Files
FlaxEngine/Source/Engine/Core/Math/Vector2.h
2020-12-07 23:40:54 +01:00

628 lines
14 KiB
C++

// Copyright (c) 2012-2020 Wojciech Figat. All rights reserved.
#pragma once
#include "Math.h"
#include "Engine/Core/Formatting.h"
#include "Engine/Core/Templates.h"
struct Vector3;
struct Vector4;
struct Color;
struct Matrix;
/// <summary>
/// Represents a two dimensional mathematical vector.
/// </summary>
API_STRUCT() struct FLAXENGINE_API Vector2
{
DECLARE_SCRIPTING_TYPE_MINIMAL(Vector2);
public:
union
{
struct
{
/// <summary>
/// The X component of the vector.
/// </summary>
API_FIELD() float X;
/// <summary>
/// The Y component of the vector.
/// </summary>
API_FIELD() float Y;
};
// Raw values
float Raw[2];
};
public:
// Vector with all components equal 0
static const Vector2 Zero;
// Vector with all components equal 1
static const Vector2 One;
// Vector X=1, Y=0
static const Vector2 UnitX;
// Vector X=0, Y=1
static const Vector2 UnitY;
// A minimum Vector2
static const Vector2 Minimum;
// A maximum Vector2
static const Vector2 Maximum;
public:
/// <summary>
/// Empty constructor.
/// </summary>
Vector2()
{
}
// Init
// @param xy Value to assign to the all components
Vector2(float xy)
: X(xy)
, Y(xy)
{
}
// Init
// @param x X component value
// @param y Y component value
Vector2(float x, float y)
: X(x)
, Y(y)
{
}
// Init
// @param v Vector to use X and Y components
explicit Vector2(const Int2& v);
// Init
// @param v Vector to use X and Y components
explicit Vector2(const Vector3& v);
// Init
// @param v Vector4 to use X and Y components
explicit Vector2(const Vector4& v);
// Init
// @param color Color value
explicit Vector2(const Color& color);
public:
String ToString() const;
public:
// Arithmetic operators with Vector2
Vector2 operator+(const Vector2& b) const
{
return Add(*this, b);
}
Vector2 operator-(const Vector2& b) const
{
return Subtract(*this, b);
}
Vector2 operator*(const Vector2& b) const
{
return Multiply(*this, b);
}
Vector2 operator/(const Vector2& b) const
{
return Divide(*this, b);
}
Vector2 operator-() const
{
return Vector2(-X, -Y);
}
// op= operators with Vector2
Vector2& operator+=(const Vector2& b)
{
*this = Add(*this, b);
return *this;
}
Vector2& operator-=(const Vector2& b)
{
*this = Subtract(*this, b);
return *this;
}
Vector2& operator*=(const Vector2& b)
{
*this = Multiply(*this, b);
return *this;
}
Vector2& operator/=(const Vector2& b)
{
*this = Divide(*this, b);
return *this;
}
// Arithmetic operators with float
Vector2 operator+(float b) const
{
return Add(*this, b);
}
Vector2 operator-(float b) const
{
return Subtract(*this, b);
}
Vector2 operator*(float b) const
{
return Multiply(*this, b);
}
Vector2 operator/(float b) const
{
return Divide(*this, b);
}
// op= operators with float
Vector2& operator+=(float b)
{
*this = Add(*this, b);
return *this;
}
Vector2& operator-=(float b)
{
*this = Subtract(*this, b);
return *this;
}
Vector2& operator*=(float b)
{
*this = Multiply(*this, b);
return *this;
}
Vector2& operator/=(float b)
{
*this = Divide(*this, b);
return *this;
}
// Comparison operators
bool operator==(const Vector2& b) const
{
return X == b.X && Y == b.Y;
}
bool operator!=(const Vector2& b) const
{
return X != b.X || Y != b.Y;
}
bool operator>(const Vector2& b) const
{
return X > b.X && Y > b.Y;
}
bool operator>=(const Vector2& b) const
{
return X >= b.X && Y >= b.Y;
}
bool operator<(const Vector2& b) const
{
return X < b.X && Y < b.Y;
}
bool operator<=(const Vector2& b) const
{
return X <= b.X && Y <= b.Y;
}
public:
static bool NearEqual(const Vector2& a, const Vector2& b)
{
return Math::NearEqual(a.X, b.X) && Math::NearEqual(a.Y, b.Y);
}
static bool NearEqual(const Vector2& a, const Vector2& b, float epsilon)
{
return Math::NearEqual(a.X, b.X, epsilon) && Math::NearEqual(a.Y, b.Y, epsilon);
}
public:
static float Dot(const Vector2& a, const Vector2& b)
{
return a.X * b.X + a.Y * b.Y;
}
static float Cross(const Vector2& a, const Vector2& b)
{
return a.X * b.Y - a.Y * b.X;
}
static void Add(const Vector2& a, const Vector2& b, Vector2& result)
{
result.X = a.X + b.X;
result.Y = a.Y + b.Y;
}
static Vector2 Add(const Vector2& a, const Vector2& b)
{
Vector2 result;
Add(a, b, result);
return result;
}
static void Subtract(const Vector2& a, const Vector2& b, Vector2& result)
{
result.X = a.X - b.X;
result.Y = a.Y - b.Y;
}
static Vector2 Subtract(const Vector2& a, const Vector2& b)
{
Vector2 result;
Subtract(a, b, result);
return result;
}
static Vector2 Multiply(const Vector2& a, const Vector2& b)
{
return Vector2(a.X * b.X, a.Y * b.Y);
}
static Vector2 Multiply(const Vector2& a, float b)
{
return Vector2(a.X * b, a.Y * b);
}
static Vector2 Divide(const Vector2& a, const Vector2& b)
{
return Vector2(a.X / b.X, a.Y / b.Y);
