Files
FlaxEngine/Source/Engine/Graphics/Materials/TerrainMaterialShader.cpp

221 lines
8.1 KiB
C++

// Copyright (c) 2012-2021 Wojciech Figat. All rights reserved.
#include "TerrainMaterialShader.h"
#include "MaterialParams.h"
#include "Engine/Engine/Time.h"
#include "Engine/Graphics/GPUContext.h"
#include "Engine/Graphics/GPULimits.h"
#include "Engine/Graphics/GPUDevice.h"
#include "Engine/Graphics/Shaders/GPUShader.h"
#include "Engine/Graphics/RenderBuffers.h"
#include "Engine/Graphics/RenderTask.h"
#include "Engine/Graphics/RenderView.h"
#include "Engine/Graphics/Shaders/GPUConstantBuffer.h"
#include "Engine/Level/Scene/Lightmap.h"
#include "Engine/Renderer/DrawCall.h"
#include "Engine/Terrain/TerrainPatch.h"
PACK_STRUCT(struct TerrainMaterialShaderData {
Matrix ViewProjectionMatrix;
Matrix WorldMatrix;
Matrix ViewMatrix;
Vector3 ViewPos;
float ViewFar;
Vector3 ViewDir;
float TimeParam;
Vector4 ViewInfo;
Vector4 ScreenSize;
Rectangle LightmapArea;
Vector3 WorldInvScale;
float WorldDeterminantSign;
float PerInstanceRandom;
float CurrentLOD; // Index of the current LOD
float ChunkSizeNextLOD; // ChunkSize for the next current LOD (after applying LOD down-scaling)
float TerrainChunkSizeLOD0; // Size of the terrain chunk in world units of the top-most LOD0
Vector4 HeightmapUVScaleBias; // xy-scale, zw-offset for chunk geometry UVs into heightmap UVs (as single MAD instruction)
Vector4 NeighborLOD; // Per component LOD index for chunk neighbors ordered: top, left, right, bottom
Vector2 OffsetUV; // Offset applied to the texture coordinates (used to implement seamless UVs based on chunk location relative to terrain root)
Vector2 Dummy0;
});
DrawPass TerrainMaterialShader::GetDrawModes() const
{
return DrawPass::Depth | DrawPass::GBuffer;
}
bool TerrainMaterialShader::CanUseLightmap() const
{
return true;
}
void TerrainMaterialShader::Bind(BindParameters& params)
{
// Prepare
auto context = params.GPUContext;
auto& view = params.RenderContext.View;
auto& drawCall = *params.FirstDrawCall;
const auto cb0 = _shader->GetCB(0);
const bool hasCb0 = cb0->GetSize() != 0;
// Setup parameters
MaterialParameter::BindMeta bindMeta;
bindMeta.Context = context;
bindMeta.Constants = hasCb0 ? _cb0Data.Get() + sizeof(TerrainMaterialShaderData) : nullptr;
bindMeta.Input = nullptr;
bindMeta.Buffers = nullptr;
bindMeta.CanSampleDepth = false;
bindMeta.CanSampleGBuffer = false;
MaterialParams::Bind(params.ParamsLink, bindMeta);
// Setup material constants data
auto data = reinterpret_cast<TerrainMaterialShaderData*>(_cb0Data.Get());
if (hasCb0)
{
Matrix::Transpose(view.Frustum.GetMatrix(), data->ViewProjectionMatrix);
Matrix::Transpose(drawCall.World, data->WorldMatrix);
Matrix::Transpose(view.View, data->ViewMatrix);
data->ViewPos = view.Position;
data->ViewFar = view.Far;
data->ViewDir = view.Direction;
data->TimeParam = Time::Draw.UnscaledTime.GetTotalSeconds();
data->ViewInfo = view.ViewInfo;
data->ScreenSize = view.ScreenSize;
// Extract per axis scales from LocalToWorld transform
const float scaleX = Vector3(drawCall.World.M11, drawCall.World.M12, drawCall.World.M13).Length();
const float scaleY = Vector3(drawCall.World.M21, drawCall.World.M22, drawCall.World.M23).Length();
const float scaleZ = Vector3(drawCall.World.M31, drawCall.World.M32, drawCall.World.M33).Length();
data->WorldInvScale = Vector3(
scaleX > 0.00001f ? 1.0f / scaleX : 0.0f,
scaleY > 0.00001f ? 1.0f / scaleY : 0.0f,
scaleZ > 0.00001f ? 1.0f / scaleZ : 0.0f);
data->WorldDeterminantSign = drawCall.WorldDeterminantSign;
data->PerInstanceRandom = drawCall.PerInstanceRandom;
data->CurrentLOD = drawCall.Terrain.CurrentLOD;
data->ChunkSizeNextLOD = drawCall.Terrain.ChunkSizeNextLOD;
data->TerrainChunkSizeLOD0 = drawCall.Terrain.TerrainChunkSizeLOD0;
