798 lines
24 KiB
GLSL
798 lines
24 KiB
GLSL
// File generated by Flax Materials Editor
|
|
// Version: @0
|
|
|
|
#define MATERIAL 1
|
|
@3
|
|
|
|
// Enables/disables smooth terrain chunks LOD transitions (with morphing higher LOD near edges to the lower LOD in the neighbour)
|
|
#define USE_SMOOTH_LOD_TRANSITION 1
|
|
|
|
// Switches between using 0, 4 or 8 heightmap layers (values: 0, 1, 2)
|
|
#define TERRAIN_LAYERS_DATA_SIZE 2
|
|
#define USE_TERRAIN_LAYERS (TERRAIN_LAYERS_DATA_SIZE > 0)
|
|
|
|
#include "./Flax/Common.hlsl"
|
|
#include "./Flax/MaterialCommon.hlsl"
|
|
#include "./Flax/GBufferCommon.hlsl"
|
|
@7
|
|
// Primary constant buffer (with additional material parameters)
|
|
META_CB_BEGIN(0, Data)
|
|
float4x4 ViewProjectionMatrix;
|
|
float4x4 WorldMatrix;
|
|
float4x4 ViewMatrix;
|
|
float3 ViewPos;
|
|
float ViewFar;
|
|
float3 ViewDir;
|
|
float TimeParam;
|
|
float4 ViewInfo;
|
|
float4 ScreenSize;
|
|
float4 LightmapArea;
|
|
float3 WorldInvScale;
|
|
float WorldDeterminantSign;
|
|
float PerInstanceRandom;
|
|
float CurrentLOD;
|
|
float ChunkSizeNextLOD;
|
|
float TerrainChunkSizeLOD0;
|
|
float4 HeightmapUVScaleBias;
|
|
float4 NeighborLOD;
|
|
float2 OffsetUV;
|
|
float2 Dummy0;
|
|
@1META_CB_END
|
|
|
|
// Irradiance and directionality prebaked lightmaps
|
|
Texture2D Lightmap0 : register(t0);
|
|
Texture2D Lightmap1 : register(t1);
|
|
Texture2D Lightmap2 : register(t2);
|
|
|
|
// Terrain data
|
|
Texture2D Heightmap : register(t3);
|
|
Texture2D Splatmap0 : register(t4);
|
|
Texture2D Splatmap1 : register(t5);
|
|
|
|
// Material shader resources
|
|
@2
|
|
|
|
// Interpolants passed from the vertex shader
|
|
struct VertexOutput
|
|
{
|
|
float4 Position : SV_Position;
|
|
float3 WorldPosition : TEXCOORD0;
|
|
float2 TexCoord : TEXCOORD1;
|
|
float2 LightmapUV : TEXCOORD2;
|
|
float3 WorldNormal : TEXCOORD3;
|
|
float HolesMask : TEXCOORD4;
|
|
#if USE_TERRAIN_LAYERS
|
|
float4 Layers[TERRAIN_LAYERS_DATA_SIZE] : TEXCOORD5;
|
|
#endif
|
|
#if USE_CUSTOM_VERTEX_INTERPOLATORS
|
|
float4 CustomVSToPS[CUSTOM_VERTEX_INTERPOLATORS_COUNT] : TEXCOORD9;
|
|
#endif
|
|
#if USE_TESSELLATION
|
|
float TessellationMultiplier : TESS;
|
|
#endif
|
|
};
|
|
|
|
// Interpolants passed to the pixel shader
|
|
struct PixelInput
|
|
{
|
|
float4 Position : SV_Position;
|
|
float3 WorldPosition : TEXCOORD0;
|
|
float2 TexCoord : TEXCOORD1;
|
|
float2 LightmapUV : TEXCOORD2;
|
|
float3 WorldNormal : TEXCOORD3;
|
|
float HolesMask : TEXCOORD4;
|
|
#if USE_TERRAIN_LAYERS
|
|
float4 Layers[TERRAIN_LAYERS_DATA_SIZE] : TEXCOORD5;
|
|
#endif
|
|
#if USE_CUSTOM_VERTEX_INTERPOLATORS
|
|
float4 CustomVSToPS[CUSTOM_VERTEX_INTERPOLATORS_COUNT] : TEXCOORD9;
|
|
#endif
|
|
bool IsFrontFace : SV_IsFrontFace;
|
|
};
|
|
|
|
// Material properties generation input
|
|
struct MaterialInput
|
|
{
|
|
float3 WorldPosition;
|
|
float TwoSidedSign;
|
|
float2 TexCoord;
|
|
#if USE_LIGHTMAP
|
|
float2 LightmapUV;
|
|
#endif
|
|
float3x3 TBN;
|
|
float4 SvPosition;
|
|
float3 PreSkinnedPosition;
|
|
float3 PreSkinnedNormal;
|
|
float HolesMask;
|
|
#if USE_TERRAIN_LAYERS
|
|
float4 Layers[TERRAIN_LAYERS_DATA_SIZE];
|
|
#endif
|
|
#if USE_CUSTOM_VERTEX_INTERPOLATORS
|
|
float4 CustomVSToPS[CUSTOM_VERTEX_INTERPOLATORS_COUNT];
|
|
#endif
|
|
};
|
|
|
|
MaterialInput GetMaterialInput(PixelInput input)
