Files
FlaxEngine/Source/Engine/Core/Collections/Dictionary.h
Mateusz Karbowiak 5439efc559 Collections implicit cast constructor fix
This one prohibits annoying casts. It is also important for future context injection and follows STL practice.
2024-10-30 22:30:55 +01:00

1000 lines
30 KiB
C++

// Copyright (c) 2012-2024 Wojciech Figat. All rights reserved.
#pragma once
#include "Engine/Core/Memory/Memory.h"
#include "Engine/Core/Memory/Allocation.h"
#include "Engine/Core/Collections/HashFunctions.h"
#include "Engine/Core/Collections/Config.h"
/// <summary>
/// Template for unordered dictionary with mapped key with value pairs.
/// </summary>
/// <typeparam name="KeyType">The type of the keys in the dictionary.</typeparam>
/// <typeparam name="ValueType">The type of the values in the dictionary.</typeparam>
/// <typeparam name="AllocationType">The type of memory allocator.</typeparam>
template<typename KeyType, typename ValueType, typename AllocationType = HeapAllocation>
API_CLASS(InBuild) class Dictionary
{
friend Dictionary;
public:
/// <summary>
/// Describes single portion of space for the key and value pair in a hash map.
/// </summary>
struct Bucket
{
friend Dictionary;
enum State : byte
{
Empty = 0,
Deleted = 1,
Occupied = 2,
};
/// <summary>The key.</summary>
KeyType Key;
/// <summary>The value.</summary>
ValueType Value;
private:
State _state;
FORCE_INLINE void Free()
{
if (_state == Occupied)
{
Memory::DestructItem(&Key);
Memory::DestructItem(&Value);
}
_state = Empty;
}
FORCE_INLINE void Delete()
{
_state = Deleted;
Memory::DestructItem(&Key);
Memory::DestructItem(&Value);
}
template<typename KeyComparableType>
FORCE_INLINE void Occupy(const KeyComparableType& key)
{
Memory::ConstructItems(&Key, &key, 1);
Memory::ConstructItem(&Value);
_state = Occupied;
}
template<typename KeyComparableType>
FORCE_INLINE void Occupy(const KeyComparableType& key, const ValueType& value)
{
Memory::ConstructItems(&Key, &key, 1);
Memory::ConstructItems(&Value, &value, 1);
_state = Occupied;
}
template<typename KeyComparableType>
FORCE_INLINE void Occupy(const KeyComparableType& key, ValueType&& value)
{
Memory::ConstructItems(&Key, &key, 1);
Memory::MoveItems(&Value, &value, 1);
_state = Occupied;
}
FORCE_INLINE bool IsEmpty() const
{
return _state == Empty;
}
FORCE_INLINE bool IsDeleted() const
{
return _state == Deleted;
}
FORCE_INLINE bool IsOccupied() const
{
return _state == Occupied;
}
FORCE_INLINE bool IsNotOccupied() const
{
return _state != Occupied;
}
};
using AllocationData = typename AllocationType::template Data<Bucket>;
private:
int32 _elementsCount = 0;
int32 _deletedCount = 0;
int32 _size = 0;
AllocationData _allocation;
FORCE_INLINE static void MoveToEmpty(AllocationData& to, AllocationData& from, int32 fromSize)
{
if IF_CONSTEXPR (AllocationType::HasSwap)
to.Swap(from);
else
{
to.Allocate(fromSize);
Bucket* toData = to.Get();
Bucket* fromData = from.Get();
for (int32 i = 0; i < fromSize; i++)
{
Bucket& fromBucket = fromData[i];
if (fromBucket.IsOccupied())
{
Bucket& toBucket = toData[i];
Memory::MoveItems(&toBucket.Key, &fromBucket.Key, 1);
Memory::MoveItems(&toBucket.Value, &fromBucket.Value, 1);
toBucket._state = Bucket::Occupied;
Memory::DestructItem(&fromBucket.Key);
Memory::DestructItem(&fromBucket.Value);
fromBucket._state = Bucket::Empty;
}
}
from.Free();
}
}
public:
/// <summary>
/// Initializes a new instance of the <see cref="Dictionary"/> class.
/// </summary>
Dictionary()
{
}
/// <summary>
/// Initializes a new instance of the <see cref="Dictionary"/> class.
/// </summary>
/// <param name="capacity">The initial capacity.</param>
explicit Dictionary(const int32 capacity)
{
SetCapacity(capacity);
}
/// <summary>
/// Initializes a new instance of the <see cref="Dictionary"/> class.
