
const auto dstNodes = dst->Nodes.Get();
// Inv transform every node
const auto& skeleton = BaseModel->Skeleton;
for (int32 i = nodes->Nodes.Count() - 1; i >= 0; i--)
{
const int32 parentIndex = skeleton.Nodes[i].ParentIndex;
if (parentIndex != -1)
dstNodes[parentIndex].WorldToLocal(srcNodes[i], dstNodes[i]);
else
dstNodes[i] = srcNodes[i];
}
value = dst;*/
break;
}
// Copy Bone
case 7:
{
// [Deprecated on 13.05.2020, expires on 13.05.2021]
// Get input
auto input = tryGetValue(node->GetBox(1), Value::Null);
const auto nodes = node->GetNodes(this);
if (ANIM_GRAPH_IS_VALID_PTR(input))
{
// Use input nodes
CopyNodes(nodes, input);
}
else
{
// Use default nodes
InitNodes(nodes);
input = nodes;
}
// Fetch the settings
const auto srcBoneIndex = (int32)node->Values[0];
const auto dstBoneIndex = (int32)node->Values[1];
const auto copyTranslation = (bool)node->Values[2];
const auto copyRotation = (bool)node->Values[3];
const auto copyScale = (bool)node->Values[4];
// Skip if no change will be performed
const auto& skeleton = _graph.BaseModel->Skeleton;
if (srcBoneIndex < 0 || srcBoneIndex >= skeleton.Bones.Count() ||
dstBoneIndex < 0 || dstBoneIndex >= skeleton.Bones.Count() ||
!(copyTranslation || copyRotation || copyScale))
{
// Pass through the input
value = input;
context.ValueCache.Add(boxBase, value);
return;
}
// Copy bone data
Transform srcTransform = nodes->Nodes[skeleton.Bones[srcBoneIndex].NodeIndex];
Transform dstTransform = nodes->Nodes[skeleton.Bones[dstBoneIndex].NodeIndex];
if (copyTranslation)
dstTransform.Translation = srcTransform.Translation;
if (copyRotation)
dstTransform.Orientation = srcTransform.Orientation;
if (copyScale)
dstTransform.Scale = srcTransform.Scale;
nodes->Nodes[skeleton.Bones[dstBoneIndex].NodeIndex] = dstTransform;
value = nodes;
break;
}
// Get Bone Transform
case 8:
{
// [Deprecated on 13.05.2020, expires on 13.05.2021]
// Get input
const auto boneIndex = (int32)node->Values[0];
const auto& skeleton = _graph.BaseModel->Skeleton;
const auto input = tryGetValue(node->GetBox(0), Value::Null);
if (ANIM_GRAPH_IS_VALID_PTR(input) && boneIndex >= 0 && boneIndex < skeleton.Bones.Count())
value = Variant(((AnimGraphImpulse*)input.AsPointer)->Nodes[skeleton.Bones[boneIndex].NodeIndex]);
else
value = Variant(Transform::Identity);
break;
}
// Blend
case 9:
{
const float alpha = Math::Saturate((float)tryGetValue(node->GetBox(3), node->Values[0]));
// Only A
if (Math::NearEqual(alpha, 0.0f, ANIM_GRAPH_BLEND_THRESHOLD))
{
value = tryGetValue(node->GetBox(1), Value::Null);
}
// Only B
else if (Math::NearEqual(alpha, 1.0f, ANIM_GRAPH_BLEND_THRESHOLD))
{
value = tryGetValue(node->GetBox(2), Value::Null);
}
// Blend A and B
else
{
const auto valueA = tryGetValue(node->GetBox(1), Value::Null);
const auto valueB = tryGetValue(node->GetBox(2), Value::Null);
const auto nodes = node->GetNodes(this);
auto nodesA = static_cast<AnimGraphImpulse*>(valueA.AsPointer);
auto nodesB = static_cast<AnimGraphImpulse*>(valueB.AsPointer);
if (!ANIM_GRAPH_IS_VALID_PTR(valueA))
nodesA = GetEmptyNodes();
if (!ANIM_GRAPH_IS_VALID_PTR(valueB))
nodesB = GetEmptyNodes();
for (int32 i = 0; i < nodes->Nodes.Count(); i++)
{
Transform::Lerp(nodesA->Nodes[i], nodesB->Nodes[i], alpha, nodes->Nodes[i]);
}
Transform::Lerp(nodesA->RootMotion, nodesB->RootMotion, alpha, nodes->RootMotion);
value = nodes;
}
break;
}
// Blend Additive
case 10:
{
const float alpha = Math::Saturate((float)tryGetValue(node->GetBox(3), node->Values[0]));
// Only A
if (Math::NearEqual(alpha, 0.0f, ANIM_GRAPH_BLEND_THRESHOLD))
{
value = tryGetValue(node->GetBox(1), Value::Null);
}
// Blend A and B
else
{
const auto valueA = tryGetValue(node->GetBox(1), Value::Null);
const auto valueB = tryGetValue(node->GetBox(2), Value::Null);
if (!ANIM_GRAPH_IS_VALID_PTR(valueA))
{
value = Value::Null;
}
else if (!ANIM_GRAPH_IS_VALID_PTR(valueB))
{
value = valueA;
}
else
{
const auto nodes = node->GetNodes(this);
const auto nodesA = static_cast<AnimGraphImpulse*>(valueA.AsPointer);
const auto nodesB = static_cast<AnimGraphImpulse*>(valueB.AsPointer);
Transform t, tA, tB;
for (int32 i = 0; i < nodes->Nodes.Count(); i++)
{
tA = nodesA->Nodes[i];
tB = nodesB->Nodes[i];
t.Translation = tA.Translation + tB.Translation;
t.Orientation = tA.Orientation * tB.Orientation;
t.Scale = tA.Scale * tB.Scale;
t.Orientation.Normalize();
Transform::Lerp(tA, t, alpha, nodes->Nodes[i]);
}
Transform::Lerp(nodesA->RootMotion, nodesA->RootMotion + nodesB->RootMotion, alpha, nodes->RootMotion);
value = nodes;
}
}
break;
}
// Blend with Mask
case 11:
{
const float alpha = Math::Saturate((float)tryGetValue(node->GetBox(3), node->Values[0]));
auto mask = node->Assets[0].As<SkeletonMask>();
