Files
FlaxEngine/Source/Engine/Core/Math/Plane.cs
W2.Wizard 35b687bf3d Additional cleanup
Cleaned up some additional stuff that I found
2021-02-21 18:17:35 +01:00

969 lines
41 KiB
C#

// Copyright (c) 2012-2021 Wojciech Figat. All rights reserved.
// -----------------------------------------------------------------------------
// Original code from SharpDX project. https://github.com/sharpdx/SharpDX/
// Greetings to Alexandre Mutel. Original code published with the following license:
// -----------------------------------------------------------------------------
// Copyright (c) 2010-2014 SharpDX - Alexandre Mutel
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// -----------------------------------------------------------------------------
// Original code from SlimMath project. http://code.google.com/p/slimmath/
// Greetings to SlimDX Group. Original code published with the following license:
// -----------------------------------------------------------------------------
/*
* Copyright (c) 2007-2011 SlimDX Group
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
using System;
using System.Globalization;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
namespace FlaxEngine
{
[Serializable]
partial struct Plane : IEquatable<Plane>, IFormattable
{
/// <summary>
/// Initializes a new instance of the <see cref="Plane" /> struct.
/// </summary>
/// <param name="value">The value that will be assigned to all components.</param>
public Plane(float value)
{
Normal.X = Normal.Y = Normal.Z = D = value;
}
/// <summary>
/// Initializes a new instance of the <see cref="Plane" /> struct.
/// </summary>
/// <param name="a">The X component of the normal.</param>
/// <param name="b">The Y component of the normal.</param>
/// <param name="c">The Z component of the normal.</param>
/// <param name="d">The distance of the plane along its normal from the origin.</param>
public Plane(float a, float b, float c, float d)
{
Normal.X = a;
Normal.Y = b;
Normal.Z = c;
D = d;
}
/// <summary>
/// Initializes a new instance of the <see cref="T:FlaxEngine.Plane" /> class.
/// </summary>
/// <param name="point">Any point that lies along the plane.</param>
/// <param name="normal">The normal vector to the plane.</param>
public Plane(Vector3 point, Vector3 normal)
{
Normal = normal;
D = -Vector3.Dot(normal, point);
}
/// <summary>
/// Initializes a new instance of the <see cref="Plane" /> struct.
/// </summary>
/// <param name="value">The normal of the plane.</param>
/// <param name="d">The distance of the plane along its normal from the origin</param>
public Plane(Vector3 value, float d)
{
Normal = value;
D = d;
}
/// <summary>
/// Initializes a new instance of the <see cref="Plane" /> struct.
/// </summary>
/// <param name="point1">First point of a triangle defining the plane.</param>
/// <param name="point2">Second point of a triangle defining the plane.</param>
/// <param name="point3">Third point of a triangle defining the plane.</param>
public Plane(Vector3 point1, Vector3 point2, Vector3 point3)
{
float x1 = point2.X - point1.X;
float y1 = point2.Y - point1.Y;
float z1 = point2.Z - point1.Z;
float x2 = point3.X - point1.X;
float y2 = point3.Y - point1.Y;
float z2 = point3.Z - point1.Z;
float yz = y1 * z2 - z1 * y2;
float xz = z1 * x2 - x1 * z2;
float xy = x1 * y2 - y1 * x2;
float invPyth = 1.0f / (float)Math.Sqrt(yz * yz + xz * xz + xy * xy);
Normal.X = yz * invPyth;
Normal.Y = xz * invPyth;
Normal.Z = xy * invPyth;
D = -(Normal.X * point1.X + Normal.Y * point1.Y + Normal.Z * point1.Z);
}
/// <summary>
/// Initializes a new instance of the <see cref="Plane" /> struct.
/// </summary>
/// <param name="values">
/// The values to assign to the A, B, C, and D components of the plane. This must be an array with
/// four elements.
/// </param>
/// <exception cref="ArgumentNullException">Thrown when <paramref name="values" /> is <c>null</c>.</exception>
/// <exception cref="ArgumentOutOfRangeException">
/// Thrown when <paramref name="values" /> contains more or less than four
/// elements.