|
|
{
|
|
MaterialInput result = (MaterialInput)0;
|
|
result.WorldPosition = input.WorldPosition;
|
|
result.TexCoord = input.TexCoord;
|
|
#if USE_LIGHTMAP
|
|
result.LightmapUV = input.LightmapUV;
|
|
#endif
|
|
result.TBN = CalcTangentBasisFromWorldNormal(input.WorldNormal);
|
|
result.TwoSidedSign = WorldDeterminantSign * (input.IsFrontFace ? 1.0 : -1.0);
|
|
result.SvPosition = input.Position;
|
|
result.HolesMask = input.HolesMask;
|
|
#if USE_TERRAIN_LAYERS
|
|
result.Layers = input.Layers;
|
|
#endif
|
|
#if USE_CUSTOM_VERTEX_INTERPOLATORS
|
|
result.CustomVSToPS = input.CustomVSToPS;
|
|
#endif
|
|
return result;
|
|
}
|
|
|
|
// Removes the scale vector from the local to world transformation matrix
|
|
float3x3 RemoveScaleFromLocalToWorld(float3x3 localToWorld)
|
|
{
|
|
localToWorld[0] *= WorldInvScale.x;
|
|
localToWorld[1] *= WorldInvScale.y;
|
|
localToWorld[2] *= WorldInvScale.z;
|
|
return localToWorld;
|
|
}
|
|
|
|
// Transforms a vector from tangent space to world space
|
|
float3 TransformTangentVectorToWorld(MaterialInput input, float3 tangentVector)
|
|
{
|
|
return mul(tangentVector, input.TBN);
|
|
}
|
|
|
|
// Transforms a vector from world space to tangent space
|
|
float3 TransformWorldVectorToTangent(MaterialInput input, float3 worldVector)
|
|
{
|
|
return mul(input.TBN, worldVector);
|
|
}
|
|
|
|
// Transforms a vector from world space to view space
|
|
float3 TransformWorldVectorToView(MaterialInput input, float3 worldVector)
|
|
{
|
|
return mul(worldVector, (float3x3)ViewMatrix);
|
|
}
|
|
|
|
// Transforms a vector from view space to world space
|
|
float3 TransformViewVectorToWorld(MaterialInput input, float3 viewVector)
|
|
{
|
|
return mul((float3x3)ViewMatrix, viewVector);
|
|
}
|
|
|
|
// Transforms a vector from local space to world space
|
|
float3 TransformLocalVectorToWorld(MaterialInput input, float3 localVector)
|
|
{
|
|
float3x3 localToWorld = (float3x3)WorldMatrix;
|
|
//localToWorld = RemoveScaleFromLocalToWorld(localToWorld);
|
|
return mul(localVector, localToWorld);
|
|
}
|
|
|
|
// Transforms a vector from local space to world space
|
|
float3 TransformWorldVectorToLocal(MaterialInput input, float3 worldVector)
|
|
{
|
|
float3x3 localToWorld = (float3x3)WorldMatrix;
|
|
//localToWorld = RemoveScaleFromLocalToWorld(localToWorld);
|
|
return mul(localToWorld, worldVector);
|
|
}
|
|
|
|
// Gets the current object position
|
|
float3 GetObjectPosition(MaterialInput input)
|
|
{
|
|
return WorldMatrix[3].xyz;
|
|
}
|
|
|
|
// Gets the current object size
|
|
float3 GetObjectSize(MaterialInput input)
|
|
{
|
|
return float3(1, 1, 1);
|
|
}
|
|
|
|
// Get the current object random value
|
|
float GetPerInstanceRandom(MaterialInput input)
|
|
{
|
|
return PerInstanceRandom;
|
|
}
|
|
|
|
// Get the current object LOD transition dither factor
|
|
float GetLODDitherFactor(MaterialInput input)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
// Gets the interpolated vertex color (in linear space)
|
|
float4 GetVertexColor(MaterialInput input)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
// Evaluates the H-Basis coefficients in the tangent space normal direction
|
|
float3 GetHBasisIrradiance(float3 n, float3 h0, float3 h1, float3 h2, float3 h3)
|
|
{
|
|
// Band 0
|
|
float3 color = h0 * (1.0f / sqrt(2.0f * PI));