// Only A or missing/invalid mask
if (Math::NearEqual(alpha, 0.0f, ANIM_GRAPH_BLEND_THRESHOLD) || mask == nullptr || mask->WaitForLoaded())
{
value = tryGetValue(node->GetBox(1), Value::Null);
}
// Blend A and B with mask
else
{
auto valueA = tryGetValue(node->GetBox(1), Value::Null);
auto valueB = tryGetValue(node->GetBox(2), Value::Null);
const auto nodes = node->GetNodes(this);
if (!ANIM_GRAPH_IS_VALID_PTR(valueA))
valueA = GetEmptyNodes();
if (!ANIM_GRAPH_IS_VALID_PTR(valueB))
valueB = GetEmptyNodes();
const auto nodesA = static_cast<AnimGraphImpulse*>(valueA.AsPointer);
const auto nodesB = static_cast<AnimGraphImpulse*>(valueB.AsPointer);
// Blend all nodes masked by the user
Transform tA, tB;
auto& nodesMask = mask->GetNodesMask();
for (int32 nodeIndex = 0; nodeIndex < nodes->Nodes.Count(); nodeIndex++)
{
tA = nodesA->Nodes[nodeIndex];
if (nodesMask[nodeIndex])
{
tB = nodesB->Nodes[nodeIndex];
Transform::Lerp(tA, tB, alpha, nodes->Nodes[nodeIndex]);
}
else
{
nodes->Nodes[nodeIndex] = tA;
}
}
Transform::Lerp(nodesA->RootMotion, nodesB->RootMotion, alpha, nodes->RootMotion);
value = nodes;
}
break;
}
// Multi Blend 1D
case 12:
{
ASSERT(box->ID == 0);
value = Value::Null;
// Note data layout:
// [0]: Float4 Range (minX, maxX, 0, 0)
// [1]: float Speed
// [2]: bool Loop
// [3]: float StartPosition
// Per Blend Sample data layout:
// [0]: Float4 Info (x=posX, y=0, z=0, w=Speed)
// [1]: Guid Animation
// Prepare
auto& bucket = context.Data->State[node->BucketIndex].MultiBlend;
const auto range = node->Values[0].AsFloat4();
const auto speed = (float)tryGetValue(node->GetBox(1), node->Values[1]);
const auto loop = (bool)tryGetValue(node->GetBox(2), node->Values[2]);
const auto startTimePos = (float)tryGetValue(node->GetBox(3), node->Values[3]);
auto& data = node->Data.MultiBlend1D;
// Check if not valid animation binded
if (data.IndicesSorted[0] == ANIM_GRAPH_MULTI_BLEND_MAX_ANIMS)
break;
// Get axis X
float x = (float)tryGetValue(node->GetBox(4), Value::Zero);
x = Math::Clamp(x, range.X, range.Y);
// Check if need to evaluate multi blend length
if (data.Length < 0)
ComputeMultiBlendLength(data.Length, node);
if (data.Length <= ZeroTolerance)
break;
// Calculate new time position
if (speed < 0.0f && bucket.LastUpdateFrame < context.CurrentFrameIndex - 1)
{
// If speed is negative and it's the first node update then start playing from end
bucket.TimePosition = data.Length;
}
float newTimePos = bucket.TimePosition + context.DeltaTime * speed;
ANIM_GRAPH_PROFILE_EVENT("Multi Blend 1D");
// Find 2 animations to blend (line)
for (int32 i = 0; i < ANIM_GRAPH_MULTI_BLEND_MAX_ANIMS - 1; i++)
{
const auto a = data.IndicesSorted[i];
const auto b = data.IndicesSorted[i + 1];
// Get A animation data
const auto aAnim = node->Assets[a].As<Animation>();
auto aData = node->Values[4 + a * 2].AsFloat4();
// Check single A case or the last valid animation
if (x <= aData.X + ANIM_GRAPH_BLEND_THRESHOLD || b == ANIM_GRAPH_MULTI_BLEND_MAX_ANIMS)
{
value = SampleAnimation(node, loop, data.Length, startTimePos, bucket.TimePosition, newTimePos, aAnim, aData.W);
break;
}
// Get B animation data
ASSERT(b != ANIM_GRAPH_MULTI_BLEND_MAX_ANIMS);
const auto bAnim = node->Assets[b].As<Animation>();
auto bData = node->Values[4 + b * 2].AsFloat4();
// Check single B edge case
if (Math::NearEqual(bData.X, x, ANIM_GRAPH_BLEND_THRESHOLD))
{
value = SampleAnimation(node, loop, data.Length, startTimePos, bucket.TimePosition, newTimePos, bAnim, bData.W);
break;
}
// Blend A and B
const float alpha = (x - aData.X) / (bData.X - aData.X);
if (alpha > 1.0f)
continue;
value = SampleAnimationsWithBlend(node, loop, data.Length, startTimePos, bucket.TimePosition, newTimePos, aAnim, bAnim, aData.W, bData.W, alpha);
break;
}
bucket.TimePosition = newTimePos;
bucket.LastUpdateFrame = context.CurrentFrameIndex;
break;
}
// Multi Blend 2D
case 13:
{
ASSERT(box->ID == 0);
value = Value::Null;
// Note data layout:
// [0]: Float4 Range (minX, maxX, minY, maxY)
// [1]: float Speed
// [2]: bool Loop
// [3]: float StartPosition
// Per Blend Sample data layout:
// [0]: Float4 Info (x=posX, y=posY, z=0, w=Speed)
// [1]: Guid Animation
// Prepare
auto& bucket = context.Data->State[node->BucketIndex].MultiBlend;
const auto range = node->Values[0].AsFloat4();
const auto speed = (float)tryGetValue(node->GetBox(1), node->Values[1]);
const auto loop = (bool)tryGetValue(node->GetBox(2), node->Values[2]);
const auto startTimePos = (float)tryGetValue(node->GetBox(3), node->Values[3]);
auto& data = node->Data.MultiBlend2D;
// Check if not valid animation binded
if (data.TrianglesP0[0] == ANIM_GRAPH_MULTI_BLEND_MAX_ANIMS)
break;
// Get axis X
float x = (float)tryGetValue(node->GetBox(4), Value::Zero);