/// </exception>
public Plane(float[] values)
{
if (values == null)
throw new ArgumentNullException(nameof(values));
if (values.Length != 4)
throw new ArgumentOutOfRangeException(nameof(values), "There must be four and only four input values for Plane.");
Normal.X = values[0];
Normal.Y = values[1];
Normal.Z = values[2];
D = values[3];
}
/// <summary>
/// Gets or sets the component at the specified index.
/// </summary>
/// <value>The value of the A, B, C, or D component, depending on the index.</value>
/// <param name="index">
/// The index of the component to access. Use 0 for the A component, 1 for the B component, 2 for the C
/// component, and 3 for the D component.
/// </param>
/// <returns>The value of the component at the specified index.</returns>
/// <exception cref="System.ArgumentOutOfRangeException">
/// Thrown when the <paramref name="index" /> is out of the range [0,
/// 3].
/// </exception>
public float this[int index]
{
get
{
switch (index)
{
case 0:
return Normal.X;
case 1:
return Normal.Y;
case 2:
return Normal.Z;
case 3:
return D;
}
throw new ArgumentOutOfRangeException(nameof(index), "Indices for Plane run from 0 to 3, inclusive.");
}
set
{
switch (index)
{
case 0:
Normal.X = value;
break;
case 1:
Normal.Y = value;
break;
case 2:
Normal.Z = value;
break;
case 3:
D = value;
break;
default:
throw new ArgumentOutOfRangeException(nameof(index), "Indices for Plane run from 0 to 3, inclusive.");
}
}
}
/// <summary>
/// Changes the coefficients of the normal vector of the plane to make it of unit length.
/// </summary>
public void Normalize()
{
float magnitude = 1.0f / (float)Math.Sqrt(Normal.X * Normal.X + Normal.Y * Normal.Y + Normal.Z * Normal.Z);
Normal.X *= magnitude;
Normal.Y *= magnitude;
Normal.Z *= magnitude;
D *= magnitude;
}
/// <summary>
/// Creates an array containing the elements of the plane.
/// </summary>
/// <returns>A four-element array containing the components of the plane.</returns>
public float[] ToArray()
{
return new[]
{
Normal.X,
Normal.Y,
Normal.Z,
D
};
}
/// <summary>
/// Determines if there is an intersection between the current object and a point.
/// </summary>
/// <param name="point">The point to test.</param>
/// <returns>Whether the two objects intersected.</returns>
public PlaneIntersectionType Intersects(ref Vector3 point)
{
return CollisionsHelper.PlaneIntersectsPoint(ref this, ref point);
}
/// <summary>
/// Determines if there is an intersection between the current object and a <see cref="Ray" />.
/// </summary>
/// <param name="ray">The ray to test.</param>
/// <returns>Whether the two objects intersected.</returns>
public bool Intersects(ref Ray ray)
{
return CollisionsHelper.RayIntersectsPlane(ref ray, ref this, out float _);
}
/// <summary>
/// Determines if there is an intersection between the current object and a <see cref="Ray" />.
/// </summary>
/// <param name="ray">The ray to test.</param>
/// <param name="distance">
/// When the method completes, contains the distance of the intersection,
/// or 0 if there was no intersection.
/// </param>
/// <returns>Whether the two objects intersected.</returns>
public bool Intersects(ref Ray ray, out float distance)
{
return CollisionsHelper.RayIntersectsPlane(ref ray, ref this, out distance);
}
/// <summary>
/// Determines if there is an intersection between the current object and a <see cref="Ray" />.
/// </summary>
/// <param name="ray">The ray to test.</param>
/// <param name="point">
/// When the method completes, contains the point of intersection,
/// or <see cref="Vector3.Zero" /> if there was no intersection.
/// </param>
/// <returns>Whether the two objects intersected.</returns>
public bool Intersects(ref Ray ray, out Vector3 point)
{
return CollisionsHelper.RayIntersectsPlane(ref ray, ref this, out point);
}
/// <summary>
/// Determines if there is an intersection between the current object and a <see cref="Plane" />.
/// </summary>
/// <param name="plane">The plane to test.</param>
/// <returns>Whether the two objects intersected.</returns>
public bool Intersects(ref Plane plane)
{
return CollisionsHelper.PlaneIntersectsPlane(ref this, ref plane);
}
/// <summary>
/// Determines if there is an intersection between the current object and a <see cref="Plane" />.
