Files
FlaxEngine/Source/Engine/Physics/Actors/RigidBody.cpp
2021-01-02 14:28:49 +01:00

591 lines
14 KiB
C++

// Copyright (c) 2012-2021 Wojciech Figat. All rights reserved.
#include "RigidBody.h"
#include "Engine/Physics/Utilities.h"
#include "Engine/Physics/Colliders/Collider.h"
#include "Engine/Physics/Physics.h"
#include "Engine/Serialization/Serialization.h"
#include <ThirdParty/PhysX/extensions/PxRigidBodyExt.h>
#include <ThirdParty/PhysX/PxRigidActor.h>
#include <ThirdParty/PhysX/PxRigidDynamic.h>
#include <ThirdParty/PhysX/PxPhysics.h>
RigidBody::RigidBody(const SpawnParams& params)
: PhysicsActor(params)
, _actor(nullptr)
, _mass(1.0f)
, _linearDamping(0.01f)
, _angularDamping(0.05f)
, _maxAngularVelocity(7.0f)
, _massScale(1.0f)
, _centerOfMassOffset(Vector3::Zero)
, _constraints(RigidbodyConstraints::None)
, _enableSimulation(true)
, _isKinematic(false)
, _useCCD(false)
, _enableGravity(true)
, _startAwake(true)
, _updateMassWhenScaleChanges(false)
, _overrideMass(false)
{
}
void RigidBody::SetIsKinematic(const bool value)
{
if (value == GetIsKinematic())
return;
_isKinematic = value;
if (_actor)
_actor->setRigidBodyFlag(PxRigidBodyFlag::eKINEMATIC, value);
}
void RigidBody::SetLinearDamping(float value)
{
if (Math::NearEqual(value, _linearDamping))
return;
_linearDamping = value;
if (_actor)
{
_actor->setLinearDamping(value);
}
}
void RigidBody::SetAngularDamping(float value)
{
if (Math::NearEqual(value, _angularDamping))
return;
_angularDamping = value;
if (_actor)
{
_actor->setAngularDamping(value);
}
}
void RigidBody::SetEnableSimulation(bool value)
{
if (value == GetEnableSimulation())
return;
_enableSimulation = value;
if (_actor)
{
const bool isActive = _enableSimulation && IsActiveInHierarchy();
_actor->setActorFlag(PxActorFlag::eDISABLE_SIMULATION, !isActive);
// Auto wake up
if (isActive && GetStartAwake())
WakeUp();
}
}
void RigidBody::SetUseCCD(bool value)
{
if (value == GetUseCCD())
return;
_useCCD = value;
if (_actor)
_actor->setRigidBodyFlag(PxRigidBodyFlag::eENABLE_CCD, value);
}
void RigidBody::SetEnableGravity(bool value)
{
if (value == GetEnableGravity())
return;
_enableGravity = value;
if (_actor)
{
_actor->setActorFlag(PxActorFlag::eDISABLE_GRAVITY, !value);
if (value)
WakeUp();
}
}
void RigidBody::SetStartAwake(bool value)
{
_startAwake = value;
}
void RigidBody::SetUpdateMassWhenScaleChanges(bool value)
{
_updateMassWhenScaleChanges = value;
}
void RigidBody::SetMaxAngularVelocity(float value)
{
if (Math::NearEqual(value, _maxAngularVelocity))
return;
_maxAngularVelocity = value;
if (_actor)
_actor->setMaxAngularVelocity(value);
}
void RigidBody::SetOverrideMass(bool value)
{
if (value == GetOverrideMass())
return;
_overrideMass = value;
UpdateMass();
}
void RigidBody::SetMass(float value)
{
if (Math::NearEqual(value, _mass))
return;
_mass = value;
// Auto enable override
_overrideMass = true;
UpdateMass();
}
void RigidBody::SetMassScale(float value)
{
if (Math::NearEqual(value, _massScale))
return;
_massScale = value;
if (!_overrideMass)
UpdateMass();
}
void RigidBody::SetCenterOfMassOffset(const Vector3& value)
{
if (Vector3::NearEqual(value, _centerOfMassOffset))
return;
_centerOfMassOffset = value;
if (_actor)
{