/// </summary>
/// <param name="other">The other collection to move.</param>
Dictionary(Dictionary&& other) noexcept
{
_elementsCount = other._elementsCount;
_deletedCount = other._deletedCount;
_size = other._size;
other._elementsCount = 0;
other._deletedCount = 0;
other._size = 0;
MoveToEmpty(_allocation, other._allocation, _size);
}
/// <summary>
/// Initializes a new instance of the <see cref="Dictionary"/> class.
/// </summary>
/// <param name="other">Other collection to copy</param>
Dictionary(const Dictionary& other)
{
Clone(other);
}
/// <summary>
/// Clones the data from the other collection.
/// </summary>
/// <param name="other">The other collection to copy.</param>
/// <returns>The reference to this.</returns>
Dictionary& operator=(const Dictionary& other)
{
if (this != &other)
Clone(other);
return *this;
}
/// <summary>
/// Moves the data from the other collection.
/// </summary>
/// <param name="other">The other collection to move.</param>
/// <returns>The reference to this.</returns>
Dictionary& operator=(Dictionary&& other) noexcept
{
if (this != &other)
{
Clear();
_allocation.Free();
_elementsCount = other._elementsCount;
_deletedCount = other._deletedCount;
_size = other._size;
other._elementsCount = 0;
other._deletedCount = 0;
other._size = 0;
MoveToEmpty(_allocation, other._allocation, _size);
}
return *this;
}
/// <summary>
/// Finalizes an instance of the <see cref="Dictionary"/> class.
/// </summary>
~Dictionary()
{
Clear();
}
public:
/// <summary>
/// Gets the amount of the elements in the collection.
/// </summary>
FORCE_INLINE int32 Count() const
{
return _elementsCount;
}
/// <summary>
/// Gets the amount of the elements that can be contained by the collection.
/// </summary>
FORCE_INLINE int32 Capacity() const
{
return _size;
}
/// <summary>
/// Returns true if collection is empty.
/// </summary>
FORCE_INLINE bool IsEmpty() const
{
return _elementsCount == 0;
}
/// <summary>
/// Returns true if collection has one or more elements.
/// </summary>
FORCE_INLINE bool HasItems() const
{
return _elementsCount != 0;
}
public:
/// <summary>
/// The Dictionary collection iterator.
/// </summary>
struct Iterator
{
friend Dictionary;
private:
Dictionary* _collection;
int32 _index;
public:
Iterator(Dictionary* collection, const int32 index)
: _collection(collection)
, _index(index)
{
}
Iterator(Dictionary const* collection, const int32 index)
: _collection(const_cast<Dictionary*>(collection))
, _index(index)
{
}
Iterator()
: _collection(nullptr)
, _index(-1)
{
}
Iterator(const Iterator& i)
: _collection(i._collection)
, _index(i._index)
{
}
Iterator(Iterator&& i)
: _collection(i._collection)
, _index(i._index)
{
}
public:
FORCE_INLINE int32 Index() const
{
return _index;
}
FORCE_INLINE bool IsEnd() const
{
return _index == _collection->_size;
}
FORCE_INLINE bool IsNotEnd() const
{
return _index != _collection->_size;
}
FORCE_INLINE Bucket& operator*() const
{
return _collection->_allocation.Get()[_index];
}
FORCE_INLINE Bucket* operator->() const
{
return &_collection->_allocation.Get()[_index];
}
FORCE_INLINE explicit operator bool() const
{
return _index >= 0 && _index < _collection->_size;
}
FORCE_INLINE bool operator!() const
{
return !(bool)*this;
}
FORCE_INLINE bool operator==(const Iterator& v) const
{
return _index == v._index && _collection == v._collection;
}
FORCE_INLINE bool operator!=(const Iterator& v) const
{
return _index != v._index || _collection != v._collection;
}
Iterator& operator=(const Iterator& v)
{
_collection = v._collection;
_index = v._index;
return *this;
}
Iterator& operator=(Iterator&& v)
{
_collection = v._collection;
_index = v._index;
return *this;
}
Iterator& operator++()
{
const int32 capacity = _collection->_size;
if (_index != capacity)
{
const Bucket* data = _collection->_allocation.Get();
do
{
_index++;
} while (_index != capacity && data[_index].IsNotOccupied());
}
return *this;
}
Iterator operator++(int) const
{
Iterator i = *this;
++i;
return i;
}
Iterator& operator--()
{
if (_index > 0)
{
const Bucket* data = _collection->_allocation.Get();
do
{
_index--;
} while (_index > 0 && data[_index].IsNotOccupied());
}
return *this;
}
Iterator operator--(int) const
{
Iterator i = *this;
--i;
return i;
}
};
public:
/// <summary>
/// Gets element by the key (will add default ValueType element if key not found).