|
|
|
|
// Band 1
|
|
color += h1 * -sqrt(1.5f / PI) * n.y;
|
|
color += h2 * sqrt(1.5f / PI) * (2 * n.z - 1.0f);
|
|
color += h3 * -sqrt(1.5f / PI) * n.x;
|
|
|
|
return color;
|
|
}
|
|
|
|
@8
|
|
|
|
// Get material properties function (for vertex shader)
|
|
Material GetMaterialVS(MaterialInput input)
|
|
{
|
|
@5
|
|
}
|
|
|
|
// Get material properties function (for domain shader)
|
|
Material GetMaterialDS(MaterialInput input)
|
|
{
|
|
@6
|
|
}
|
|
|
|
// Get material properties function (for pixel shader)
|
|
Material GetMaterialPS(MaterialInput input)
|
|
{
|
|
@4
|
|
}
|
|
|
|
// Fix line for errors/warnings for shader code from template
|
|
#line 1000
|
|
|
|
// Calculates LOD value (with fractional part for blending)
|
|
float CalcLOD(float2 xy, float4 morph)
|
|
{
|
|
#if USE_SMOOTH_LOD_TRANSITION
|
|
// Use LOD value based on Barycentric coordinates to morph to the lower LOD near chunk edges
|
|
float4 lodCalculated = morph * CurrentLOD + NeighborLOD * (float4(1, 1, 1, 1) - morph);
|
|
|
|
// Pick a quadrant (top, left, right or bottom)
|
|
float lod;
|
|
if ((xy.x + xy.y) > 1)
|
|
{
|
|
if (xy.x < xy.y)
|
|
{
|
|
lod = lodCalculated.w;
|
|
}
|
|
else
|
|
{
|
|
lod = lodCalculated.z;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (xy.x < xy.y)
|
|
{
|
|
lod = lodCalculated.y;
|
|
}
|
|
else
|
|
{
|
|
lod = lodCalculated.x;
|
|
}
|
|
}
|
|
|
|
return lod;
|
|
#else
|
|
return CurrentLOD;
|
|
#endif
|
|
}
|
|
|
|
float3x3 CalcTangentToWorld(float4x4 world, float3x3 tangentToLocal)
|
|
{
|
|
float3x3 localToWorld = RemoveScaleFromLocalToWorld((float3x3)world);
|
|
return mul(tangentToLocal, localToWorld);
|
|
}
|
|
|
|
// Must match structure defined in TerrainManager.cpp
|
|
struct TerrainVertexInput
|
|
{
|
|
float2 TexCoord : TEXCOORD0;
|
|
float4 Morph : TEXCOORD1;
|
|
};
|
|
|
|
// Vertex Shader function for terrain rendering
|
|
META_VS(true, FEATURE_LEVEL_ES2)
|
|
META_VS_IN_ELEMENT(TEXCOORD, 0, R32G32_FLOAT, 0, ALIGN, PER_VERTEX, 0, true)
|
|
META_VS_IN_ELEMENT(TEXCOORD, 1, R8G8B8A8_UNORM, 0, ALIGN, PER_VERTEX, 0, true)
|
|
VertexOutput VS(TerrainVertexInput input)
|
|
{
|
|
VertexOutput output;
|
|
|
|
// Calculate terrain LOD for this chunk
|
|
float lodCalculated = CalcLOD(input.TexCoord, input.Morph);
|
|
float lodValue = CurrentLOD;
|
|
float morphAlpha = lodCalculated - CurrentLOD;
|
|
|
|
// Sample heightmap
|
|
float2 heightmapUVs = input.TexCoord * HeightmapUVScaleBias.xy + HeightmapUVScaleBias.zw;
|
|
#if USE_SMOOTH_LOD_TRANSITION
|
|
float4 heightmapValueThisLOD = Heightmap.SampleLevel(SamplerPointClamp, heightmapUVs, lodValue);
|
|
float2 nextLODPos = round(input.TexCoord * ChunkSizeNextLOD) / ChunkSizeNextLOD;
|
|
float2 heightmapUVsNextLOD = nextLODPos * HeightmapUVScaleBias.xy + HeightmapUVScaleBias.zw;
|
|
float4 heightmapValueNextLOD = Heightmap.SampleLevel(SamplerPointClamp, heightmapUVsNextLOD, lodValue + 1);
|
|
float4 heightmapValue = lerp(heightmapValueThisLOD, heightmapValueNextLOD, morphAlpha);
|
|
bool isHole = max(heightmapValueThisLOD.b + heightmapValueThisLOD.a, heightmapValueNextLOD.b + heightmapValueNextLOD.a) >= 1.9f;
|
|
#if USE_TERRAIN_LAYERS
|
|
float4 splatmapValueThisLOD = Splatmap0.SampleLevel(SamplerPointClamp, heightmapUVs, lodValue);
|
|
float4 splatmapValueNextLOD = Splatmap0.SampleLevel(SamplerPointClamp, heightmapUVsNextLOD, lodValue + 1);