/// </summary>
/// <param name="plane">The plane to test.</param>
/// <param name="line">
/// When the method completes, contains the line of intersection
/// as a <see cref="Ray" />, or a zero ray if there was no intersection.
/// </param>
/// <returns>Whether the two objects intersected.</returns>
public bool Intersects(ref Plane plane, out Ray line)
{
return CollisionsHelper.PlaneIntersectsPlane(ref this, ref plane, out line);
}
/// <summary>
/// Determines if there is an intersection between the current object and a triangle.
/// </summary>
/// <param name="vertex1">The first vertex of the triangle to test.</param>
/// <param name="vertex2">The second vertex of the triangle to test.</param>
/// <param name="vertex3">The third vertex of the triangle to test.</param>
/// <returns>Whether the two objects intersected.</returns>
public PlaneIntersectionType Intersects(ref Vector3 vertex1, ref Vector3 vertex2, ref Vector3 vertex3)
{
return CollisionsHelper.PlaneIntersectsTriangle(ref this, ref vertex1, ref vertex2, ref vertex3);
}
/// <summary>
/// Determines if there is an intersection between the current object and a <see cref="BoundingBox" />.
/// </summary>
/// <param name="box">The box to test.</param>
/// <returns>Whether the two objects intersected.</returns>
public PlaneIntersectionType Intersects(ref BoundingBox box)
{
return CollisionsHelper.PlaneIntersectsBox(ref this, ref box);
}
/// <summary>
/// Determines if there is an intersection between the current object and a <see cref="BoundingSphere" />.
/// </summary>
/// <param name="sphere">The sphere to test.</param>
/// <returns>Whether the two objects intersected.</returns>
public PlaneIntersectionType Intersects(ref BoundingSphere sphere)
{
return CollisionsHelper.PlaneIntersectsSphere(ref this, ref sphere);
}
/// <summary>
/// Builds a matrix that can be used to reflect vectors about a plane.
/// </summary>
/// <param name="result">When the method completes, contains the reflection matrix.</param>
public void Reflection(out Matrix result)
{
float x = Normal.X;
float y = Normal.Y;
float z = Normal.Z;
float x2 = -2.0f * x;
float y2 = -2.0f * y;
float z2 = -2.0f * z;
result.M11 = x2 * x + 1.0f;
result.M12 = y2 * x;
result.M13 = z2 * x;
result.M14 = 0.0f;
result.M21 = x2 * y;
result.M22 = y2 * y + 1.0f;
result.M23 = z2 * y;
result.M24 = 0.0f;
result.M31 = x2 * z;
result.M32 = y2 * z;
result.M33 = z2 * z + 1.0f;
result.M34 = 0.0f;
result.M41 = x2 * D;
result.M42 = y2 * D;
result.M43 = z2 * D;
result.M44 = 1.0f;
}
/// <summary>
/// Builds a matrix that can be used to reflect vectors about a plane.
/// </summary>
/// <returns>The reflection matrix.</returns>
public Matrix Reflection()
{
Reflection(out Matrix result);
return result;
}
/// <summary>
/// Creates a matrix that flattens geometry into a shadow from this the plane onto which to project the geometry as a
/// shadow.
/// This plane is assumed to be normalized
/// </summary>
/// <param name="light">
/// The light direction. If the W component is 0, the light is directional light; if the
/// W component is 1, the light is a point light.
/// </param>
/// <param name="result">When the method completes, contains the shadow matrix.</param>
public void Shadow(ref Vector4 light, out Matrix result)
{
float dot = Normal.X * light.X + Normal.Y * light.Y + Normal.Z * light.Z + D * light.W;
float x = -Normal.X;
float y = -Normal.Y;
float z = -Normal.Z;
float d = -D;
result.M11 = x * light.X + dot;
result.M21 = y * light.X;
result.M31 = z * light.X;
result.M41 = d * light.X;
result.M12 = x * light.Y;
result.M22 = y * light.Y + dot;
result.M32 = z * light.Y;
result.M42 = d * light.Y;
result.M13 = x * light.Z;
result.M23 = y * light.Z;
result.M33 = z * light.Z + dot;
result.M43 = d * light.Z;
result.M14 = x * light.W;
result.M24 = y * light.W;
result.M34 = z * light.W;
result.M44 = d * light.W + dot;
}
/// <summary>
/// Creates a matrix that flattens geometry into a shadow from this the plane onto which to project the geometry as a
/// shadow.