/// </summary>
/// <param name="key">The key of the element.</param>
/// <returns>The value that is at given index.</returns>
template<typename KeyComparableType>
ValueType& At(const KeyComparableType& key)
{
// Check if need to rehash elements (prevent many deleted elements that use too much of capacity)
if (_deletedCount > _size / DICTIONARY_DEFAULT_SLACK_SCALE)
Compact();
// Ensure to have enough memory for the next item (in case of new element insertion)
EnsureCapacity((_elementsCount + 1) * DICTIONARY_DEFAULT_SLACK_SCALE + _deletedCount);
// Find location of the item or place to insert it
FindPositionResult pos;
FindPosition(key, pos);
// Check if that key has been already added
if (pos.ObjectIndex != -1)
return _allocation.Get()[pos.ObjectIndex].Value;
// Insert
ASSERT(pos.FreeSlotIndex != -1);
_elementsCount++;
Bucket& bucket = _allocation.Get()[pos.FreeSlotIndex];
bucket.Occupy(key);
return bucket.Value;
}
/// <summary>
/// Gets the element by the key.
/// </summary>
/// <param name="key">The ky of the element.</param>
/// <returns>The value that is at given index.</returns>
template<typename KeyComparableType>
const ValueType& At(const KeyComparableType& key) const
{
FindPositionResult pos;
FindPosition(key, pos);
ASSERT(pos.ObjectIndex != -1);
return _allocation.Get()[pos.ObjectIndex].Value;
}
/// <summary>
/// Gets or sets the element by the key.
/// </summary>
/// <param name="key">The key of the element.</param>
/// <returns>The value that is at given index.</returns>
template<typename KeyComparableType>
FORCE_INLINE ValueType& operator[](const KeyComparableType& key)
{
return At(key);
}
/// <summary>
/// Gets or sets the element by the key.
/// </summary>
/// <param name="key">The ky of the element.</param>
/// <returns>The value that is at given index.</returns>
template<typename KeyComparableType>
FORCE_INLINE const ValueType& operator[](const KeyComparableType& key) const
{
return At(key);
}
/// <summary>
/// Tries to get element with given key.
/// </summary>
/// <param name="key">The key of the element.</param>
/// <param name="result">The result value.</param>
/// <returns>True if element of given key has been found, otherwise false.</returns>
template<typename KeyComparableType>
bool TryGet(const KeyComparableType& key, ValueType& result) const
{
if (IsEmpty())
return false;
FindPositionResult pos;
FindPosition(key, pos);
if (pos.ObjectIndex == -1)
return false;
result = _allocation.Get()[pos.ObjectIndex].Value;
return true;
}
/// <summary>
/// Tries to get pointer to the element with given key.
/// </summary>
/// <param name="key">The ky of the element.</param>
/// <returns>Pointer to the element value or null if cannot find it.</returns>
template<typename KeyComparableType>
ValueType* TryGet(const KeyComparableType& key) const
{
if (IsEmpty())
return nullptr;
FindPositionResult pos;
FindPosition(key, pos);
if (pos.ObjectIndex == -1)
return nullptr;
return static_cast<ValueType*>(&_allocation.Get()[pos.ObjectIndex].Value);
}
public:
/// <summary>
/// Clears the collection but without changing its capacity (all inserted elements: keys and values will be removed).
/// </summary>
void Clear()
{
if (_elementsCount + _deletedCount != 0)
{
Bucket* data = _allocation.Get();
for (int32 i = 0; i < _size; i++)
data[i].Free();
_elementsCount = _deletedCount = 0;
}
}
/// <summary>
/// Clears the collection and delete value objects.
/// Note: collection must contain pointers to the objects that have public destructor and be allocated using New method.
/// </summary>
#if defined(_MSC_VER)
template<typename = typename TEnableIf<TIsPointer<ValueType>::Value>::Type>
#endif
void ClearDelete()
{
for (Iterator i = Begin(); i.IsNotEnd(); ++i)
{
if (i->Value)
::Delete(i->Value);
}
Clear();
}
/// <summary>
/// Changes the capacity of the collection.