PxTransform pose = _actor->getCMassLocalPose();
pose.p += C2P(_centerOfMassOffset);
_actor->setCMassLocalPose(pose);
}
}
void RigidBody::SetConstraints(const RigidbodyConstraints value)
{
if (value == _constraints)
return;
_constraints = value;
if (_actor)
{
_actor->setRigidDynamicLockFlags(static_cast<PxRigidDynamicLockFlag::Enum>(value));
}
}
Vector3 RigidBody::GetLinearVelocity() const
{
return _actor ? P2C(_actor->getLinearVelocity()) : Vector3::Zero;
}
void RigidBody::SetLinearVelocity(const Vector3& value) const
{
if (_actor)
_actor->setLinearVelocity(C2P(value), GetStartAwake());
}
Vector3 RigidBody::GetAngularVelocity() const
{
return _actor ? P2C(_actor->getAngularVelocity()) : Vector3::Zero;
}
void RigidBody::SetAngularVelocity(const Vector3& value) const
{
if (_actor)
_actor->setAngularVelocity(C2P(value), GetStartAwake());
}
float RigidBody::GetMaxDepenetrationVelocity() const
{
return _actor ? _actor->getMaxDepenetrationVelocity() : 0;
}
void RigidBody::SetMaxDepenetrationVelocity(const float value) const
{
if (_actor)
_actor->setMaxDepenetrationVelocity(value);
}
float RigidBody::GetSleepThreshold() const
{
return _actor ? _actor->getSleepThreshold() : 0;
}
void RigidBody::SetSleepThreshold(const float value) const
{
if (_actor)
_actor->setSleepThreshold(value);
}
Vector3 RigidBody::GetCenterOfMass() const
{
return _actor ? P2C(_actor->getCMassLocalPose().p) : Vector3::Zero;
}
bool RigidBody::IsSleeping() const
{
return _actor ? _actor->isSleeping() : false;
}
void RigidBody::Sleep() const
{
if (_actor && GetEnableSimulation() && !GetIsKinematic() && IsActiveInHierarchy() && _actor->getScene())
{
_actor->putToSleep();
}
}
void RigidBody::WakeUp() const
{
if (_actor && GetEnableSimulation() && !GetIsKinematic() && IsActiveInHierarchy() && _actor->getScene())
{
_actor->wakeUp();
}
}
void RigidBody::UpdateMass()
{
// Skip if no actor created
if (_actor == nullptr)
return;
// Physical material
float densityKGPerCubicUU = 1.0f;
float raiseMassToPower = 0.75f;
// TODO: link physical material or expose density parameter
PxRigidBodyExt::updateMassAndInertia(*_actor, densityKGPerCubicUU);
// Grab old mass so we can apply new mass while maintaining inertia tensor
const float oldMass = _actor->getMass();
float newMass;
if (_overrideMass == false)
{
const float usePow = Math::Clamp<float>(raiseMassToPower, ZeroTolerance, 1.0f);
newMass = Math::Pow(oldMass, usePow);
// Apply user-defined mass scaling
newMass *= Math::Clamp<float>(_massScale, 0.01f, 100.0f);
_mass = newMass;
}
else
{
// Min weight of 1g
newMass = Math::Max(_mass, 0.001f);
}
ASSERT(newMass > 0.0f);
const float massRatio = newMass / oldMass;
const PxVec3 inertiaTensor = _actor->getMassSpaceInertiaTensor();
_actor->setMassSpaceInertiaTensor(inertiaTensor * massRatio);
_actor->setMass(newMass);
}
void RigidBody::AddForce(const Vector3& force, ForceMode mode) const
{
if (_actor && GetEnableSimulation())
{
_actor->addForce(C2P(force), static_cast<PxForceMode::Enum>(mode));
}
}
void RigidBody::AddRelativeForce(const Vector3& force, ForceMode mode) const
{
AddForce(Vector3::Transform(force, _transform.Orientation), mode);
}
void RigidBody::AddTorque(const Vector3& torque, ForceMode mode) const
{
if (_actor && GetEnableSimulation())