/// This plane is assumed to be normalized
/// </summary>
/// <param name="light">
/// The light direction. If the W component is 0, the light is directional light; if the
/// W component is 1, the light is a point light.
/// </param>
/// <returns>The shadow matrix.</returns>
public Matrix Shadow(Vector4 light)
{
Shadow(ref light, out Matrix result);
return result;
}
/// <summary>
/// Builds a Matrix3x3 that can be used to reflect vectors about a plane for which the reflection occurs.
/// This plane is assumed to be normalized
/// </summary>
/// <param name="result">When the method completes, contains the reflection Matrix3x3.</param>
public void Reflection(out Matrix3x3 result)
{
float x = Normal.X;
float y = Normal.Y;
float z = Normal.Z;
float x2 = -2.0f * x;
float y2 = -2.0f * y;
float z2 = -2.0f * z;
result.M11 = x2 * x + 1.0f;
result.M12 = y2 * x;
result.M13 = z2 * x;
result.M21 = x2 * y;
result.M22 = y2 * y + 1.0f;
result.M23 = z2 * y;
result.M31 = x2 * z;
result.M32 = y2 * z;
result.M33 = z2 * z + 1.0f;
}
/// <summary>
/// Builds a Matrix3x3 that can be used to reflect vectors about a plane for which the reflection occurs.
/// This plane is assumed to be normalized
/// </summary>
/// <returns>The reflection Matrix3x3.</returns>
public Matrix3x3 Reflection3x3()
{
Reflection(out Matrix3x3 result);
return result;
}
/// <summary>
/// Creates a Matrix3x3 that flattens geometry into a shadow.
/// </summary>
/// <param name="light">
/// The light direction. If the W component is 0, the light is directional light; if the
/// W component is 1, the light is a point light.
/// </param>
/// <param name="plane">
/// The plane onto which to project the geometry as a shadow. This parameter is assumed to be
/// normalized.
/// </param>
/// <param name="result">When the method completes, contains the shadow Matrix3x3.</param>
public static void Shadow(ref Vector4 light, ref Plane plane, out Matrix3x3 result)
{
float dot = plane.Normal.X * light.X + plane.Normal.Y * light.Y + plane.Normal.Z * light.Z + plane.D * light.W;
float x = -plane.Normal.X;
float y = -plane.Normal.Y;
float z = -plane.Normal.Z;
result.M11 = x * light.X + dot;
result.M21 = y * light.X;
result.M31 = z * light.X;
result.M12 = x * light.Y;
result.M22 = y * light.Y + dot;
result.M32 = z * light.Y;
result.M13 = x * light.Z;
result.M23 = y * light.Z;
result.M33 = z * light.Z + dot;
}
/// <summary>
/// Creates a Matrix3x3 that flattens geometry into a shadow.
/// </summary>
/// <param name="light">
/// The light direction. If the W component is 0, the light is directional light; if the
/// W component is 1, the light is a point light.
/// </param>
/// <param name="plane">
/// The plane onto which to project the geometry as a shadow. This parameter is assumed to be
/// normalized.
/// </param>
/// <returns>The shadow Matrix3x3.</returns>
public static Matrix3x3 Shadow(Vector4 light, Plane plane)
{
Shadow(ref light, ref plane, out Matrix3x3 result);
return result;
}
/// <summary>
/// Scales the plane by the given scaling factor.
/// </summary>
/// <param name="value">The plane to scale.</param>
/// <param name="scale">The amount by which to scale the plane.</param>
/// <param name="result">When the method completes, contains the scaled plane.</param>
public static void Multiply(ref Plane value, float scale, out Plane result)
{
result.Normal.X = value.Normal.X * scale;
result.Normal.Y = value.Normal.Y * scale;
result.Normal.Z = value.Normal.Z * scale;
result.D = value.D * scale;
}
/// <summary>
/// Scales the plane by the given scaling factor.