/// </summary>
/// <param name="capacity">The new capacity.</param>
/// <param name="preserveContents">Enables preserving collection contents during resizing.</param>
void SetCapacity(int32 capacity, const bool preserveContents = true)
{
if (capacity == Capacity())
return;
ASSERT(capacity >= 0);
AllocationData oldAllocation;
MoveToEmpty(oldAllocation, _allocation, _size);
const int32 oldSize = _size;
const int32 oldElementsCount = _elementsCount;
_deletedCount = _elementsCount = 0;
if (capacity != 0 && (capacity & (capacity - 1)) != 0)
{
// Align capacity value to the next power of two (http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2)
capacity--;
capacity |= capacity >> 1;
capacity |= capacity >> 2;
capacity |= capacity >> 4;
capacity |= capacity >> 8;
capacity |= capacity >> 16;
capacity++;
}
if (capacity)
{
_allocation.Allocate(capacity);
Bucket* data = _allocation.Get();
for (int32 i = 0; i < capacity; i++)
data[i]._state = Bucket::Empty;
}
_size = capacity;
Bucket* oldData = oldAllocation.Get();
if (oldElementsCount != 0 && capacity != 0 && preserveContents)
{
FindPositionResult pos;
for (int32 i = 0; i < oldSize; i++)
{
Bucket& oldBucket = oldData[i];
if (oldBucket.IsOccupied())
{
FindPosition(oldBucket.Key, pos);
ASSERT(pos.FreeSlotIndex != -1);
Bucket* bucket = &_allocation.Get()[pos.FreeSlotIndex];
Memory::MoveItems(&bucket->Key, &oldBucket.Key, 1);
Memory::MoveItems(&bucket->Value, &oldBucket.Value, 1);
bucket->_state = Bucket::Occupied;
_elementsCount++;
}
}
}
if (oldElementsCount != 0)
{
for (int32 i = 0; i < oldSize; i++)
oldData[i].Free();
}
}
/// <summary>
/// Ensures that collection has given capacity.
/// </summary>
/// <param name="minCapacity">The minimum required capacity.</param>
/// <param name="preserveContents">True if preserve collection data when changing its size, otherwise collection after resize will be empty.</param>
void EnsureCapacity(int32 minCapacity, const bool preserveContents = true)
{
if (_size >= minCapacity)
return;
int32 capacity = _allocation.CalculateCapacityGrow(_size, minCapacity);
if (capacity < DICTIONARY_DEFAULT_CAPACITY)
capacity = DICTIONARY_DEFAULT_CAPACITY;
SetCapacity(capacity, preserveContents);
}
/// <summary>
/// Swaps the contents of collection with the other object without copy operation. Performs fast internal data exchange.
/// </summary>
/// <param name="other">The other collection.</param>
void Swap(Dictionary& other)
{
if IF_CONSTEXPR (AllocationType::HasSwap)
{
::Swap(_elementsCount, other._elementsCount);
::Swap(_deletedCount, other._deletedCount);
::Swap(_size, other._size);
_allocation.Swap(other._allocation);
}
else
{
::Swap(other, *this);
}
}
public:
/// <summary>
/// Add pair element to the collection.
/// </summary>
/// <param name="key">The key.</param>
/// <param name="value">The value.</param>
/// <returns>Weak reference to the stored bucket.</returns>
template<typename KeyComparableType>
FORCE_INLINE Bucket* Add(const KeyComparableType& key, const ValueType& value)
{
Bucket* bucket = OnAdd(key);
bucket->Occupy(key, value);
return bucket;
}
/// <summary>
/// Add pair element to the collection.
/// </summary>
/// <param name="key">The key.</param>
/// <param name="value">The value.</param>
/// <returns>Weak reference to the stored bucket.</returns>
template<typename KeyComparableType>
FORCE_INLINE Bucket* Add(const KeyComparableType& key, ValueType&& value)
{
Bucket* bucket = OnAdd(key);
bucket->Occupy(key, MoveTemp(value));
return bucket;
}
/// <summary>
/// Add pair element to the collection.
/// </summary>
/// <param name="i">Iterator with key and value.</param>
void Add(const Iterator& i)
{
ASSERT(i._collection != this && i);
const Bucket& bucket = *i;
Add(bucket.Key, bucket.Value);
}
/// <summary>
/// Removes element with a specified key.