{
_actor->addTorque(C2P(torque), static_cast<PxForceMode::Enum>(mode));
}
}
void RigidBody::AddRelativeTorque(const Vector3& torque, ForceMode mode) const
{
AddTorque(Vector3::Transform(torque, _transform.Orientation), mode);
}
void RigidBody::SetSolverIterationCounts(int32 minPositionIters, int32 minVelocityIters) const
{
if (_actor)
{
_actor->setSolverIterationCounts(Math::Clamp(minPositionIters, 1, 255), Math::Clamp(minVelocityIters, 1, 255));
}
}
void RigidBody::ClosestPoint(const Vector3& position, Vector3& result) const
{
Vector3 tmp;
float minDistanceSqr = MAX_float;
result = Vector3::Maximum;
for (int32 i = 0; i < Children.Count(); i++)
{
const auto collider = dynamic_cast<Collider*>(Children[i]);
if (collider && collider->GetAttachedRigidBody() == this)
{
collider->ClosestPoint(position, tmp);
const auto dstSqr = Vector3::DistanceSquared(position, tmp);
if (dstSqr < minDistanceSqr)
{
minDistanceSqr = dstSqr;
result = tmp;
}
}
}
}
void RigidBody::OnCollisionEnter(const Collision& c)
{
CollisionEnter(c);
}
void RigidBody::OnCollisionExit(const Collision& c)
{
CollisionExit(c);
}
void RigidBody::OnTriggerEnter(PhysicsColliderActor* c)
{
TriggerEnter(c);
}
void RigidBody::OnTriggerExit(PhysicsColliderActor* c)
{
TriggerExit(c);
}
void RigidBody::CreateActor()
{
ASSERT(_actor == nullptr);
// Create rigid body
const PxTransform trans(C2P(_transform.Translation), C2P(_transform.Orientation));
_actor = CPhysX->createRigidDynamic(trans);
_actor->userData = this;
// Setup flags
#if WITH_PVD
PxActorFlags actorFlags = PxActorFlag::eVISUALIZATION;
#else
PxActorFlags actorFlags = static_cast<PxActorFlags>(0);
#endif
const bool isActive = _enableSimulation && IsActiveInHierarchy();
if (!isActive)
actorFlags |= PxActorFlag::eDISABLE_SIMULATION;
if (!_enableGravity)
actorFlags |= PxActorFlag::eDISABLE_GRAVITY;
_actor->setActorFlags(actorFlags);
if (_useCCD)
_actor->setRigidBodyFlag(PxRigidBodyFlag::eENABLE_CCD, true);
if (_isKinematic)
_actor->setRigidBodyFlag(PxRigidBodyFlag::eKINEMATIC, true);
// Apply properties
_actor->setLinearDamping(_linearDamping);
_actor->setAngularDamping(_angularDamping);
_actor->setMaxAngularVelocity(_maxAngularVelocity);
_actor->setRigidDynamicLockFlags(static_cast<PxRigidDynamicLockFlag::Enum>(_constraints));
// Find colliders to attach
for (int32 i = 0; i < Children.Count(); i++)
{
auto collider = dynamic_cast<Collider*>(Children[i]);
if (collider && collider->CanAttach(this))
{
collider->Attach(this);
}
}
// Setup mass (calculate or use overriden value)
UpdateMass();
// Apply the Center Of Mass offset
if (!_centerOfMassOffset.IsZero())
{
PxTransform pose = _actor->getCMassLocalPose();
pose.p += C2P(_centerOfMassOffset);
_actor->setCMassLocalPose(pose);
}
// Register actor
const bool putToSleep = !_startAwake && GetEnableSimulation() && !GetIsKinematic() && IsActiveInHierarchy();
Physics::AddActor(_actor, putToSleep);
// Update cached data
UpdateBounds();
}
void RigidBody::UpdateScale()
{
const Vector3 scale = GetScale();
if (Vector3::NearEqual(_cachedScale, scale))
return;
_cachedScale = scale;
// Check if update mass
if (_updateMassWhenScaleChanges && !_overrideMass)
UpdateMass();
}
void RigidBody::Serialize(SerializeStream& stream, const void* otherObj)