x = Math::Clamp(x, range.X, range.Y);
// Get axis Y
float y = (float)tryGetValue(node->GetBox(5), Value::Zero);
y = Math::Clamp(y, range.Z, range.W);
// Check if need to evaluate multi blend length
if (data.Length < 0)
ComputeMultiBlendLength(data.Length, node);
if (data.Length <= ZeroTolerance)
break;
// Calculate new time position
if (speed < 0.0f && bucket.LastUpdateFrame < context.CurrentFrameIndex - 1)
{
// If speed is negative and it's the first node update then start playing from end
bucket.TimePosition = data.Length;
}
float newTimePos = bucket.TimePosition + context.DeltaTime * speed;
ANIM_GRAPH_PROFILE_EVENT("Multi Blend 2D");
// Find 3 animations to blend (triangle)
Float2 p(x, y);
bool hasBest = false;
Float2 bestPoint;
float bestWeight = 0.0f;
byte bestAnims[2];
for (int32 i = 0; i < ANIM_GRAPH_MULTI_BLEND_2D_MAX_TRIS && data.TrianglesP0[i] != ANIM_GRAPH_MULTI_BLEND_MAX_ANIMS; i++)
{
// Get A animation data
const auto a = data.TrianglesP0[i];
const auto aAnim = node->Assets[a].As<Animation>();
const auto aData = node->Values[4 + a * 2].AsFloat4();
// Get B animation data
const auto b = data.TrianglesP1[i];
const auto bAnim = node->Assets[b].As<Animation>();
const auto bData = node->Values[4 + b * 2].AsFloat4();
// Get C animation data
const auto c = data.TrianglesP2[i];
const auto cAnim = node->Assets[c].As<Animation>();
const auto cData = node->Values[4 + c * 2].AsFloat4();
// Get triangle coords
Float2 points[3] = {
Float2(aData.X, aData.Y),
Float2(bData.X, bData.Y),
Float2(cData.X, cData.Y)
};
// Check if blend using this triangle
if (CollisionsHelper::IsPointInTriangle(p, points[0], points[1], points[2]))
{
if (Float2::DistanceSquared(p, points[0]) < ANIM_GRAPH_BLEND_THRESHOLD2)
{
// Use only vertex A
value = SampleAnimation(node, loop, data.Length, startTimePos, bucket.TimePosition, newTimePos, aAnim, aData.W);
break;
}
if (Float2::DistanceSquared(p, points[1]) < ANIM_GRAPH_BLEND_THRESHOLD2)
{
// Use only vertex B
value = SampleAnimation(node, loop, data.Length, startTimePos, bucket.TimePosition, newTimePos, bAnim, bData.W);
break;
}
if (Float2::DistanceSquared(p, points[2]) < ANIM_GRAPH_BLEND_THRESHOLD2)
{
// Use only vertex C
value = SampleAnimation(node, loop, data.Length, startTimePos, bucket.TimePosition, newTimePos, cAnim, cData.W);
break;
}
auto v0 = points[1] - points[0];
auto v1 = points[2] - points[0];
auto v2 = p - points[0];
const float d00 = Float2::Dot(v0, v0);
const float d01 = Float2::Dot(v0, v1);
const float d11 = Float2::Dot(v1, v1);
const float d20 = Float2::Dot(v2, v0);
const float d21 = Float2::Dot(v2, v1);
const float coeff = (d00 * d11 - d01 * d01);
if (Math::IsZero(coeff))
{
const bool xAxis = Math::IsZero(v0.X) && Math::IsZero(v1.X);
const bool yAxis = Math::IsZero(v0.Y) && Math::IsZero(v1.Y);
if (xAxis && yAxis)
{
// Single animation
value = SampleAnimation(node, loop, data.Length, startTimePos, bucket.TimePosition, newTimePos, aAnim, aData.W);
}
else if (xAxis || yAxis)
{
if (yAxis)
{
// Use code for X-axis case so swap coordinates
Swap(v0.X, v0.Y);
Swap(v1.X, v1.Y);
Swap(v2.X, v2.Y);
Swap(p.X, p.Y);
}
// Use 1D blend if points are on the same line (degenerated triangle)
// TODO: simplify this code
if (v1.Y >= v0.Y)
{
if (p.Y < v0.Y && v1.Y >= v0.Y)
{
const float alpha = p.Y / v0.Y;
value = SampleAnimationsWithBlend(node, loop, data.Length, startTimePos, bucket.TimePosition, newTimePos, aAnim, bAnim, aData.W, bData.W, alpha);
}
else
{
const float alpha = (p.Y - v0.Y) / (v1.Y - v0.Y);
value = SampleAnimationsWithBlend(node, loop, data.Length, startTimePos, bucket.TimePosition, newTimePos, bAnim, cAnim, bData.W, cData.W, alpha);
}
}
else
{
if (p.Y < v1.Y)
{
const float alpha = p.Y / v1.Y;
value = SampleAnimationsWithBlend(node, loop, data.Length, startTimePos, bucket.TimePosition, newTimePos, aAnim, cAnim, aData.W, cData.W, alpha);
}
else
{
const float alpha = (p.Y - v1.Y) / (v0.Y - v1.Y);
value = SampleAnimationsWithBlend(node, loop, data.Length, startTimePos, bucket.TimePosition, newTimePos, cAnim, bAnim, cData.W, bData.W, alpha);
}
}
}
else
{
// Use only vertex A for invalid triangle
value = SampleAnimation(node, loop, data.Length, startTimePos, bucket.TimePosition, newTimePos, aAnim, aData.W);
}
break;
}
const float v = (d11 * d20 - d01 * d21) / coeff;
const float w = (d00 * d21 - d01 * d20) / coeff;
const float u = 1.0f - v - w;
// Blend A and B and C
value = SampleAnimationsWithBlend(node, loop, data.Length, startTimePos, bucket.TimePosition, newTimePos, aAnim, bAnim, cAnim, aData.W, bData.W, cData.W, u, v, w);
break;
}
// Try to find the best blend weights for blend position being outside the all triangles (edge case)
