344 lines
10 KiB
HLSL
344 lines
10 KiB
HLSL
// Copyright (c) 2012-2024 Wojciech Figat. All rights reserved.
|
|
|
|
// Copyright (c) 2011 Stefan Gustavson. All rights reserved.
|
|
// Distributed under the MIT license.
|
|
// https://github.com/stegu/webgl-noise
|
|
|
|
#ifndef __NOISE__
|
|
#define __NOISE__
|
|
|
|
#include "./Flax/Common.hlsl"
|
|
|
|
float2 Mod289(float2 x)
|
|
{
|
|
return x - floor(x * (1.0 / 289.0)) * 289.0;
|
|
}
|
|
|
|
float3 Mod289(float3 x)
|
|
{
|
|
return x - floor(x * (1.0 / 289.0)) * 289.0;
|
|
}
|
|
|
|
float4 Mod289(float4 x)
|
|
{
|
|
return x - floor(x * (1.0 / 289.0)) * 289.0;
|
|
}
|
|
|
|
float3 Mod7(float3 x)
|
|
{
|
|
return x - floor(x * (1.0f / 7.0f)) * 7.0f;
|
|
}
|
|
|
|
float2 Permute(float2 x)
|
|
{
|
|
return Mod289(((x * 34.0) + 1.0) * x);
|
|
}
|
|
|
|
float3 Permute(float3 x)
|
|
{
|
|
return Mod289(((x * 34.0) + 1.0) * x);
|
|
}
|
|
|
|
float4 Permute(float4 x)
|
|
{
|
|
return Mod289(((x * 34.0) + 1.0) * x);
|
|
}
|
|
|
|
float4 TaylorInvSqrt(float4 r)
|
|
{
|
|
return 1.79284291400159 - 0.85373472095314 * r;
|
|
}
|
|
|
|
float2 PerlinNoiseFade(float2 t)
|
|
{
|
|
return t * t * t * (t * (t * 6.0 - 15.0) + 10.0);
|
|
}
|
|
|
|
float rand2dTo1d(float2 value, float2 dotDir = float2(12.9898, 78.233))
|
|
{
|
|
// https://www.ronja-tutorials.com/post/024-white-noise/
|
|
float2 smallValue = sin(value);
|
|
float random = dot(smallValue, dotDir);
|
|
return frac(sin(random) * 143758.5453);
|
|
}
|
|
|
|
float2 rand2dTo2d(float2 value)
|
|
{
|
|
// https://www.ronja-tutorials.com/post/024-white-noise/
|
|
return float2(
|
|
rand2dTo1d(value, float2(12.989, 78.233)),
|
|
rand2dTo1d(value, float2(39.346, 11.135))
|
|
);
|
|
}
|
|
|
|
// Classic Perlin noise
|
|
float PerlinNoise(float2 p)
|
|
{
|
|
float4 Pi = floor(p.xyxy) + float4(0.0, 0.0, 1.0, 1.0);
|
|
float4 Pf = frac(p.xyxy) - float4(0.0, 0.0, 1.0, 1.0);
|
|
Pi = Mod289(Pi);
|
|
float4 ix = Pi.xzxz;
|
|
float4 iy = Pi.yyww;
|
|
float4 fx = Pf.xzxz;
|
|
float4 fy = Pf.yyww;
|
|
|
|
float4 i = Permute(Permute(ix) + iy);
|
|
|
|
float4 gx = frac(i * (1.0 / 41.0)) * 2.0 - 1.0;
|
|
float4 gy = abs(gx) - 0.5;
|
|
float4 tx = floor(gx + 0.5);
|
|
gx = gx - tx;
|
|
|
|
float2 g00 = float2(gx.x, gy.x);
|
|
float2 g10 = float2(gx.y, gy.y);
|
|
float2 g01 = float2(gx.z, gy.z);
|
|
float2 g11 = float2(gx.w, gy.w);
|
|
|
|
float4 norm = TaylorInvSqrt(float4(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11)));
|
|
g00 *= norm.x;
|
|
g01 *= norm.y;
|
|
g10 *= norm.z;
|
|
g11 *= norm.w;
|
|
|
|