|
|
float4 splatmap0Value = lerp(splatmapValueThisLOD, splatmapValueNextLOD, morphAlpha);
|
|
#if TERRAIN_LAYERS_DATA_SIZE > 1
|
|
splatmapValueThisLOD = Splatmap1.SampleLevel(SamplerPointClamp, heightmapUVs, lodValue);
|
|
splatmapValueNextLOD = Splatmap1.SampleLevel(SamplerPointClamp, heightmapUVsNextLOD, lodValue + 1);
|
|
float4 splatmap1Value = lerp(splatmapValueThisLOD, splatmapValueNextLOD, morphAlpha);
|
|
#endif
|
|
#endif
|
|
#else
|
|
float4 heightmapValue = Heightmap.SampleLevel(SamplerPointClamp, heightmapUVs, lodValue);
|
|
bool isHole = (heightmapValue.b + heightmapValue.a) >= 1.9f;
|
|
#if USE_TERRAIN_LAYERS
|
|
float4 splatmap0Value = Splatmap0.SampleLevel(SamplerPointClamp, heightmapUVs, lodValue);
|
|
#if TERRAIN_LAYERS_DATA_SIZE > 1
|
|
float4 splatmap1Value = Splatmap1.SampleLevel(SamplerPointClamp, heightmapUVs, lodValue);
|
|
#endif
|
|
#endif
|
|
#endif
|
|
float height = (float)((int)(heightmapValue.x * 255.0) + ((int)(heightmapValue.y * 255) << 8)) / 65535.0;
|
|
|
|
// Extract normal and the holes mask
|
|
float2 normalTemp = float2(heightmapValue.b, heightmapValue.a) * 2.0f - 1.0f;
|
|
float3 normal = float3(normalTemp.x, sqrt(1.0 - saturate(dot(normalTemp, normalTemp))), normalTemp.y);
|
|
normal = normalize(normal);
|
|
output.HolesMask = isHole ? 0 : 1;
|
|
if (isHole)
|
|
{
|
|
normal = float3(0, 1, 0);
|
|
}
|
|
|
|
// Construct vertex position
|
|
#if USE_SMOOTH_LOD_TRANSITION
|
|
float2 positionXZThisLOD = input.TexCoord * TerrainChunkSizeLOD0;
|
|
float2 positionXZNextLOD = nextLODPos * TerrainChunkSizeLOD0;
|
|
float2 positionXZ = lerp(positionXZThisLOD, positionXZNextLOD, morphAlpha);
|
|
#else
|
|
float2 positionXZ = input.TexCoord * TerrainChunkSizeLOD0;
|
|
#endif
|
|
float3 position = float3(positionXZ.x, height, positionXZ.y);
|
|
|
|
// Compute world space vertex position
|
|
output.WorldPosition = mul(float4(position, 1), WorldMatrix).xyz;
|
|
|
|
// Compute clip space position
|
|
output.Position = mul(float4(output.WorldPosition.xyz, 1), ViewProjectionMatrix);
|
|
|
|
// Pass vertex attributes
|
|
#if USE_SMOOTH_LOD_TRANSITION
|
|
float2 texCoord = lerp(input.TexCoord, nextLODPos, morphAlpha);
|
|
#else
|
|
float2 texCoord = input.TexCoord;
|
|
#endif
|
|
output.TexCoord = positionXZ * (1.0f / TerrainChunkSizeLOD0) + OffsetUV;
|
|
output.LightmapUV = texCoord * LightmapArea.zw + LightmapArea.xy;
|
|
|
|
// Extract terrain layers weights from the splatmap
|
|
#if USE_TERRAIN_LAYERS
|
|
output.Layers[0] = splatmap0Value;
|
|
#if TERRAIN_LAYERS_DATA_SIZE > 1
|
|
output.Layers[1] = splatmap1Value;
|
|
#endif
|
|
#endif
|
|
|
|
// Compute world space normal vector
|
|
float3x3 tangentToLocal = CalcTangentBasisFromWorldNormal(normal);
|
|
float3x3 tangentToWorld = CalcTangentToWorld(WorldMatrix, tangentToLocal);
|
|
output.WorldNormal = tangentToWorld[2];
|
|
|
|
// Get material input params if need to evaluate any material property
|
|
#if USE_POSITION_OFFSET || USE_TESSELLATION || USE_CUSTOM_VERTEX_INTERPOLATORS
|
|
MaterialInput materialInput = (MaterialInput)0;
|
|
materialInput.WorldPosition = output.WorldPosition;
|
|
materialInput.TexCoord = output.TexCoord;
|
|
#if USE_LIGHTMAP
|
|
materialInput.LightmapUV = output.LightmapUV;
|
|
#endif
|
|