for (int j = 0; j < 3; j++)
{
Float2 s[2] = {
points[j],
points[(j + 1) % 3]
};
Float2 closest;
CollisionsHelper::ClosestPointPointLine(p, s[0], s[1], closest);
if (!hasBest || Float2::DistanceSquared(closest, p) < Float2::DistanceSquared(bestPoint, p))
{
bestPoint = closest;
hasBest = true;
float d = Float2::Distance(s[0], s[1]);
if (Math::IsZero(d))
{
bestWeight = 0;
}
else
{
bestWeight = Float2::Distance(s[0], closest) / d;
}
bestAnims[0] = j;
bestAnims[1] = (j + 1) % 3;
}
}
}
// Check if use the closest sample
if ((void*)value == nullptr && hasBest)
{
const auto aAnim = node->Assets[bestAnims[0]].As<Animation>();
const auto aData = node->Values[4 + bestAnims[0] * 2].AsFloat4();
// Check if use only one sample
if (bestWeight < ANIM_GRAPH_BLEND_THRESHOLD)
{
value = SampleAnimation(node, loop, data.Length, startTimePos, bucket.TimePosition, newTimePos, aAnim, aData.W);
}
else
{
const auto bAnim = node->Assets[bestAnims[1]].As<Animation>();
const auto bData = node->Values[4 + bestAnims[1] * 2].AsFloat4();
value = SampleAnimationsWithBlend(node, loop, data.Length, startTimePos, bucket.TimePosition, newTimePos, aAnim, bAnim, aData.W, bData.W, bestWeight);
}
}
bucket.TimePosition = newTimePos;
bucket.LastUpdateFrame = context.CurrentFrameIndex;
break;
}
// Blend Pose
case 14:
{
ASSERT(box->ID == 0);
const int32 FirstBlendPoseBoxIndex = 3;
const int32 MaxBlendPoses = 8;
value = Value::Null;
// Note data layout:
// [0]: int Pose Index
// [1]: float Blend Duration
// [2]: int Pose Count
// [3]: AlphaBlendMode Mode
// Prepare
auto& bucket = context.Data->State[node->BucketIndex].BlendPose;
const int32 poseIndex = (int32)tryGetValue(node->GetBox(1), node->Values[0]);
const float blendDuration = (float)tryGetValue(node->GetBox(2), node->Values[1]);
const int32 poseCount = Math::Clamp(node->Values[2].AsInt, 0, MaxBlendPoses);
const AlphaBlendMode mode = (AlphaBlendMode)node->Values[3].AsInt;
// Skip if nothing to blend
if (poseCount == 0 || poseIndex < 0 || poseIndex >= poseCount)
{
break;
}
// Check if transition is not active (first update, pose not changing or transition ended)
bucket.TransitionPosition += context.DeltaTime;
if (bucket.PreviousBlendPoseIndex == -1 || bucket.PreviousBlendPoseIndex == poseIndex || bucket.TransitionPosition >= blendDuration || blendDuration <= ANIM_GRAPH_BLEND_THRESHOLD)
{
bucket.TransitionPosition = 0.0f;
bucket.PreviousBlendPoseIndex = poseIndex;
value = tryGetValue(node->GetBox(FirstBlendPoseBoxIndex + poseIndex), Value::Null);
break;
}
ASSERT(bucket.PreviousBlendPoseIndex >= 0 && bucket.PreviousBlendPoseIndex < poseCount);
// Blend two animations
{
const float alpha = Math::Saturate(bucket.TransitionPosition / blendDuration);
const auto valueA = tryGetValue(node->GetBox(FirstBlendPoseBoxIndex + bucket.PreviousBlendPoseIndex), Value::Null);
const auto valueB = tryGetValue(node->GetBox(FirstBlendPoseBoxIndex + poseIndex), Value::Null);
value = Blend(node, valueA, valueB, alpha, mode);
}
break;
}
// Get Root Motion
case 15:
{
auto pose = tryGetValue(node->GetBox(2), Value::Null);
if (ANIM_GRAPH_IS_VALID_PTR(pose))
{
const AnimGraphImpulse* poseData = (AnimGraphImpulse*)pose.AsPointer;
switch (box->ID)
{
case 0:
value = poseData->RootMotion.Translation;
break;
case 1:
value = poseData->RootMotion.Orientation;
break;
}
}
else
{
switch (box->ID)
{
case 0:
value = Vector3::Zero;
break;
case 1:
value = Quaternion::Identity;
break;
}
}
break;
}
// Set Root Motion
case 16:
{
auto pose = tryGetValue(node->GetBox(1), Value::Null);
if (!ANIM_GRAPH_IS_VALID_PTR(pose))
{
value = pose;
break;
}
const AnimGraphImpulse* poseData = (AnimGraphImpulse*)pose.AsPointer;
auto nodes = node->GetNodes(this);
nodes->Nodes = poseData->Nodes;
nodes->RootMotion.Translation = (Vector3)tryGetValue(node->GetBox(2), Value::Zero);
nodes->RootMotion.Orientation = (Quaternion)tryGetValue(node->GetBox(3), Value::Zero);
value = nodes;
break;
}
// Add Root Motion
case 17:
{
auto pose = tryGetValue(node->GetBox(1), Value::Null);
if (!ANIM_GRAPH_IS_VALID_PTR(pose))
{
value = pose;
break;
}
const AnimGraphImpulse* poseData = (AnimGraphImpulse*)pose.AsPointer;
auto nodes = node->GetNodes(this);
nodes->Nodes = poseData->Nodes;
nodes->RootMotion.Translation = poseData->RootMotion.Translation + (Vector3)tryGetValue(node->GetBox(2), Value::Zero);
nodes->RootMotion.Orientation = poseData->RootMotion.Orientation * (Quaternion)tryGetValue(node->GetBox(3), Value::Zero);
value = nodes;
break;
}
// State Machine
case 18:
{
ANIM_GRAPH_PROFILE_EVENT("State Machine");
const int32 maxTransitionsPerUpdate = node->Values[2].AsInt;
const bool reinitializeOnBecomingRelevant = node->Values[3].AsBool;
const bool skipFirstUpdateTransition = node->Values[4].AsBool;