data->HeightmapUVScaleBias = drawCall.Terrain.HeightmapUVScaleBias;
data->NeighborLOD = drawCall.Terrain.NeighborLOD;
data->OffsetUV = drawCall.Terrain.OffsetUV;
}
const bool useLightmap = view.Flags & ViewFlags::GI
#if USE_EDITOR
&& EnableLightmapsUsage
#endif
&& view.Pass == DrawPass::GBuffer
&& drawCall.Terrain.Lightmap != nullptr;
if (useLightmap)
{
// Bind lightmap textures
GPUTexture *lightmap0, *lightmap1, *lightmap2;
drawCall.Terrain.Lightmap->GetTextures(&lightmap0, &lightmap1, &lightmap2);
context->BindSR(0, lightmap0);
context->BindSR(1, lightmap1);
context->BindSR(2, lightmap2);
// Set lightmap data
data->LightmapArea = drawCall.Terrain.LightmapUVsArea;
}
// Bind terrain textures
const auto heightmap = drawCall.Terrain.Patch->Heightmap.Get()->GetTexture();
const auto splatmap0 = drawCall.Terrain.Patch->Splatmap[0] ? drawCall.Terrain.Patch->Splatmap[0]->GetTexture() : nullptr;
const auto splatmap1 = drawCall.Terrain.Patch->Splatmap[1] ? drawCall.Terrain.Patch->Splatmap[1]->GetTexture() : nullptr;
context->BindSR(3, heightmap);
context->BindSR(4, splatmap0);
context->BindSR(5, splatmap1);
// Bind constants
if (hasCb0)
{
context->UpdateCB(cb0, _cb0Data.Get());
context->BindCB(0, cb0);
}
// Select pipeline state based on current pass and render mode
const bool wireframe = (_info.FeaturesFlags & MaterialFeaturesFlags::Wireframe) != 0 || view.Mode == ViewMode::Wireframe;
CullMode cullMode = view.Pass == DrawPass::Depth ? CullMode::TwoSided : _info.CullMode;
#if USE_EDITOR
if (IsRunningRadiancePass)
cullMode = CullMode::TwoSided;
#endif
if (cullMode != CullMode::TwoSided && drawCall.WorldDeterminantSign < 0)
{
// Invert culling when scale is negative
if (cullMode == CullMode::Normal)
cullMode = CullMode::Inverted;
else
cullMode = CullMode::Normal;
}
const PipelineStateCache* psCache = _cache.GetPS(view.Pass, useLightmap);
ASSERT(psCache);
GPUPipelineState* state = ((PipelineStateCache*)psCache)->GetPS(cullMode, wireframe);
// Bind pipeline
context->SetState(state);
}
void TerrainMaterialShader::Unload()
{
// Base
MaterialShader::Unload();
_cache.Release();
}
bool TerrainMaterialShader::Load()
{
GPUPipelineState::Description psDesc = GPUPipelineState::Description::Default;
psDesc.DepthTestEnable = (_info.FeaturesFlags & MaterialFeaturesFlags::DisableDepthTest) == 0;
psDesc.DepthWriteEnable = (_info.FeaturesFlags & MaterialFeaturesFlags::DisableDepthWrite) == 0;
// Check if use tessellation (both material and runtime supports it)
const bool useTess = _info.TessellationMode != TessellationMethod::None && GPUDevice::Instance->Limits.HasTessellation;
if (useTess)
{
psDesc.HS = _shader->GetHS("HS");
psDesc.DS = _shader->GetDS("DS");
}
// Support blending but then use only emissive channel
switch (_info.BlendMode)
{
case MaterialBlendMode::Transparent:
psDesc.BlendMode = BlendingMode::AlphaBlend;
break;
case MaterialBlendMode::Additive:
psDesc.BlendMode = BlendingMode::Additive;
break;
case MaterialBlendMode::Multiply:
psDesc.BlendMode = BlendingMode::Multiply;
break;
default: ;
}
// GBuffer Pass
psDesc.VS = _shader->GetVS("VS");
psDesc.PS = _shader->GetPS("PS_GBuffer");
_cache.Default.Init(psDesc);
// GBuffer Pass with lightmap (use pixel shader permutation for USE_LIGHTMAP=1)
psDesc.PS = _shader->GetPS("PS_GBuffer", 1);
_cache.DefaultLightmap.Init(psDesc);
// Depth Pass
psDesc.CullMode = CullMode::TwoSided;
psDesc.BlendMode = BlendingMode::Opaque;
psDesc.DepthClipEnable = false;
psDesc.DepthWriteEnable = true;
psDesc.DepthTestEnable = true;
psDesc.DepthFunc = ComparisonFunc::Less;
psDesc.HS = nullptr;
psDesc.DS = nullptr;
// TODO: masked terrain materials (depth pass should clip holes)
psDesc.PS = nullptr;
_cache.Depth.Init(psDesc);
return false;
}