materialInput.TBN = CalcTangentBasisFromWorldNormal(output.WorldNormal);
|
|
materialInput.TwoSidedSign = WorldDeterminantSign;
|
|
materialInput.SvPosition = output.Position;
|
|
materialInput.PreSkinnedPosition = position;
|
|
materialInput.PreSkinnedNormal = normal;
|
|
materialInput.HolesMask = output.HolesMask;
|
|
#if USE_TERRAIN_LAYERS
|
|
materialInput.Layers = output.Layers;
|
|
#endif
|
|
Material material = GetMaterialVS(materialInput);
|
|
#endif
|
|
|
|
// Apply world position offset per-vertex
|
|
#if USE_POSITION_OFFSET
|
|
output.WorldPosition += material.PositionOffset;
|
|
output.Position = mul(float4(output.WorldPosition.xyz, 1), ViewProjectionMatrix);
|
|
#endif
|
|
|
|
// Get tessalation multiplier (per vertex)
|
|
#if USE_TESSELLATION
|
|
output.TessellationMultiplier = material.TessellationMultiplier;
|
|
#endif
|
|
|
|
// Copy interpolants for other shader stages
|
|
#if USE_CUSTOM_VERTEX_INTERPOLATORS
|
|
output.CustomVSToPS = material.CustomVSToPS;
|
|
#endif
|
|
|
|
return output;
|
|
}
|
|
|
|
#if USE_TESSELLATION
|
|
|
|
// Interpolants passed from the hull shader to the domain shader
|
|
struct TessalationHSToDS
|
|
{
|
|
float4 Position : SV_Position;
|
|
float3 WorldPosition : TEXCOORD0;
|
|
float2 TexCoord : TEXCOORD1;
|
|
float2 LightmapUV : TEXCOORD2;
|
|
float3 WorldNormal : TEXCOORD3;
|
|
float HolesMask : TEXCOORD4;
|
|
#if USE_TERRAIN_LAYERS
|
|
float4 Layers[TERRAIN_LAYERS_DATA_SIZE] : TEXCOORD5;
|
|
#endif
|
|
#if USE_CUSTOM_VERTEX_INTERPOLATORS
|
|
float4 CustomVSToPS[CUSTOM_VERTEX_INTERPOLATORS_COUNT] : TEXCOORD9;
|
|
#endif
|
|
float TessellationMultiplier : TESS;
|
|
};
|
|
|
|
// Interpolants passed from the domain shader and to the pixel shader
|
|
struct TessalationDSToPS
|
|
{
|
|
float4 Position : SV_Position;
|
|
float3 WorldPosition : TEXCOORD0;
|
|
float2 TexCoord : TEXCOORD1;
|
|
float2 LightmapUV : TEXCOORD2;
|
|
float3 WorldNormal : TEXCOORD3;
|
|
float HolesMask : TEXCOORD4;
|
|
#if USE_TERRAIN_LAYERS
|
|
float4 Layers[TERRAIN_LAYERS_DATA_SIZE] : TEXCOORD5;
|
|
#endif
|
|
#if USE_CUSTOM_VERTEX_INTERPOLATORS
|
|
float4 CustomVSToPS[CUSTOM_VERTEX_INTERPOLATORS_COUNT] : TEXCOORD9;
|
|
#endif
|
|
};
|
|
|
|
MaterialInput GetMaterialInput(TessalationDSToPS input)
|
|
{
|
|
MaterialInput result = (MaterialInput)0;
|
|
result.WorldPosition = input.WorldPosition;
|
|
result.TexCoord = input.TexCoord;
|
|
#if USE_LIGHTMAP
|
|
result.LightmapUV = input.LightmapUV;
|
|
#endif
|
|
result.TBN = CalcTangentBasisFromWorldNormal(input.WorldNormal);
|
|
result.TwoSidedSign = WorldDeterminantSign;
|
|
result.SvPosition = input.Position;
|
|
result.HolesMask = input.HolesMask;
|
|
#if USE_TERRAIN_LAYERS
|
|
result.Layers = input.Layers;
|
|
#endif
|
|
#if USE_CUSTOM_VERTEX_INTERPOLATORS
|
|
result.CustomVSToPS = input.CustomVSToPS;
|
|
#endif
|
|
return result;
|
|
}
|
|
|
|
struct TessalationPatch
|
|
{
|
|
float EdgeTessFactor[3] : SV_TessFactor;
|
|
float InsideTessFactor : SV_InsideTessFactor;
|
|
#if MATERIAL_TESSELLATION == MATERIAL_TESSELLATION_PN
|
|
float3 B210 : POSITION4;
|
|
float3 B120 : POSITION5;
|
|
float3 B021 : POSITION6;
|
|
float3 B012 : POSITION7;
|
|
float3 B102 : POSITION8;
|
|
float3 B201 : POSITION9;
|
|
float3 B111 : CENTER;
|
|
#endif
|
|
};
|
|
|
|
TessalationPatch HS_PatchConstant(InputPatch<VertexOutput, 3> input)
|
|
{
|
|