// Prepare
auto& bucket = context.Data->State[node->BucketIndex].StateMachine;
auto& data = node->Data.StateMachine;
int32 transitionsLeft = maxTransitionsPerUpdate == 0 ? MAX_uint16 : maxTransitionsPerUpdate;
bool isFirstUpdate = bucket.LastUpdateFrame == 0 || bucket.CurrentState == nullptr;
if (bucket.LastUpdateFrame != context.CurrentFrameIndex - 1 && reinitializeOnBecomingRelevant)
{
// Reset on becoming relevant
isFirstUpdate = true;
}
if (isFirstUpdate && skipFirstUpdateTransition)
transitionsLeft = 0;
// Initialize on the first update
if (isFirstUpdate)
{
// Ensure to have valid state machine graph
if (data.Graph == nullptr || data.Graph->GetRootNode() == nullptr)
{
value = Value::Null;
break;
}
// Enter to the first state pointed by the Entry node (without transitions)
bucket.CurrentState = data.Graph->GetRootNode();
bucket.ActiveTransition = nullptr;
bucket.TransitionPosition = 0.0f;
// Reset all state buckets pof the graphs and nodes included inside the state machine
ResetBuckets(context, data.Graph);
}
#define END_TRANSITION() \
ResetBuckets(context, bucket.CurrentState->Data.State.Graph); \
bucket.CurrentState = bucket.ActiveTransition->Destination; \
bucket.ActiveTransition = nullptr; \
bucket.TransitionPosition = 0.0f
// Update the active transition
if (bucket.ActiveTransition)
{
bucket.TransitionPosition += context.DeltaTime;
// Check for transition end
if (bucket.TransitionPosition >= bucket.ActiveTransition->BlendDuration)
{
END_TRANSITION();
}
// Check for transition interruption
else if (EnumHasAnyFlags(bucket.ActiveTransition->Flags, AnimGraphStateTransition::FlagTypes::InterruptionRuleRechecking))
{
const bool useDefaultRule = EnumHasAnyFlags(bucket.ActiveTransition->Flags, AnimGraphStateTransition::FlagTypes::UseDefaultRule);
if (bucket.ActiveTransition->RuleGraph && !useDefaultRule)
{
// Execute transition rule
auto rootNode = bucket.ActiveTransition->RuleGraph->GetRootNode();
if (!(bool)eatBox((Node*)rootNode, &rootNode->Boxes[0]))
{
bool cancelTransition = false;
if (EnumHasAnyFlags(bucket.ActiveTransition->Flags, AnimGraphStateTransition::FlagTypes::InterruptionInstant))
{
cancelTransition = true;
}
else
{
// Blend back to the source state (remove currently applied delta and rewind transition)
bucket.TransitionPosition -= context.DeltaTime;
bucket.TransitionPosition -= context.DeltaTime;
if (bucket.TransitionPosition <= ZeroTolerance)
{
cancelTransition = true;
}
}
if (cancelTransition)
{
// Go back to the source state
ResetBuckets(context, bucket.CurrentState->Data.State.Graph);
bucket.ActiveTransition = nullptr;
bucket.TransitionPosition = 0.0f;
}
}
}
}
}
ASSERT(bucket.CurrentState && bucket.CurrentState->Type == GRAPH_NODE_MAKE_TYPE(9, 20));
// Update transitions
// Note: this logic assumes that all transitions are sorted by Order property and Enabled (by Editor when saving Anim Graph asset)
while (!bucket.ActiveTransition && transitionsLeft-- > 0)
{
// State transitions
UpdateStateTransitions(context, data, bucket, bucket.CurrentState->Data.State);
// Any state transitions
// TODO: cache Any state nodes inside State Machine to optimize the loop below
for (const AnimGraphNode& anyStateNode : data.Graph->Nodes)
{
if (anyStateNode.Type == GRAPH_NODE_MAKE_TYPE(9, 34))
UpdateStateTransitions(context, data, bucket, anyStateNode.Data.AnyState);
}
// Check for instant transitions
if (bucket.ActiveTransition && bucket.ActiveTransition->BlendDuration <= ZeroTolerance)
{
END_TRANSITION();
}
}
// Sample the current state
const auto currentState = SampleState(bucket.CurrentState);
value = currentState;
// Handle active transition blending
if (bucket.ActiveTransition)
{
// Sample the active transition destination state
const auto destinationState = SampleState(bucket.ActiveTransition->Destination);
// Perform blending
const float alpha = Math::Saturate(bucket.TransitionPosition / bucket.ActiveTransition->BlendDuration);
value = Blend(node, currentState, destinationState, alpha, bucket.ActiveTransition->BlendMode);
}
// Update bucket
bucket.LastUpdateFrame = context.CurrentFrameIndex;
#undef END_TRANSITION
break;
}
// Entry
case 19:
// State
case 20:
// Any State
case 34:
{
// Not used
CRASH;
break;
}
// State Output
case 21:
// Rule Output
case 22:
value = box->HasConnection() ? eatBox(nodeBase, box->FirstConnection()) : Value::Null;
break;
// Transition Source State Anim
case 23:
{
const AnimGraphTransitionData& transitionsData = context.TransitionData;
switch (box->ID)
{
// Length
case 0:
value = transitionsData.Length;
break;
// Time
case 1:
value = transitionsData.Position;
break;
// Normalized Time
case 2:
value = transitionsData.Position / transitionsData.Length;