float n00 = dot(g00, float2(fx.x, fy.x));
|
|
float n10 = dot(g10, float2(fx.y, fy.y));
|
|
float n01 = dot(g01, float2(fx.z, fy.z));
|
|
float n11 = dot(g11, float2(fx.w, fy.w));
|
|
|
|
float2 fade_xy = PerlinNoiseFade(Pf.xy);
|
|
float2 n_x = lerp(float2(n00, n01), float2(n10, n11), fade_xy.x);
|
|
float n_xy = lerp(n_x.x, n_x.y, fade_xy.y);
|
|
return saturate(2.3 * n_xy);
|
|
}
|
|
|
|
// Classic Perlin noise with periodic variant
|
|
float PerlinNoise(float2 p, float2 rep)
|
|
{
|
|
float4 Pi = floor(p.xyxy) + float4(0.0, 0.0, 1.0, 1.0);
|
|
float4 Pf = frac(p.xyxy) - float4(0.0, 0.0, 1.0, 1.0);
|
|
Pi = fmod(Pi, rep.xyxy);
|
|
Pi = Mod289(Pi);
|
|
float4 ix = Pi.xzxz;
|
|
float4 iy = Pi.yyww;
|
|
float4 fx = Pf.xzxz;
|
|
float4 fy = Pf.yyww;
|
|
|
|
float4 i = Permute(Permute(ix) + iy);
|
|
|
|
float4 gx = frac(i * (1.0 / 41.0)) * 2.0 - 1.0;
|
|
float4 gy = abs(gx) - 0.5;
|
|
float4 tx = floor(gx + 0.5);
|
|
gx = gx - tx;
|
|
|
|
float2 g00 = float2(gx.x, gy.x);
|
|
float2 g10 = float2(gx.y, gy.y);
|
|
float2 g01 = float2(gx.z, gy.z);
|
|
float2 g11 = float2(gx.w, gy.w);
|
|
|
|
float4 norm = TaylorInvSqrt(float4(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11)));
|
|
g00 *= norm.x;
|
|
g01 *= norm.y;
|
|
g10 *= norm.z;
|
|
g11 *= norm.w;
|
|
|
|
float n00 = dot(g00, float2(fx.x, fy.x));
|
|
float n10 = dot(g10, float2(fx.y, fy.y));
|
|
float n01 = dot(g01, float2(fx.z, fy.z));
|
|
float n11 = dot(g11, float2(fx.w, fy.w));
|
|
|
|
float2 fade_xy = PerlinNoiseFade(Pf.xy);
|
|
float2 n_x = lerp(float2(n00, n01), float2(n10, n11), fade_xy.x);
|
|
float n_xy = lerp(n_x.x, n_x.y, fade_xy.y);
|
|
return saturate(2.3 * n_xy);
|
|
}
|
|
|
|
// Simplex noise
|
|
float SimplexNoise(float2 p)
|
|
{
|
|
float4 C = float4(0.211324865405187f, // (3.0-math.sqrt(3.0))/6.0
|
|
0.366025403784439f, // 0.5*(math.sqrt(3.0)-1.0)
|
|
-0.577350269189626f, // -1.0 + 2.0 * C.x
|
|
0.024390243902439f); // 1.0 / 41.0
|
|
|
|
// First corner
|
|
float2 i = floor(p + dot(p, C.yy));
|
|
float2 x0 = p - i + dot(i, C.xx);
|
|
|
|
// Other corners
|
|
float2 i1 = (x0.x > x0.y) ? float2(1.0f, 0.0f) : float2(0.0f, 1.0f);
|
|
float4 x12 = x0.xyxy + C.xxzz;
|
|
x12.xy -= i1;
|
|
|
|
// Permutations
|
|
i = Mod289(i);
|
|
float3 perm = Permute(Permute(i.y + float3(0.0f, i1.y, 1.0f)) + i.x + float3(0.0f, i1.x, 1.0f));
|
|
float3 m = max(0.5f - float3(dot(x0, x0), dot(x12.xy, x12.xy), dot(x12.zw, x12.zw)), 0.0f);
|
|
m = m * m;
|
|
m = m * m;
|
|
|
|
// Gradients: 41 points uniformly over a line, mapped onto a diamond.