TessalationPatch output;
|
|
|
|
// Average tess factors along edges, and pick an edge tess factor for the interior tessellation
|
|
float4 TessellationMultipliers;
|
|
TessellationMultipliers.x = 0.5f * (input[1].TessellationMultiplier + input[2].TessellationMultiplier);
|
|
TessellationMultipliers.y = 0.5f * (input[2].TessellationMultiplier + input[0].TessellationMultiplier);
|
|
TessellationMultipliers.z = 0.5f * (input[0].TessellationMultiplier + input[1].TessellationMultiplier);
|
|
TessellationMultipliers.w = 0.333f * (input[0].TessellationMultiplier + input[1].TessellationMultiplier + input[2].TessellationMultiplier);
|
|
|
|
TessellationMultipliers = clamp(TessellationMultipliers, 1, MAX_TESSELLATION_FACTOR);
|
|
|
|
output.EdgeTessFactor[0] = TessellationMultipliers.x; // 1->2 edge
|
|
output.EdgeTessFactor[1] = TessellationMultipliers.y; // 2->0 edge
|
|
output.EdgeTessFactor[2] = TessellationMultipliers.z; // 0->1 edge
|
|
output.InsideTessFactor = TessellationMultipliers.w;
|
|
|
|
#if MATERIAL_TESSELLATION == MATERIAL_TESSELLATION_PN
|
|
// Calculate PN-Triangle coefficients
|
|
// Refer to Vlachos 2001 for the original formula
|
|
float3 p1 = input[0].WorldPosition;
|
|
float3 p2 = input[1].WorldPosition;
|
|
float3 p3 = input[2].WorldPosition;
|
|
float3 n1 = input[0].WorldNormal;
|
|
float3 n2 = input[1].WorldNormal;
|
|
float3 n3 = input[2].WorldNormal;
|
|
|
|
// Calculate control points
|
|
output.B210 = (2.0f * p1 + p2 - dot((p2 - p1), n1) * n1) / 3.0f;
|
|
output.B120 = (2.0f * p2 + p1 - dot((p1 - p2), n2) * n2) / 3.0f;
|
|
output.B021 = (2.0f * p2 + p3 - dot((p3 - p2), n2) * n2) / 3.0f;
|
|
output.B012 = (2.0f * p3 + p2 - dot((p2 - p3), n3) * n3) / 3.0f;
|
|
output.B102 = (2.0f * p3 + p1 - dot((p1 - p3), n3) * n3) / 3.0f;
|
|
output.B201 = (2.0f * p1 + p3 - dot((p3 - p1), n1) * n1) / 3.0f;
|
|
float3 e = (output.B210 + output.B120 + output.B021 +
|
|
output.B012 + output.B102 + output.B201) / 6.0f;
|
|
float3 v = (p1 + p2 + p3) / 3.0f;
|
|
output.B111 = e + ((e - v) / 2.0f);
|
|
#endif
|
|
|
|
return output;
|
|
}
|
|
|
|
META_HS(USE_TESSELLATION, FEATURE_LEVEL_SM5)
|
|
META_HS_PATCH(TESSELLATION_IN_CONTROL_POINTS)
|
|
[domain("tri")]
|
|
[partitioning("fractional_odd")]
|
|
[outputtopology("triangle_cw")]
|
|
[maxtessfactor(MAX_TESSELLATION_FACTOR)]
|
|
[outputcontrolpoints(3)]
|
|
[patchconstantfunc("HS_PatchConstant")]
|
|
TessalationHSToDS HS(InputPatch<VertexOutput, TESSELLATION_IN_CONTROL_POINTS> input, uint ControlPointID : SV_OutputControlPointID)
|
|
{
|
|
TessalationHSToDS output;
|
|
|
|
// Pass through shader
|
|
#define COPY(thing) output.thing = input[ControlPointID].thing;
|
|
COPY(Position);
|
|
COPY(WorldPosition);
|
|
COPY(TexCoord);
|
|
COPY(LightmapUV);
|
|
COPY(WorldNormal);
|
|
COPY(HolesMask);
|
|
COPY(TessellationMultiplier);
|
|
#if USE_TERRAIN_LAYERS
|
|
COPY(Layers);
|
|
#endif
|
|
#if USE_CUSTOM_VERTEX_INTERPOLATORS
|
|
COPY(CustomVSToPS);
|
|
#endif
|
|
#undef COPY
|
|
|
|
return output;
|
|
}
|
|
|
|
#if MATERIAL_TESSELLATION == MATERIAL_TESSELLATION_PHONG
|
|
|
|
// Orthogonal projection on to plane
|
|
float3 ProjectOntoPlane(float3 planeNormal, float3 planePoint, float3 pointToProject)
|
|
{
|
|
return pointToProject - dot(pointToProject-planePoint, planeNormal) * planeNormal;
|
|
}
|
|
|
|
#endif
|
|
|
|