{
// Base
PhysicsActor::Serialize(stream, otherObj);
SERIALIZE_GET_OTHER_OBJ(RigidBody);
SERIALIZE_BIT_MEMBER(OverrideMass, _overrideMass);
SERIALIZE_MEMBER(Mass, _mass);
SERIALIZE_MEMBER(LinearDamping, _linearDamping);
SERIALIZE_MEMBER(AngularDamping, _angularDamping);
SERIALIZE_MEMBER(MaxAngularVelocity, _maxAngularVelocity);
SERIALIZE_MEMBER(CenterOfMassOffset, _centerOfMassOffset);
SERIALIZE_MEMBER(MassScale, _massScale);
SERIALIZE_MEMBER(Constraints, _constraints);
SERIALIZE_BIT_MEMBER(EnableSimulation, _enableSimulation);
SERIALIZE_BIT_MEMBER(IsKinematic, _isKinematic);
SERIALIZE_BIT_MEMBER(UseCCD, _useCCD);
SERIALIZE_BIT_MEMBER(EnableGravity, _enableGravity);
SERIALIZE_BIT_MEMBER(StartAwake, _startAwake);
SERIALIZE_BIT_MEMBER(UpdateMassWhenScaleChanges, _updateMassWhenScaleChanges);
}
void RigidBody::Deserialize(DeserializeStream& stream, ISerializeModifier* modifier)
{
// Base
PhysicsActor::Deserialize(stream, modifier);
DESERIALIZE_BIT_MEMBER(OverrideMass, _overrideMass);
DESERIALIZE_MEMBER(Mass, _mass);
DESERIALIZE_MEMBER(LinearDamping, _linearDamping);
DESERIALIZE_MEMBER(AngularDamping, _angularDamping);
DESERIALIZE_MEMBER(MaxAngularVelocity, _maxAngularVelocity);
DESERIALIZE_MEMBER(CenterOfMassOffset, _centerOfMassOffset);
DESERIALIZE_MEMBER(MassScale, _massScale);
DESERIALIZE_MEMBER(Constraints, _constraints);
DESERIALIZE_BIT_MEMBER(EnableSimulation, _enableSimulation);
DESERIALIZE_BIT_MEMBER(IsKinematic, _isKinematic);
DESERIALIZE_BIT_MEMBER(UseCCD, _useCCD);
DESERIALIZE_BIT_MEMBER(EnableGravity, _enableGravity);
DESERIALIZE_BIT_MEMBER(StartAwake, _startAwake);
DESERIALIZE_BIT_MEMBER(UpdateMassWhenScaleChanges, _updateMassWhenScaleChanges);
}
PxActor* RigidBody::GetPhysXActor()
{
return (PxActor*)_actor;
}
PxRigidActor* RigidBody::GetRigidActor()
{
return (PxRigidActor*)_actor;
}
void RigidBody::BeginPlay(SceneBeginData* data)
{
CreateActor();
// Base
PhysicsActor::BeginPlay(data);
}
void RigidBody::EndPlay()
{
// Detach all the shapes
PxShape* shapes[8];
while (_actor && _actor->getNbShapes() > 0)
{
const uint32 count = _actor->getShapes(shapes, 8, 0);
for (uint32 i = 0; i < count; i++)
{
_actor->detachShape(*shapes[i], false);
}
}
// Base
PhysicsActor::EndPlay();
if (_actor)
{
// Remove actor
Physics::RemoveActor(_actor);
_actor = nullptr;
}
}
void RigidBody::OnActiveInTreeChanged()
{
// Base
PhysicsActor::OnActiveInTreeChanged();
if (_actor)
{
const bool isActive = _enableSimulation && IsActiveInHierarchy();
_actor->setActorFlag(PxActorFlag::eDISABLE_SIMULATION, !isActive);
// Auto wake up
if (isActive && GetStartAwake())
WakeUp();
// Clear velocities and the forces on disabled
else if (!IsActiveInHierarchy())
Sleep();
}
}
void RigidBody::OnTransformChanged()
{
// Update physics is not during physics state synchronization
if (!_isUpdatingTransform && _actor)
{
// Base (skip PhysicsActor call to optimize)
Actor::OnTransformChanged();
const PxTransform trans(C2P(_transform.Translation), C2P(_transform.Orientation));
if (GetIsKinematic() && GetEnableSimulation())
_actor->setKinematicTarget(trans);
else
_actor->setGlobalPose(trans, true);
UpdateScale();
UpdateBounds();
}
else
{
// Base
PhysicsActor::OnTransformChanged();
}
}