/// </summary>
/// <param name="value">The plane to scale.</param>
/// <param name="scale">The amount by which to scale the plane.</param>
/// <returns>The scaled plane.</returns>
public static Plane Multiply(Plane value, float scale)
{
return new Plane(value.Normal.X * scale, value.Normal.Y * scale, value.Normal.Z * scale, value.D * scale);
}
/// <summary>
/// Calculates the dot product of the specified vector and plane.
/// </summary>
/// <param name="left">The source plane.</param>
/// <param name="right">The source vector.</param>
/// <param name="result">When the method completes, contains the dot product of the specified plane and vector.</param>
public static void Dot(ref Plane left, ref Vector4 right, out float result)
{
result = left.Normal.X * right.X + left.Normal.Y * right.Y + left.Normal.Z * right.Z + left.D * right.W;
}
/// <summary>
/// Calculates the dot product of the specified vector and plane.
/// </summary>
/// <param name="left">The source plane.</param>
/// <param name="right">The source vector.</param>
/// <returns>The dot product of the specified plane and vector.</returns>
public static float Dot(Plane left, Vector4 right)
{
return left.Normal.X * right.X + left.Normal.Y * right.Y + left.Normal.Z * right.Z + left.D * right.W;
}
/// <summary>
/// Calculates the dot product of a specified vector and the normal of the plane plus the distance value of the plane.
/// </summary>
/// <param name="left">The source plane.</param>
/// <param name="right">The source vector.</param>
/// <param name="result">
/// When the method completes, contains the dot product of a specified vector and the normal of the
/// Plane plus the distance value of the plane.
/// </param>
public static void DotCoordinate(ref Plane left, ref Vector3 right, out float result)
{
result = left.Normal.X * right.X + left.Normal.Y * right.Y + left.Normal.Z * right.Z + left.D;
}
/// <summary>
/// Calculates the dot product of a specified vector and the normal of the plane plus the distance value of the plane.
/// </summary>
/// <param name="left">The source plane.</param>
/// <param name="right">The source vector.</param>
/// <returns>The dot product of a specified vector and the normal of the Plane plus the distance value of the plane.</returns>
public static float DotCoordinate(Plane left, Vector3 right)
{
return left.Normal.X * right.X + left.Normal.Y * right.Y + left.Normal.Z * right.Z + left.D;
}
/// <summary>
/// Calculates the dot product of the specified vector and the normal of the plane.
/// </summary>
/// <param name="left">The source plane.</param>
/// <param name="right">The source vector.</param>
/// <param name="result">
/// When the method completes, contains the dot product of the specified vector and the normal of the
/// plane.
/// </param>
public static void DotNormal(ref Plane left, ref Vector3 right, out float result)
{
result = left.Normal.X * right.X + left.Normal.Y * right.Y + left.Normal.Z * right.Z;
}
/// <summary>
/// Calculates the dot product of the specified vector and the normal of the plane.
/// </summary>
/// <param name="left">The source plane.</param>
/// <param name="right">The source vector.</param>
/// <returns>The dot product of the specified vector and the normal of the plane.</returns>
public static float DotNormal(Plane left, Vector3 right)
{
return left.Normal.X * right.X + left.Normal.Y * right.Y + left.Normal.Z * right.Z;
}
/// <summary>
/// Changes the coefficients of the normal vector of the plane to make it of unit length.
/// </summary>
/// <param name="plane">The source plane.</param>
/// <param name="result">When the method completes, contains the normalized plane.</param>
public static void Normalize(ref Plane plane, out Plane result)
{
float magnitude = 1.0f / (float)Math.Sqrt(plane.Normal.X * plane.Normal.X + plane.Normal.Y * plane.Normal.Y + plane.Normal.Z * plane.Normal.Z);
result.Normal.X = plane.Normal.X * magnitude;
result.Normal.Y = plane.Normal.Y * magnitude;
result.Normal.Z = plane.Normal.Z * magnitude;
result.D = plane.D * magnitude;
}
/// <summary>
/// Changes the coefficients of the normal vector of the plane to make it of unit length.