META_DS(USE_TESSELLATION, FEATURE_LEVEL_SM5)
|
|
[domain("tri")]
|
|
TessalationDSToPS DS(TessalationPatch constantData, float3 barycentricCoords : SV_DomainLocation, const OutputPatch<TessalationHSToDS, 3> input)
|
|
{
|
|
TessalationDSToPS output;
|
|
|
|
// Get the barycentric coords
|
|
float U = barycentricCoords.x;
|
|
float V = barycentricCoords.y;
|
|
float W = barycentricCoords.z;
|
|
|
|
// Interpolate patch attributes to generated vertices
|
|
#define INTERPOLATE(thing) output.thing = U * input[0].thing + V * input[1].thing + W * input[2].thing
|
|
#define COPY(thing) output.thing = input[0].thing
|
|
INTERPOLATE(Position);
|
|
#if MATERIAL_TESSELLATION == MATERIAL_TESSELLATION_PN
|
|
float UU = U * U;
|
|
float VV = V * V;
|
|
float WW = W * W;
|
|
float UU3 = UU * 3.0f;
|
|
float VV3 = VV * 3.0f;
|
|
float WW3 = WW * 3.0f;
|
|
|
|
// Interpolate using barycentric coordinates and PN Triangle control points
|
|
output.WorldPosition =
|
|
input[0].WorldPosition * UU * U +
|
|
input[1].WorldPosition * VV * V +
|
|
input[2].WorldPosition * WW * W +
|
|
constantData.B210 * UU3 * V +
|
|
constantData.B120 * VV3 * U +
|
|
constantData.B021 * VV3 * W +
|
|
constantData.B012 * WW3 * V +
|
|
constantData.B102 * WW3 * U +
|
|
constantData.B201 * UU3 * W +
|
|
constantData.B111 * 6.0f * W * U * V;
|
|
#else
|
|
INTERPOLATE(WorldPosition);
|
|
#endif
|
|
INTERPOLATE(TexCoord);
|
|
INTERPOLATE(LightmapUV);
|
|
INTERPOLATE(WorldNormal);
|
|
INTERPOLATE(HolesMask);
|
|
#if USE_TERRAIN_LAYERS
|
|
UNROLL
|
|
for (int i = 0; i < TERRAIN_LAYERS_DATA_SIZE; i++)
|
|
{
|
|
INTERPOLATE(Layers[i]);
|
|
}
|
|
#endif
|
|
#if USE_CUSTOM_VERTEX_INTERPOLATORS
|
|
UNROLL
|
|
for (int i = 0; i < CUSTOM_VERTEX_INTERPOLATORS_COUNT; i++)
|
|
{
|
|
INTERPOLATE(CustomVSToPS[i]);
|
|
}
|
|
#endif
|
|
#undef INTERPOLATE
|
|
#undef COPY
|
|
|
|
// Interpolating normal can unnormalize it, so normalize it
|
|
output.WorldNormal = normalize(output.WorldNormal);
|
|
|
|
#if MATERIAL_TESSELLATION == MATERIAL_TESSELLATION_PHONG
|
|
// Orthogonal projection in the tangent planes
|
|
float3 posProjectedU = ProjectOntoPlane(input[0].WorldNormal, input[0].WorldPosition, output.WorldPosition);
|
|
float3 posProjectedV = ProjectOntoPlane(input[1].WorldNormal, input[1].WorldPosition, output.WorldPosition);
|
|
float3 posProjectedW = ProjectOntoPlane(input[2].WorldNormal, input[2].WorldPosition, output.WorldPosition);
|
|
|
|
// Interpolate the projected points
|
|
output.WorldPosition = U * posProjectedU + V * posProjectedV + W * posProjectedW;
|
|
#endif
|
|
|
|
// Perform displacement mapping
|
|
#if USE_DISPLACEMENT
|
|
MaterialInput materialInput = GetMaterialInput(output);
|
|
Material material = GetMaterialDS(materialInput);
|
|
output.WorldPosition += material.WorldDisplacement;
|
|
#endif
|
|
|
|
// Recalculate the clip space position
|
|
output.Position = mul(float4(output.WorldPosition, 1), ViewProjectionMatrix);
|
|
|
|
return output;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if USE_LIGHTMAP
|
|
|
|
float3 SampleLightmap(Material material, MaterialInput materialInput)
|
|
{
|
|
// Sample lightmaps
|
|
float4 lightmap0 = Lightmap0.Sample(SamplerLinearClamp, materialInput.LightmapUV);
|
|
float4 lightmap1 = Lightmap1.Sample(SamplerLinearClamp, materialInput.LightmapUV);
|
|