}
static Vector2 Divide(const Vector2& a, float b)
{
return Vector2(a.X / b, a.Y / b);
}
// Calculates distance between two points in 2D
// @param a 1st point
// @param b 2nd point
// @returns Distance
static float Distance(const Vector2& a, const Vector2& b)
{
const float x = a.X - b.X;
const float y = a.Y - b.Y;
return Math::Sqrt(x * x + y * y);
}
// Calculates the squared distance between two points in 2D
// @param a 1st point
// @param b 2nd point
// @returns Distance
static float DistanceSquared(const Vector2& a, const Vector2& b)
{
const float x = a.X - b.X;
const float y = a.Y - b.Y;
return x * x + y * y;
}
// Clamp vector values within given range
// @param v Vector to clamp
// @param min Minimum value
// @param max Maximum value
// @returns Clamped vector
static Vector2 Clamp(const Vector2& v, float min, float max)
{
return Vector2(Math::Clamp(v.X, min, max), Math::Clamp(v.Y, min, max));
}
// Clamp vector values within given range
// @param v Vector to clamp
// @param min Minimum value
// @param max Maximum value
// @returns Clamped vector
static Vector2 Clamp(const Vector2& v, const Vector2& min, const Vector2& max)
{
return Vector2(Math::Clamp(v.X, min.X, max.X), Math::Clamp(v.Y, min.Y, max.Y));
}
// Performs vector normalization (scales vector up to unit length)
void Normalize()
{
const float length = Length();
if (!Math::IsZero(length))
{
const float invLength = 1.0f / length;
X *= invLength;
Y *= invLength;
}
}
public:
// Gets a value indicting whether this instance is normalized
bool IsNormalized() const
{
return Math::IsOne(X * X + Y * Y);
}
// Gets a value indicting whether this vector is zero
bool IsZero() const
{
return Math::IsZero(X) && Math::IsZero(Y);
}
// Gets a value indicting whether any vector component is zero
bool IsAnyZero() const
{
return Math::IsZero(X) || Math::IsZero(Y);
}
// Gets a value indicting whether this vector is zero
bool IsOne() const
{
return Math::IsOne(X) && Math::IsOne(Y);
}
// Calculates length of the vector
// @returns Length of the vector
float Length() const
{
return Math::Sqrt(X * X + Y * Y);
}
// Calculates the squared length of the vector
// @returns The squared length of the vector
float LengthSquared() const
{
return X * X + Y * Y;
}
// Calculates inverted length of the vector (1 / Length())
float InvLength() const
{
return 1.0f / Length();
}
// Calculates a vector with values being absolute values of that vector
Vector2 GetAbsolute() const
{
return Vector2(Math::Abs(X), Math::Abs(Y));
}
// Calculates a vector with values being opposite to values of that vector
Vector2 GetNegative() const
{
return Vector2(-X, -Y);
}
/// <summary>
/// Returns average arithmetic of all the components
/// </summary>
/// <returns>Average arithmetic of all the components</returns>
float AverageArithmetic() const
{
return (X + Y) * 0.5f;
}
/// <summary>
/// Gets sum of all vector components values
/// </summary>
/// <returns>Sum of X,Y and Z</returns>
float SumValues() const
{
return X + Y;
}
/// <summary>
/// Gets multiplication result of all vector components values
/// </summary>
/// <returns>X * Y</returns>
float MulValues() const
{
return X * Y;
}
/// <summary>
/// Returns minimum value of all the components
/// </summary>
/// <returns>Minimum value</returns>
float MinValue() const
{
return Math::Min(X, Y);
}
/// <summary>
/// Returns maximum value of all the components
/// </summary>
/// <returns>Maximum value</returns>
float MaxValue() const
{
return Math::Max(X, Y);
}
/// <summary>
/// Returns true if vector has one or more components is not a number (NaN)
/// </summary>
/// <returns>True if one or more components is not a number (NaN)</returns>
bool IsNaN() const
{
return isnan(X) || isnan(Y);
}
/// <summary>
/// Returns true if vector has one or more components equal to +/- infinity
/// </summary>
/// <returns>True if one or more components equal to +/- infinity</returns>
bool IsInfinity() const
{
return isinf(X) || isinf(Y);
}
/// <summary>
/// Returns true if vector has one or more components equal to +/- infinity or NaN
/// </summary>
/// <returns>True if one or more components equal to +/- infinity or NaN</returns>
bool IsNanOrInfinity() const
{
return IsInfinity() || IsNaN();
}
public:
// Performs a linear interpolation between two vectors
// @param start Start vector
// @param end End vector
// @param amount Value between 0 and 1 indicating the weight of end
// @param result When the method completes, contains the linear interpolation of the two vectors
static void Lerp(const Vector2& start, const Vector2& end, float amount, Vector2& result)
{
result.X = Math::Lerp(start.X, end.X, amount);
result.Y = Math::Lerp(start.Y, end.Y, amount);
}
// <summary>
// Performs a linear interpolation between two vectors.