/// </summary>
/// <param name="key">The element key to remove.</param>
/// <returns>True if cannot remove item from the collection because cannot find it, otherwise false.</returns>
template<typename KeyComparableType>
bool Remove(const KeyComparableType& key)
{
if (IsEmpty())
return false;
FindPositionResult pos;
FindPosition(key, pos);
if (pos.ObjectIndex != -1)
{
_allocation.Get()[pos.ObjectIndex].Delete();
_elementsCount--;
_deletedCount++;
return true;
}
return false;
}
/// <summary>
/// Removes element at specified iterator.
/// </summary>
/// <param name="i">The element iterator to remove.</param>
/// <returns>True if cannot remove item from the collection because cannot find it, otherwise false.</returns>
bool Remove(const Iterator& i)
{
ASSERT(i._collection == this);
if (i)
{
ASSERT(_allocation.Get()[i._index].IsOccupied());
_allocation.Get()[i._index].Delete();
_elementsCount--;
_deletedCount++;
return true;
}
return false;
}
/// <summary>
/// Removes elements with a specified value
/// </summary>
/// <param name="value">Element value to remove</param>
/// <returns>The amount of removed items. Zero if nothing changed.</returns>
int32 RemoveValue(const ValueType& value)
{
int32 result = 0;
for (Iterator i = Begin(); i.IsNotEnd(); ++i)
{
if (i->Value == value)
{
Remove(i);
result++;
}
}
return result;
}
public:
/// <summary>
/// Finds the element with given key in the collection.
/// </summary>
/// <param name="key">The key to find.</param>
/// <returns>The iterator for the found element or End if cannot find it.</returns>
template<typename KeyComparableType>
Iterator Find(const KeyComparableType& key) const
{
if (IsEmpty())
return End();
FindPositionResult pos;
FindPosition(key, pos);
return pos.ObjectIndex != -1 ? Iterator(this, pos.ObjectIndex) : End();
}
/// <summary>
/// Checks if given key is in a collection.
/// </summary>
/// <param name="key">The key to find.</param>
/// <returns>True if key has been found in a collection, otherwise false.</returns>
template<typename KeyComparableType>
bool ContainsKey(const KeyComparableType& key) const
{
if (IsEmpty())
return false;
FindPositionResult pos;
FindPosition(key, pos);
return pos.ObjectIndex != -1;
}
/// <summary>
/// Checks if given value is in a collection.
/// </summary>
/// <param name="value">The value to find.</param>
/// <returns>True if value has been found in a collection, otherwise false.</returns>
bool ContainsValue(const ValueType& value) const
{
if (HasItems())
{
const Bucket* data = _allocation.Get();
for (int32 i = 0; i < _size; i++)
{
if (data[i].IsOccupied() && data[i].Value == value)
return true;
}
}
return false;
}
/// <summary>
/// Searches for the specified object and returns the zero-based index of the first occurrence within the entire dictionary.
/// </summary>
/// <param name="value">The value of the key to find.</param>
/// <param name="key">The output key.</param>
/// <returns>True if value has been found, otherwise false.</returns>
bool KeyOf(const ValueType& value, KeyType* key) const
{
if (HasItems())
{
const Bucket* data = _allocation.Get();
for (int32 i = 0; i < _size; i++)
{
if (data[i].IsOccupied() && data[i].Value == value)
{
if (key)
*key = data[i].Key;
return true;
}
}
}
return false;
}
public:
/// <summary>
/// Clones other collection into this.
/// </summary>
/// <param name="other">The other collection to clone.</param>
void Clone(const Dictionary& other)
{
// TODO: if both key and value are POD types then use raw memory copy for buckets
Clear();
EnsureCapacity(other.Capacity(), false);
for (Iterator i = other.Begin(); i != other.End(); ++i)
Add(i);
}
/// <summary>
/// Gets the keys collection to the output array (will contain unique items).
/// </summary>
/// <param name="result">The result.</param>
template<typename ArrayAllocation>
void GetKeys(Array<KeyType, ArrayAllocation>& result) const
{
for (Iterator i = Begin(); i.IsNotEnd(); ++i)
result.Add(i->Key);
}
/// <summary>
/// Gets the values collection to the output array (may contain duplicates).