float4 lightmap2 = Lightmap2.Sample(SamplerLinearClamp, materialInput.LightmapUV);
|
|
|
|
// Unpack H-basis
|
|
float3 h0 = float3(lightmap0.x, lightmap1.x, lightmap2.x);
|
|
float3 h1 = float3(lightmap0.y, lightmap1.y, lightmap2.y);
|
|
float3 h2 = float3(lightmap0.z, lightmap1.z, lightmap2.z);
|
|
float3 h3 = float3(lightmap0.w, lightmap1.w, lightmap2.w);
|
|
|
|
// Sample baked diffuse irradiance from the H-basis coefficients
|
|
float3 normal = material.TangentNormal;
|
|
#if MATERIAL_SHADING_MODEL == SHADING_MODEL_FOLIAGE
|
|
normal *= material.TangentNormal;
|
|
#endif
|
|
return GetHBasisIrradiance(normal, h0, h1, h2, h3) / PI;
|
|
}
|
|
|
|
#endif
|
|
|
|
// Pixel Shader function for GBuffer Pass
|
|
META_PS(true, FEATURE_LEVEL_ES2)
|
|
META_PERMUTATION_1(USE_LIGHTMAP=0)
|
|
META_PERMUTATION_1(USE_LIGHTMAP=1)
|
|
void PS_GBuffer(
|
|
in PixelInput input
|
|
,out float4 Light : SV_Target0
|
|
#if MATERIAL_BLEND == MATERIAL_BLEND_OPAQUE
|
|
,out float4 RT0 : SV_Target1
|
|
,out float4 RT1 : SV_Target2
|
|
,out float4 RT2 : SV_Target3
|
|
#if USE_GBUFFER_CUSTOM_DATA
|
|
,out float4 RT3 : SV_Target4
|
|
#endif
|
|
#endif
|
|
)
|
|
{
|
|
Light = 0;
|
|
|
|
// Get material parameters
|
|
MaterialInput materialInput = GetMaterialInput(input);
|
|
Material material = GetMaterialPS(materialInput);
|
|
|
|
// Masking
|
|
#if MATERIAL_MASKED
|
|
clip(material.Mask - MATERIAL_MASK_THRESHOLD);
|
|
#endif
|
|
|
|
#if USE_LIGHTMAP
|
|
|
|
float3 diffuseColor = GetDiffuseColor(material.Color, material.Metalness);
|
|
float3 specularColor = GetSpecularColor(material.Color, material.Specular, material.Metalness);
|
|
|
|
// Sample lightmap
|
|
float3 diffuseIndirectLighting = SampleLightmap(material, materialInput);
|
|
|
|
// Apply static indirect light
|
|
Light.rgb = diffuseColor * diffuseIndirectLighting * AOMultiBounce(material.AO, diffuseColor);
|
|
|
|
#endif
|
|
|
|
#if MATERIAL_BLEND == MATERIAL_BLEND_OPAQUE
|
|
|
|
// Pack material properties to GBuffer
|
|
RT0 = float4(material.Color, material.AO);
|
|
RT1 = float4(material.WorldNormal * 0.5 + 0.5, MATERIAL_SHADING_MODEL * (1.0 / 3.0));
|
|
RT2 = float4(material.Roughness, material.Metalness, material.Specular, 0);
|
|
|
|
// Custom data
|
|
#if USE_GBUFFER_CUSTOM_DATA
|
|
#if MATERIAL_SHADING_MODEL == SHADING_MODEL_SUBSURFACE
|
|
RT3 = float4(material.SubsurfaceColor, material.Opacity);
|
|
#elif MATERIAL_SHADING_MODEL == SHADING_MODEL_FOLIAGE
|
|
RT3 = float4(material.SubsurfaceColor, material.Opacity);
|
|
#else
|
|
RT3 = float4(0, 0, 0, 0);
|
|
#endif
|
|
#endif
|
|
|
|
// Add light emission
|
|
#if USE_EMISSIVE
|
|
Light.rgb += material.Emissive;
|
|
#endif
|
|
|
|
#else
|
|
|
|
// Handle blending as faked forward pass (use Light buffer and skip GBuffer modification)
|
|
Light = float4(material.Emissive, material.Opacity);
|
|
|
|
#endif
|
|
}
|
|
|
|
// Pixel Shader function for Depth Pass
|
|
META_PS(true, FEATURE_LEVEL_ES2)
|
|
void PS_Depth(PixelInput input
|
|
#if GLSL
|
|
, out float4 OutColor : SV_Target0
|
|
#endif
|
|
)
|
|
{
|
|
#if MATERIAL_MASKED
|
|
// Perform per pixel clipping if material requries it
|
|
MaterialInput materialInput = GetMaterialInput(input);
|
|
Material material = GetMaterialPS(materialInput);
|
|
clip(material.Mask - MATERIAL_MASK_THRESHOLD);
|
|
#endif
|
|
|
|
#if GLSL
|
|
OutColor = 0;
|
|
#endif
|
|
}
|
|
|
|
@9
|