// </summary>
// @param start Start vector,
// @param end End vector,
// @param amount Value between 0 and 1 indicating the weight of @paramref end"/>,
// @returns The linear interpolation of the two vectors
static Vector2 Lerp(const Vector2& start, const Vector2& end, float amount)
{
Vector2 result;
Lerp(start, end, amount, result);
return result;
}
static Vector2 Abs(const Vector2& v)
{
return Vector2(Math::Abs(v.X), Math::Abs(v.Y));
}
// Creates vector from minimum components of two vectors
static Vector2 Min(const Vector2& a, const Vector2& b)
{
return Vector2(a.X < b.X ? a.X : b.X, a.Y < b.Y ? a.Y : b.Y);
}
// Creates vector from minimum components of two vectors
static void Min(const Vector2& a, const Vector2& b, Vector2& result)
{
result = Vector2(a.X < b.X ? a.X : b.X, a.Y < b.Y ? a.Y : b.Y);
}
// Creates vector from maximum components of two vectors
static Vector2 Max(const Vector2& a, const Vector2& b)
{
return Vector2(a.X > b.X ? a.X : b.X, a.Y > b.Y ? a.Y : b.Y);
}
// Creates vector from maximum components of two vectors
static void Max(const Vector2& a, const Vector2& b, Vector2& result)
{
result = Vector2(a.X > b.X ? a.X : b.X, a.Y > b.Y ? a.Y : b.Y);
}
// Returns normalized vector
static Vector2 Normalize(const Vector2& v);
static Vector2 Round(const Vector2& v)
{
return Vector2(Math::Round(v.X), Math::Round(v.Y));
}
static Vector2 Ceil(const Vector2& v)
{
return Vector2(Math::Ceil(v.X), Math::Ceil(v.Y));
}
static Vector2 Floor(const Vector2& v)
{
return Vector2(Math::Floor(v.X), Math::Floor(v.Y));
}
static Vector2 Frac(const Vector2& v)
{
return Vector2(v.X - (int32)v.X, v.Y - (int32)v.Y);
}
static Int2 CeilToInt(const Vector2& v);
static Int2 FloorToInt(const Vector2& v);
static Vector2 Mod(const Vector2& v)
{
return Vector2(
(float)(v.X - (int32)v.X),
(float)(v.Y - (int32)v.Y)
);
}
public:
/// <summary>
/// Calculates the area of the triangle.
/// </summary>
/// <param name="v0">The first triangle vertex.</param>
/// <param name="v1">The second triangle vertex.</param>
/// <param name="v2">The third triangle vertex.</param>
/// <returns>The triangle area.</returns>
static float TriangleArea(const Vector2& v0, const Vector2& v1, const Vector2& v2);
};
inline Vector2 operator+(float a, const Vector2& b)
{
return b + a;
}
inline Vector2 operator-(float a, const Vector2& b)
{
return Vector2(a) - b;
}
inline Vector2 operator*(float a, const Vector2& b)
{
return b * a;
}
inline Vector2 operator/(float a, const Vector2& b)
{
return Vector2(a) / b;
}
namespace Math
{
FORCE_INLINE static bool NearEqual(const Vector2& a, const Vector2& b)
{
return Vector2::NearEqual(a, b);
}
}
template<>
struct TIsPODType<Vector2>
{
enum { Value = true };
};
DEFINE_DEFAULT_FORMATTING(Vector2, "X:{0} Y:{1}", v.X, v.Y);