/// </summary>
/// <param name="result">The result.</param>
template<typename ArrayAllocation>
void GetValues(Array<ValueType, ArrayAllocation>& result) const
{
for (Iterator i = Begin(); i.IsNotEnd(); ++i)
result.Add(i->Value);
}
public:
Iterator Begin() const
{
Iterator i(this, -1);
++i;
return i;
}
Iterator End() const
{
return Iterator(this, _size);
}
Iterator begin()
{
Iterator i(this, -1);
++i;
return i;
}
FORCE_INLINE Iterator end()
{
return Iterator(this, _size);
}
const Iterator begin() const
{
Iterator i(this, -1);
++i;
return i;
}
FORCE_INLINE const Iterator end() const
{
return Iterator(this, _size);
}
private:
/// <summary>
/// The result container of the dictionary item lookup searching.
/// </summary>
struct FindPositionResult
{
int32 ObjectIndex;
int32 FreeSlotIndex;
};
/// <summary>
/// Returns a pair of positions: 1st where the object is, 2nd where
/// it would go if you wanted to insert it. 1st is -1
/// if object is not found; 2nd is -1 if it is.
/// Note: because of deletions where-to-insert is not trivial: it's the
/// first deleted bucket we see, as long as we don't find the key later
/// </summary>
/// <param name="key">The ky to find.</param>
/// <param name="result">The pair of values: where the object is and where it would go if you wanted to insert it.</param>
template<typename KeyComparableType>
void FindPosition(const KeyComparableType& key, FindPositionResult& result) const
{
ASSERT(_size);
const int32 tableSizeMinusOne = _size - 1;
int32 bucketIndex = GetHash(key) & tableSizeMinusOne;
int32 insertPos = -1;
int32 checksCount = 0;
const Bucket* data = _allocation.Get();
result.FreeSlotIndex = -1;
while (checksCount < _size)
{
// Empty bucket
const Bucket& bucket = data[bucketIndex];
if (bucket.IsEmpty())
{
// Found place to insert
result.ObjectIndex = -1;
result.FreeSlotIndex = insertPos == -1 ? bucketIndex : insertPos;
return;
}
// Deleted bucket
if (bucket.IsDeleted())
{
// Keep searching but mark to insert
if (insertPos == -1)
insertPos = bucketIndex;
}
// Occupied bucket by target key
else if (bucket.Key == key)
{
// Found key
result.ObjectIndex = bucketIndex;
return;
}
checksCount++;
bucketIndex = (bucketIndex + DICTIONARY_PROB_FUNC(_size, checksCount)) & tableSizeMinusOne;
}
result.ObjectIndex = -1;
result.FreeSlotIndex = insertPos;
}
template<typename KeyComparableType>
Bucket* OnAdd(const KeyComparableType& key)
{
// Check if need to rehash elements (prevent many deleted elements that use too much of capacity)
if (_deletedCount > _size / DICTIONARY_DEFAULT_SLACK_SCALE)
Compact();
// Ensure to have enough memory for the next item (in case of new element insertion)
EnsureCapacity((_elementsCount + 1) * DICTIONARY_DEFAULT_SLACK_SCALE + _deletedCount);
// Find location of the item or place to insert it
FindPositionResult pos;
FindPosition(key, pos);
// Ensure key is unknown
ASSERT(pos.ObjectIndex == -1 && "That key has been already added to the dictionary.");
// Insert
ASSERT(pos.FreeSlotIndex != -1);
_elementsCount++;
return &_allocation.Get()[pos.FreeSlotIndex];
}
void Compact()
{
if (_elementsCount == 0)
{
// Fast path if it's empty
Bucket* data = _allocation.Get();
for (int32 i = 0; i < _size; i++)
data[i]._state = Bucket::Empty;
}
else
{
// Rebuild entire table completely
AllocationData oldAllocation;
MoveToEmpty(oldAllocation, _allocation, _size);
_allocation.Allocate(_size);
Bucket* data = _allocation.Get();
for (int32 i = 0; i < _size; i++)
data[i]._state = Bucket::Empty;
Bucket* oldData = oldAllocation.Get();
FindPositionResult pos;
for (int32 i = 0; i < _size; i++)
{
Bucket& oldBucket = oldData[i];
if (oldBucket.IsOccupied())
{
FindPosition(oldBucket.Key, pos);
ASSERT(pos.FreeSlotIndex != -1);
Bucket* bucket = &_allocation.Get()[pos.FreeSlotIndex];
Memory::MoveItems(&bucket->Key, &oldBucket.Key, 1);
Memory::MoveItems(&bucket->Value, &oldBucket.Value, 1);
bucket->_state = Bucket::Occupied;
}
}
for (int32 i = 0; i < _size; i++)
oldData[i].Free();
}
_deletedCount = 0;
}
};