/// </summary>
/// <param name="plane">The source plane.</param>
/// <returns>The normalized plane.</returns>
public static Plane Normalize(Plane plane)
{
float magnitude = 1.0f / (float)Math.Sqrt(plane.Normal.X * plane.Normal.X + plane.Normal.Y * plane.Normal.Y + plane.Normal.Z * plane.Normal.Z);
return new Plane(plane.Normal.X * magnitude, plane.Normal.Y * magnitude, plane.Normal.Z * magnitude, plane.D * magnitude);
}
/// <summary>
/// Transforms a normalized plane by a quaternion rotation.
/// </summary>
/// <param name="plane">The normalized source plane.</param>
/// <param name="rotation">The quaternion rotation.</param>
/// <param name="result">When the method completes, contains the transformed plane.</param>
public static void Transform(ref Plane plane, ref Quaternion rotation, out Plane result)
{
float x2 = rotation.X + rotation.X;
float y2 = rotation.Y + rotation.Y;
float z2 = rotation.Z + rotation.Z;
float wx = rotation.W * x2;
float wy = rotation.W * y2;
float wz = rotation.W * z2;
float xx = rotation.X * x2;
float xy = rotation.X * y2;
float xz = rotation.X * z2;
float yy = rotation.Y * y2;
float yz = rotation.Y * z2;
float zz = rotation.Z * z2;
float x = plane.Normal.X;
float y = plane.Normal.Y;
float z = plane.Normal.Z;
result.Normal.X = x * (1.0f - yy - zz) + y * (xy - wz) + z * (xz + wy);
result.Normal.Y = x * (xy + wz) + y * (1.0f - xx - zz) + z * (yz - wx);
result.Normal.Z = x * (xz - wy) + y * (yz + wx) + z * (1.0f - xx - yy);
result.D = plane.D;
}
/// <summary>
/// Transforms a normalized plane by a quaternion rotation.
/// </summary>
/// <param name="plane">The normalized source plane.</param>
/// <param name="rotation">The quaternion rotation.</param>
/// <returns>The transformed plane.</returns>
public static Plane Transform(Plane plane, Quaternion rotation)
{
Plane result;
float x2 = rotation.X + rotation.X;
float y2 = rotation.Y + rotation.Y;
float z2 = rotation.Z + rotation.Z;
float wx = rotation.W * x2;
float wy = rotation.W * y2;
float wz = rotation.W * z2;
float xx = rotation.X * x2;
float xy = rotation.X * y2;
float xz = rotation.X * z2;
float yy = rotation.Y * y2;
float yz = rotation.Y * z2;
float zz = rotation.Z * z2;
float x = plane.Normal.X;
float y = plane.Normal.Y;
float z = plane.Normal.Z;
result.Normal.X = x * (1.0f - yy - zz) + y * (xy - wz) + z * (xz + wy);
result.Normal.Y = x * (xy + wz) + y * (1.0f - xx - zz) + z * (yz - wx);
result.Normal.Z = x * (xz - wy) + y * (yz + wx) + z * (1.0f - xx - yy);
result.D = plane.D;
return result;
}
/// <summary>
/// Transforms an array of normalized planes by a quaternion rotation.
/// </summary>
/// <param name="planes">The array of normalized planes to transform.</param>
/// <param name="rotation">The quaternion rotation.</param>
/// <exception cref="ArgumentNullException">Thrown when <paramref name="planes" /> is <c>null</c>.</exception>
public static void Transform(Plane[] planes, ref Quaternion rotation)
{
if (planes == null)
throw new ArgumentNullException(nameof(planes));
float x2 = rotation.X + rotation.X;
float y2 = rotation.Y + rotation.Y;
float z2 = rotation.Z + rotation.Z;
float wx = rotation.W * x2;
float wy = rotation.W * y2;
float wz = rotation.W * z2;
float xx = rotation.X * x2;
float xy = rotation.X * y2;
float xz = rotation.X * z2;
float yy = rotation.Y * y2;
float yz = rotation.Y * z2;
float zz = rotation.Z * z2;
for (var i = 0; i < planes.Length; ++i)
{
float x = planes[i].Normal.X;
float y = planes[i].Normal.Y;
float z = planes[i].Normal.Z;
/*
* Note:
* Factor common arithmetic out of loop.