|
|
// The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287)
|
|
float3 x = 2.0f * frac(perm * C.www) - 1.0f;
|
|
float3 h = abs(x) - 0.5f;
|
|
float3 ox = floor(x + 0.5f);
|
|
float3 a0 = x - ox;
|
|
|
|
// Normalise gradients implicitly by scaling m
|
|
// Approximation of: m *= inversemath.sqrt( a0*a0 + h*h );
|
|
m *= 1.79284291400159f - 0.85373472095314f * (a0 * a0 + h * h);
|
|
|
|
// Compute final noise value at P
|
|
float gx = a0.x * x0.x + h.x * x0.y;
|
|
float2 gyz = a0.yz * x12.xz + h.yz * x12.yw;
|
|
float3 g = float3(gx, gyz);
|
|
return saturate(130.0f * dot(m, g));
|
|
}
|
|
|
|
// Worley noise (cellar noise with standard 3x3 search window for F1 and F2 values)
|
|
float2 WorleyNoise(float2 p)
|
|
{
|
|
const float K = 0.142857142857f; // 1/7
|
|
const float Ko = 0.428571428571f; // 3/7
|
|
const float jitter = 1.0f; // Less gives more regular pattern
|
|
float2 Pi = Mod289(floor(p));
|
|
float2 Pf = frac(p);
|
|
float3 oi = float3(-1.0f, 0.0f, 1.0f);
|
|
float3 of = float3(-0.5f, 0.5f, 1.5f);
|
|
float3 px = Permute(Pi.x + oi);
|
|
float3 pp = Permute(px.x + Pi.y + oi); // p11, p12, p13
|
|
float3 ox = frac(pp * K) - Ko;
|
|
float3 oy = Mod7(floor(pp * K)) * K - Ko;
|
|
float3 dx = Pf.x + 0.5f + jitter * ox;
|
|
float3 dy = Pf.y - of + jitter * oy;
|
|
float3 d1 = dx * dx + dy * dy; // d11, d12 and d13, squared
|
|
pp = Permute(px.y + Pi.y + oi); // p21, p22, p23
|
|
ox = frac(pp * K) - Ko;
|
|
oy = Mod7(floor(pp * K)) * K - Ko;
|
|
dx = Pf.x - 0.5f + jitter * ox;
|
|
dy = Pf.y - of + jitter * oy;
|
|
float3 d2 = dx * dx + dy * dy; // d21, d22 and d23, squared
|
|
pp = Permute(px.z + Pi.y + oi); // p31, p32, p33
|
|
ox = frac(pp * K) - Ko;
|
|
oy = Mod7(floor(pp * K)) * K - Ko;
|
|
dx = Pf.x - 1.5f + jitter * ox;
|
|
dy = Pf.y - of + jitter * oy;
|
|
float3 d3 = dx * dx + dy * dy; // d31, d32 and d33, squared
|
|
float3 d1a = min(d1, d2); // Sort out the two smallest distances (F1, F2)
|
|
d2 = max(d1, d2); // Swap to keep candidates for F2
|
|
d2 = min(d2, d3); // neither F1 nor F2 are now in d3
|
|
d1 = min(d1a, d2); // F1 is now in d1
|
|
d2 = max(d1a, d2); // Swap to keep candidates for F2
|
|
d1.xy = (d1.x < d1.y) ? d1.xy : d1.yx; // Swap if smaller
|
|
d1.xz = (d1.x < d1.z) ? d1.xz : d1.zx; // F1 is in d1.x
|
|
d1.yz = min(d1.yz, d2.yz); // F2 is now not in d2.yz
|
|
d1.y = min(d1.y, d1.z); // nor in d1.z
|
|
d1.y = min(d1.y, d2.x); // F2 is in d1.y, we're done.