break;
// Remaining Time
case 3:
value = transitionsData.Length - transitionsData.Position;
break;
// Remaining Normalized Time
case 4:
value = 1.0f - (transitionsData.Position / transitionsData.Length);
break;
default: CRASH;
break;
}
break;
}
// Animation Graph Function
case 24:
{
// Load function graph
auto function = node->Assets[0].As<AnimationGraphFunction>();
auto& data = node->Data.AnimationGraphFunction;
if (data.Graph == nullptr)
{
value = Value::Zero;
break;
}
#if 0
// Prevent recursive calls
for (int32 i = context.CallStack.Count() - 1; i >= 0; i--)
{
if (context.CallStack[i]->Type == GRAPH_NODE_MAKE_TYPE(9, 24))
{
const auto callFunc = context.CallStack[i]->Assets[0].Get();
if (callFunc == function)
{
value = Value::Zero;
context.ValueCache.Add(boxBase, value);
return;
}
}
}
#endif
// Peek the function output (function->Outputs maps the functions outputs to output nodes indices)
// This assumes that Function Output nodes are allowed to be only in the root graph (not in state machine sub-graphs)
const int32 outputIndex = box->ID - 16;
if (outputIndex < 0 || outputIndex >= function->Outputs.Count())
{
value = Value::Zero;
break;
}
Node* functionOutputNode = (Node*)&data.Graph->Nodes[function->Outputs[outputIndex].NodeIndex];
Box* functionOutputBox = functionOutputNode->TryGetBox(0);
// Cache relation between current node in the call stack to the actual function graph
context.Functions[nodeBase] = (Graph*)data.Graph;
// Evaluate the function output
context.GraphStack.Push((Graph*)data.Graph);
value = functionOutputBox && functionOutputBox->HasConnection() ? eatBox(nodeBase, functionOutputBox->FirstConnection()) : Value::Zero;
context.GraphStack.Pop();
break;
}
// Transform Bone (local/model space)
case 25:
case 26:
{
const auto inputBox = node->GetBox(1);
const auto nodeIndex = node->Data.TransformNode.NodeIndex;
const auto transformMode = static_cast<BoneTransformMode>((int32)node->Values[1]);
// Get the transformation
Transform transform;
transform.Translation = (Vector3)tryGetValue(node->GetBox(2), Vector3::Zero);
transform.Orientation = (Quaternion)tryGetValue(node->GetBox(3), Quaternion::Identity);
transform.Scale = (Float3)tryGetValue(node->GetBox(4), Float3::One);
// Skip if no change will be performed
if (nodeIndex < 0 || nodeIndex >= _skeletonNodesCount || transformMode == BoneTransformMode::None || (transformMode == BoneTransformMode::Add && transform.IsIdentity()))
{
// Pass through the input
value = Value::Null;
if (inputBox->HasConnection())
value = eatBox(nodeBase, inputBox->FirstConnection());
context.ValueCache.Add(boxBase, value);
return;
}
const auto nodes = node->GetNodes(this);
// Prepare the input nodes
bool hasValidInput = false;
if (inputBox->HasConnection())
{
const auto input = eatBox(nodeBase, inputBox->FirstConnection());
hasValidInput = ANIM_GRAPH_IS_VALID_PTR(input);
if (hasValidInput)
CopyNodes(nodes, input);
}
if (!hasValidInput)
InitNodes(nodes);
if (node->TypeID == 25)
{
// Local space
if (transformMode == BoneTransformMode::Add)
nodes->Nodes[nodeIndex] = nodes->Nodes[nodeIndex] + transform;
else
nodes->Nodes[nodeIndex] = transform;
}
else
{
// Global space
if (transformMode == BoneTransformMode::Add)
nodes->SetNodeModelTransformation(_graph.BaseModel->Skeleton, nodeIndex, nodes->GetNodeModelTransformation(_graph.BaseModel->Skeleton, nodeIndex) + transform);
else
nodes->SetNodeModelTransformation(_graph.BaseModel->Skeleton, nodeIndex, transform);
}
value = nodes;
break;
}
// Copy Node
case 27:
{
// Get input
auto input = tryGetValue(node->GetBox(1), Value::Null);
const auto nodes = node->GetNodes(this);
if (ANIM_GRAPH_IS_VALID_PTR(input))
{
// Use input nodes
CopyNodes(nodes, input);
}
else
{
// Use default nodes
InitNodes(nodes);
input = nodes;
}
// Fetch the settings
const auto srcNodeIndex = node->Data.CopyNode.SrcNodeIndex;
const auto dstNodeIndex = node->Data.CopyNode.DstNodeIndex;
const auto copyTranslation = (bool)node->Values[2];
const auto copyRotation = (bool)node->Values[3];
const auto copyScale = (bool)node->Values[4];
// Skip if no change will be performed
if (srcNodeIndex < 0 || srcNodeIndex >= _skeletonNodesCount ||
dstNodeIndex < 0 || dstNodeIndex >= _skeletonNodesCount ||
!(copyTranslation || copyRotation || copyScale))
{
// Pass through the input
value = input;
context.ValueCache.Add(boxBase, value);
return;
}
// Copy bone data
Transform& srcTransform = nodes->Nodes[srcNodeIndex];
Transform& dstTransform = nodes->Nodes[dstNodeIndex];
if (copyTranslation)
dstTransform.Translation = srcTransform.Translation;
if (copyRotation)
dstTransform.Orientation = srcTransform.Orientation;
if (copyScale)
dstTransform.Scale = srcTransform.Scale;
value = nodes;