*/
planes[i].Normal.X = x * (1.0f - yy - zz) + y * (xy - wz) + z * (xz + wy);
planes[i].Normal.Y = x * (xy + wz) + y * (1.0f - xx - zz) + z * (yz - wx);
planes[i].Normal.Z = x * (xz - wy) + y * (yz + wx) + z * (1.0f - xx - yy);
}
}
/// <summary>
/// Transforms a normalized plane by a matrix.
/// </summary>
/// <param name="plane">The normalized source plane.</param>
/// <param name="transformation">The transformation matrix.</param>
/// <param name="result">When the method completes, contains the transformed plane.</param>
public static void Transform(ref Plane plane, ref Matrix transformation, out Plane result)
{
float x = plane.Normal.X;
float y = plane.Normal.Y;
float z = plane.Normal.Z;
float d = plane.D;
Matrix.Invert(ref transformation, out Matrix inverse);
result.Normal.X = x * inverse.M11 + y * inverse.M12 + z * inverse.M13 + d * inverse.M14;
result.Normal.Y = x * inverse.M21 + y * inverse.M22 + z * inverse.M23 + d * inverse.M24;
result.Normal.Z = x * inverse.M31 + y * inverse.M32 + z * inverse.M33 + d * inverse.M34;
result.D = x * inverse.M41 + y * inverse.M42 + z * inverse.M43 + d * inverse.M44;
}
/// <summary>
/// Transforms a normalized plane by a matrix.
/// </summary>
/// <param name="plane">The normalized source plane.</param>
/// <param name="transformation">The transformation matrix.</param>
/// <returns>When the method completes, contains the transformed plane.</returns>
public static Plane Transform(Plane plane, Matrix transformation)
{
Plane result;
float x = plane.Normal.X;
float y = plane.Normal.Y;
float z = plane.Normal.Z;
float d = plane.D;
transformation.Invert();
result.Normal.X = x * transformation.M11 + y * transformation.M12 + z * transformation.M13 + d * transformation.M14;
result.Normal.Y = x * transformation.M21 + y * transformation.M22 + z * transformation.M23 + d * transformation.M24;
result.Normal.Z = x * transformation.M31 + y * transformation.M32 + z * transformation.M33 + d * transformation.M34;
result.D = x * transformation.M41 + y * transformation.M42 + z * transformation.M43 + d * transformation.M44;
return result;
}
/// <summary>
/// Transforms an array of normalized planes by a matrix.
/// </summary>
/// <param name="planes">The array of normalized planes to transform.</param>
/// <param name="transformation">The transformation matrix.</param>
/// <exception cref="ArgumentNullException">Thrown when <paramref name="planes" /> is <c>null</c>.</exception>
public static void Transform(Plane[] planes, ref Matrix transformation)
{
if (planes == null)
throw new ArgumentNullException(nameof(planes));
Matrix.Invert(ref transformation, out _);
for (var i = 0; i < planes.Length; ++i)
Transform(ref planes[i], ref transformation, out planes[i]);
}
/// <summary>
/// Scales a plane by the given value.
/// </summary>
/// <param name="scale">The amount by which to scale the plane.</param>
/// <param name="plane">The plane to scale.</param>
/// <returns>The scaled plane.</returns>
public static Plane operator *(float scale, Plane plane)
{
return new Plane(plane.Normal.X * scale, plane.Normal.Y * scale, plane.Normal.Z * scale, plane.D * scale);
}
/// <summary>
/// Scales a plane by the given value.
/// </summary>
/// <param name="plane">The plane to scale.</param>
/// <param name="scale">The amount by which to scale the plane.</param>
/// <returns>The scaled plane.</returns>
public static Plane operator *(Plane plane, float scale)
{
return new Plane(plane.Normal.X * scale, plane.Normal.Y * scale, plane.Normal.Z * scale, plane.D * scale);
}
/// <summary>
/// Tests for equality between two objects.
/// </summary>
/// <param name="left">The first value to compare.</param>
/// <param name="right">The second value to compare.</param>
/// <returns>
/// <c>true</c> if <paramref name="left" /> has the same value as <paramref name="right" />; otherwise,
/// <c>false</c>.
/// </returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static bool operator ==(Plane left, Plane right)
{
return left.Equals(ref right);
}
/// <summary>
/// Tests for inequality between two objects.