|
|
return saturate(sqrt(d1.xy));
|
|
}
|
|
|
|
// Voronoi noise (X=minDistToCell, Y=randomColor, Z=minEdgeDistance)
|
|
float3 VoronoiNoise(float2 p)
|
|
{
|
|
// Reference: https://www.ronja-tutorials.com/post/028-voronoi-noise/
|
|
float2 baseCell = floor(p);
|
|
|
|
// first pass to find the closest cell
|
|
float minDistToCell = 10;
|
|
float2 toClosestCell;
|
|
float2 closestCell;
|
|
UNROLL
|
|
for (int x1 = -1; x1 <= 1; x1++)
|
|
{
|
|
UNROLL
|
|
for (int y1 = -1; y1 <= 1; y1++)
|
|
{
|
|
float2 cell = baseCell + float2(x1, y1);
|
|
float2 cellPosition = cell + rand2dTo2d(cell);
|
|
float2 toCell = cellPosition - p;
|
|
float distToCell = length(toCell);
|
|
if (distToCell < minDistToCell)
|
|
{
|
|
minDistToCell = distToCell;
|
|
closestCell = cell;
|
|
toClosestCell = toCell;
|
|
}
|
|
}
|
|
}
|
|
|
|
// second pass to find the distance to the closest edge
|
|
float minEdgeDistance = 10;
|
|
UNROLL
|
|
for (int x2 = -1; x2 <= 1; x2++)
|
|
{
|
|
UNROLL
|
|
for (int y2 = -1; y2 <= 1; y2++)
|
|
{
|
|
float2 cell = baseCell + float2(x2, y2);
|
|
float2 cellPosition = cell + rand2dTo2d(cell);
|
|
float2 toCell = cellPosition - p;
|
|
float2 diffToClosestCell = abs(closestCell - cell);
|
|
if (diffToClosestCell.x + diffToClosestCell.y >= 0.1)
|
|
{
|
|
float2 toCenter = (toClosestCell + toCell) * 0.5;
|
|
float2 cellDifference = normalize(toCell - toClosestCell);
|
|
minEdgeDistance = min(minEdgeDistance, dot(toCenter, cellDifference));
|
|
}
|
|
}
|
|
}
|
|
|
|
float random = rand2dTo1d(closestCell);
|
|
return saturate(float3(minDistToCell, random, minEdgeDistance));
|
|
}
|
|
|
|
float CustomNoise(float3 p)
|
|
{
|
|
float3 a = floor(p);
|
|
float3 d = p - a;
|
|
d = d * d * (3.0 - 2.0 * d);
|
|
|
|
float4 b = a.xxyy + float4(0.0, 1.0, 0.0, 1.0);
|
|
float4 k1 = Permute(b.xyxy);
|
|
float4 k2 = Permute(k1.xyxy + b.zzww);
|
|
|
|
float4 c = k2 + a.zzzz;
|
|
float4 k3 = Permute(c);
|
|
float4 k4 = Permute(c + 1.0);
|
|
|
|
float4 o1 = frac(k3 * (1.0 / 41.0));
|
|
float4 o2 = frac(k4 * (1.0 / 41.0));
|
|
|
|
float4 o3 = o2 * d.z + o1 * (1.0 - d.z);
|
|
float2 o4 = o3.yw * d.x + o3.xz * (1.0 - d.x);
|
|
|
|
return o4.y * d.y + o4.x * (1.0 - d.y);
|
|
}
|
|
|
|
float3 CustomNoise3D(float3 p)
|
|
{
|
|
float o = CustomNoise(p);
|
|
float a = CustomNoise(p + float3(0.0001f, 0.0f, 0.0f));
|
|
float b = CustomNoise(p + float3(0.0f, 0.0001f, 0.0f));
|
|
float c = CustomNoise(p + float3(0.0f, 0.0f, 0.0001f));
|
|
|
|
float3 grad = float3(o - a, o - b, o - c);
|
|
float3 other = abs(grad.zxy);
|
|
return normalize(cross(grad,other));
|
|
}
|
|
|
|
float3 CustomNoise3D(float3 position, int octaves, float roughness)
|
|
{
|
|
float weight = 0.0f;
|
|
float3 noise = float3(0.0, 0.0, 0.0);
|
|
float scale = 1.0f;
|
|
for (int i = 0; i < octaves; i++)
|
|
{
|
|
float curWeight = pow((1.0 - ((float)i / octaves)), lerp(2.0, 0.2, roughness));
|
|
noise += CustomNoise3D(position * scale) * curWeight;
|
|
weight += curWeight;
|
|
scale *= 1.72531;
|
|
}
|
|
return noise / weight;
|
|
}
|
|
|
|
#endif
|