break;
}
// Get Node Transform (model space)
case 28:
{
// Get input
const auto nodeIndex = node->Data.TransformNode.NodeIndex;
const auto input = tryGetValue(node->GetBox(0), Value::Null);
if (ANIM_GRAPH_IS_VALID_PTR(input) && nodeIndex >= 0 && nodeIndex < _skeletonNodesCount)
value = Variant(((AnimGraphImpulse*)input.AsPointer)->GetNodeModelTransformation(_graph.BaseModel->Skeleton, nodeIndex));
else
value = Variant(Transform::Identity);
break;
}
// Aim IK
case 29:
{
// Get input
auto input = tryGetValue(node->GetBox(1), Value::Null);
const auto nodeIndex = node->Data.TransformNode.NodeIndex;
float weight = (float)tryGetValue(node->GetBox(3), node->Values[1]);
if (nodeIndex < 0 || nodeIndex >= _skeletonNodesCount || weight < ANIM_GRAPH_BLEND_THRESHOLD)
{
// Pass through the input
value = input;
break;
}
const auto nodes = node->GetNodes(this);
if (ANIM_GRAPH_IS_VALID_PTR(input))
{
// Use input nodes
CopyNodes(nodes, input);
}
else
{
// Use default nodes
InitNodes(nodes);
input = nodes;
}
const Vector3 target = (Vector3)tryGetValue(node->GetBox(2), Vector3::Zero);
weight = Math::Saturate(weight);
// Solve IK
Transform nodeTransformModelSpace = nodes->GetNodeModelTransformation(_graph.BaseModel->Skeleton, nodeIndex);
Quaternion nodeCorrection;
InverseKinematics::SolveAimIK(nodeTransformModelSpace, target, nodeCorrection);
// Apply IK
auto bindPoseNodeTransformation = GetEmptyNodes()->GetNodeModelTransformation(_graph.BaseModel->Skeleton, nodeIndex);
Quaternion newRotation = nodeCorrection * bindPoseNodeTransformation.Orientation;
if (weight < 1.0f)
Quaternion::Slerp(nodeTransformModelSpace.Orientation, newRotation, weight, nodeTransformModelSpace.Orientation);
else
nodeTransformModelSpace.Orientation = newRotation;
nodes->SetNodeModelTransformation(_graph.BaseModel->Skeleton, nodeIndex, nodeTransformModelSpace);
value = nodes;
break;
}
// Get Node Transform (local space)
case 30:
{
// Get input
const auto nodeIndex = node->Data.TransformNode.NodeIndex;
const auto input = tryGetValue(node->GetBox(0), Value::Null);
if (ANIM_GRAPH_IS_VALID_PTR(input) && nodeIndex >= 0 && nodeIndex < _skeletonNodesCount)
value = Variant(((AnimGraphImpulse*)input.AsPointer)->GetNodeLocalTransformation(_graph.BaseModel->Skeleton, nodeIndex));
else
value = Variant(Transform::Identity);
break;
}
// Two Bone IK
case 31:
{
// Get input
auto input = tryGetValue(node->GetBox(1), Value::Null);
const auto nodeIndex = node->Data.TransformNode.NodeIndex;
float weight = (float)tryGetValue(node->GetBox(4), node->Values[1]);
if (nodeIndex < 0 || nodeIndex >= _skeletonNodesCount || weight < ANIM_GRAPH_BLEND_THRESHOLD)
{
// Pass through the input
value = input;
break;
}
const auto nodes = node->GetNodes(this);
if (ANIM_GRAPH_IS_VALID_PTR(input))
{
// Use input nodes
CopyNodes(nodes, input);
}
else
{
// Use default nodes
InitNodes(nodes);
input = nodes;
}
const Vector3 target = (Vector3)tryGetValue(node->GetBox(2), Vector3::Zero);
const Vector3 jointTarget = (Vector3)tryGetValue(node->GetBox(3), Vector3::Zero);
const bool allowStretching = (bool)tryGetValue(node->GetBox(5), node->Values[2]);
const float maxStretchScale = (float)tryGetValue(node->GetBox(6), node->Values[3]);
weight = Math::Saturate(weight);
// Solve IK
int32 jointNodeIndex = _graph.BaseModel->Skeleton.Nodes[nodeIndex].ParentIndex;
if (jointNodeIndex == -1)
{
value = input;
break;
}
int32 rootNodeIndex = _graph.BaseModel->Skeleton.Nodes[jointNodeIndex].ParentIndex;
if (rootNodeIndex == -1)
{
value = input;
break;
}
Transform rootTransformLocalSpace = nodes->Nodes[rootNodeIndex];
Transform jointTransformLocalSpace = nodes->Nodes[jointNodeIndex];
Transform nodeTransformLocalSpace = nodes->Nodes[nodeIndex];
Transform rootTransformModelSpace = nodes->GetNodeModelTransformation(_graph.BaseModel->Skeleton, rootNodeIndex);
Transform jointTransformModelSpace = rootTransformModelSpace.LocalToWorld(jointTransformLocalSpace);
Transform targetTransformModelSpace = jointTransformModelSpace.LocalToWorld(nodeTransformLocalSpace);
InverseKinematics::SolveTwoBoneIK(rootTransformModelSpace, jointTransformModelSpace, targetTransformModelSpace, target, jointTarget, allowStretching, maxStretchScale);
// Apply IK
nodes->SetNodeModelTransformation(_graph.BaseModel->Skeleton, rootNodeIndex, rootTransformModelSpace);
rootTransformModelSpace.WorldToLocal(jointTransformModelSpace, nodes->Nodes[jointNodeIndex]);
jointTransformModelSpace.WorldToLocal(targetTransformModelSpace, nodes->Nodes[nodeIndex]);
if (weight < 1.0f)
{
Transform::Lerp(rootTransformLocalSpace, nodes->Nodes[rootNodeIndex], weight, nodes->Nodes[rootNodeIndex]);
Transform::Lerp(jointTransformLocalSpace, nodes->Nodes[jointNodeIndex], weight, nodes->Nodes[jointNodeIndex]);