/// </summary>
/// <param name="left">The first value to compare.</param>
/// <param name="right">The second value to compare.</param>
/// <returns>
/// <c>true</c> if <paramref name="left" /> has a different value than <paramref name="right" />; otherwise,
/// <c>false</c>.
/// </returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static bool operator !=(Plane left, Plane right)
{
return !left.Equals(ref right);
}
/// <summary>
/// Returns a <see cref="System.String" /> that represents this instance.
/// </summary>
/// <returns>
/// A <see cref="System.String" /> that represents this instance.
/// </returns>
public override string ToString()
{
return string.Format(CultureInfo.CurrentCulture, "A:{0} B:{1} C:{2} D:{3}", Normal.X, Normal.Y, Normal.Z, D);
}
/// <summary>
/// Returns a <see cref="System.String" /> that represents this instance.
/// </summary>
/// <param name="format">The format.</param>
/// <returns>
/// A <see cref="System.String" /> that represents this instance.
/// </returns>
public string ToString(string format)
{
return string.Format(CultureInfo.CurrentCulture, "A:{0} B:{1} C:{2} D:{3}", Normal.X.ToString(format, CultureInfo.CurrentCulture),
Normal.Y.ToString(format, CultureInfo.CurrentCulture), Normal.Z.ToString(format, CultureInfo.CurrentCulture), D.ToString(format, CultureInfo.CurrentCulture));
}
/// <summary>
/// Returns a <see cref="System.String" /> that represents this instance.
/// </summary>
/// <param name="formatProvider">The format provider.</param>
/// <returns>
/// A <see cref="System.String" /> that represents this instance.
/// </returns>
public string ToString(IFormatProvider formatProvider)
{
return string.Format(formatProvider, "A:{0} B:{1} C:{2} D:{3}", Normal.X, Normal.Y, Normal.Z, D);
}
/// <summary>
/// Returns a <see cref="System.String" /> that represents this instance.
/// </summary>
/// <param name="format">The format.</param>
/// <param name="formatProvider">The format provider.</param>
/// <returns>
/// A <see cref="System.String" /> that represents this instance.
/// </returns>
public string ToString(string format, IFormatProvider formatProvider)
{
return string.Format(formatProvider, "A:{0} B:{1} C:{2} D:{3}", Normal.X.ToString(format, formatProvider),
Normal.Y.ToString(format, formatProvider), Normal.Z.ToString(format, formatProvider), D.ToString(format, formatProvider));
}
/// <summary>
/// Returns a hash code for this instance.
/// </summary>
/// <returns>
/// A hash code for this instance, suitable for use in hashing algorithms and data structures like a hash table.
/// </returns>
public override int GetHashCode()
{
unchecked
{
return (Normal.GetHashCode() * 397) ^ D.GetHashCode();
}
}
/// <summary>
/// Determines whether the specified <see cref="Vector4" /> is equal to this instance.
/// </summary>
/// <param name="value">The <see cref="Vector4" /> to compare with this instance.</param>
/// <returns>
/// <c>true</c> if the specified <see cref="Vector4" /> is equal to this instance; otherwise, <c>false</c>.
/// </returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public bool Equals(ref Plane value)
{
return (Normal == value.Normal) && (D == value.D);
}
/// <summary>
/// Determines whether the specified <see cref="Vector4" /> is equal to this instance.
/// </summary>
/// <param name="value">The <see cref="Vector4" /> to compare with this instance.</param>
/// <returns>
/// <c>true</c> if the specified <see cref="Vector4" /> is equal to this instance; otherwise, <c>false</c>.
/// </returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public bool Equals(Plane value)
{
return Equals(ref value);
}
/// <summary>
/// Determines whether the specified <see cref="System.Object" /> is equal to this instance.
/// </summary>
/// <param name="value">The <see cref="System.Object" /> to compare with this instance.</param>
/// <returns>
/// <c>true</c> if the specified <see cref="System.Object" /> is equal to this instance; otherwise, <c>false</c>.
/// </returns>
public override bool Equals(object value)
{
if (!(value is Plane))
return false;
var strongValue = (Plane)value;
return Equals(ref strongValue);
}
}
}