Transform::Lerp(nodeTransformLocalSpace, nodes->Nodes[nodeIndex], weight, nodes->Nodes[nodeIndex]);
}
value = nodes;
break;
}
// Animation Slot
case 32:
{
auto& slots = context.Data->Slots;
if (slots.Count() == 0)
{
value = tryGetValue(node->GetBox(1), Value::Null);
return;
}
const StringView slotName(node->Values[0]);
auto& bucket = context.Data->State[node->BucketIndex].Slot;
if (bucket.Index != -1 && (slots.Count() <= bucket.Index || slots[bucket.Index].Animation == nullptr))
{
// Current slot animation ended
bucket.Index = -1;
}
if (bucket.Index == -1)
{
// Pick the animation to play
for (int32 i = 0; i < slots.Count(); i++)
{
auto& slot = slots[i];
if (slot.Animation && slot.Name == slotName)
{
// Start playing animation
bucket.Index = i;
bucket.TimePosition = 0.0f;
bucket.BlendInPosition = 0.0f;
bucket.BlendOutPosition = 0.0f;
bucket.LoopsDone = 0;
bucket.LoopsLeft = slot.LoopCount;
break;
}
}
if (bucket.Index == -1 || !slots[bucket.Index].Animation->IsLoaded())
{
value = tryGetValue(node->GetBox(1), Value::Null);
return;
}
}
// Play the animation
auto& slot = slots[bucket.Index];
Animation* anim = slot.Animation;
ASSERT(slot.Animation && slot.Animation->IsLoaded());
const float deltaTime = slot.Pause ? 0.0f : context.DeltaTime * slot.Speed;
const float length = anim->GetLength();
const bool loop = bucket.LoopsLeft != 0;
float newTimePos = bucket.TimePosition + deltaTime;
if (newTimePos >= length)
{
if (bucket.LoopsLeft == 0)
{
// End playing animation
value = tryGetValue(node->GetBox(1), Value::Null);
bucket.Index = -1;
slot.Animation = nullptr;
return;
}
// Loop animation
if (bucket.LoopsLeft > 0)
bucket.LoopsLeft--;
bucket.LoopsDone++;
}
// Speed is accounted for in the new time pos, so keep sample speed at 1
value = SampleAnimation(node, loop, length, 0.0f, bucket.TimePosition, newTimePos, anim, 1);
bucket.TimePosition = newTimePos;
if (bucket.LoopsLeft == 0 && slot.BlendOutTime > 0.0f && length - slot.BlendOutTime < bucket.TimePosition)
{
// Blend out
auto input = tryGetValue(node->GetBox(1), Value::Null);
bucket.BlendOutPosition += deltaTime;
const float alpha = Math::Saturate(bucket.BlendOutPosition / slot.BlendOutTime);
value = Blend(node, value, input, alpha, AlphaBlendMode::HermiteCubic);
}
else if (bucket.LoopsDone == 0 && slot.BlendInTime > 0.0f && bucket.BlendInPosition < slot.BlendInTime)
{
// Blend in
auto input = tryGetValue(node->GetBox(1), Value::Null);
bucket.BlendInPosition += deltaTime;
const float alpha = Math::Saturate(bucket.BlendInPosition / slot.BlendInTime);
value = Blend(node, input, value, alpha, AlphaBlendMode::HermiteCubic);
}
break;
}
// Animation Instance Data
case 33:
{
auto& bucket = context.Data->State[node->BucketIndex].InstanceData;
if (bucket.Init)
{
bucket.Init = false;
*(Float4*)bucket.Data = (Float4)tryGetValue(node->GetBox(1), Value::Zero);
}
value = *(Float4*)bucket.Data;
break;
}
default:
break;
}
context.ValueCache[boxBase] = value;
}
void AnimGraphExecutor::ProcessGroupFunction(Box* boxBase, Node* node, Value& value)
{
auto& context = Context.Get();
if (context.ValueCache.TryGet(boxBase, value))
return;
switch (node->TypeID)
{
// Function Input
case 1:
{
// Find the function call
AnimGraphNode* functionCallNode = nullptr;
ASSERT(context.GraphStack.Count() >= 2);
Graph* graph;
for (int32 i = context.CallStack.Count() - 1; i >= 0; i--)
{
if (context.CallStack[i]->Type == GRAPH_NODE_MAKE_TYPE(9, 24) && context.Functions.TryGet(context.CallStack[i], graph) && context.GraphStack.Last() == graph)
{
functionCallNode = (AnimGraphNode*)context.CallStack[i];
break;
}
}
if (!functionCallNode)
{
value = Value::Zero;
break;
}
const auto function = functionCallNode->Assets[0].As<AnimationGraphFunction>();
auto& data = functionCallNode->Data.AnimationGraphFunction;
if (data.Graph == nullptr)
{
value = Value::Zero;
break;
}
// Peek the input box to use
int32 inputIndex = -1;
const auto name = (StringView)node->Values[1];
for (int32 i = 0; i < function->Inputs.Count(); i++)
{
auto& input = function->Inputs[i];
if (input.Name == name)
{
inputIndex = input.InputIndex;
break;
}
}
if (inputIndex < 0 || inputIndex >= function->Inputs.Count())
{
value = Value::Zero;
break;
}
Box* functionCallBox = functionCallNode->TryGetBox(inputIndex);
if (functionCallBox && functionCallBox->HasConnection())
{
// Use provided input value from the function call
context.GraphStack.Pop();
value = eatBox(node, functionCallBox->FirstConnection());
context.GraphStack.Push(graph);
}
else
{
// Use the default value from the function graph
value = tryGetValue(node->TryGetBox(1), Value::Zero);
}
context.ValueCache.Add(boxBase, value);
break;
}
default:
break;
}
}