Files
FlaxEngine/Source/Engine/Particles/Particles.cpp
2022-02-28 19:15:02 +01:00

1407 lines
50 KiB
C++

// Copyright (c) 2012-2022 Wojciech Figat. All rights reserved.
#include "Particles.h"
#include "ParticleEffect.h"
#include "Engine/Content/Assets/Model.h"
#include "Engine/Core/Collections/Sorting.h"
#include "Engine/Core/Collections/HashSet.h"
#include "Engine/Engine/EngineService.h"
#include "Engine/Engine/Time.h"
#include "Engine/Engine/Engine.h"
#include "Engine/Graphics/GPUBuffer.h"
#include "Engine/Graphics/GPUPipelineStatePermutations.h"
#include "Engine/Graphics/RenderTask.h"
#include "Engine/Graphics/DynamicBuffer.h"
#include "Engine/Graphics/RenderTools.h"
#include "Engine/Profiler/ProfilerCPU.h"
#include "Engine/Renderer/DrawCall.h"
#include "Engine/Renderer/RenderList.h"
#include "Engine/Threading/TaskGraph.h"
#if COMPILE_WITH_GPU_PARTICLES
#include "Engine/Threading/Threading.h"
#include "Engine/Content/Assets/Shader.h"
#include "Engine/Profiler/ProfilerGPU.h"
#include "Engine/Renderer/Utils/BitonicSort.h"
#endif
#if USE_EDITOR
#include "Editor/Editor.h"
#endif
struct SpriteParticleVertex
{
float X;
float Y;
float U;
float V;
};
class SpriteParticleRenderer
{
public:
GPUBuffer* VB = nullptr;
GPUBuffer* IB = nullptr;
const static int32 VertexCount = 4;
const static int32 IndexCount = 6;
public:
bool Init()
{
if (VB)
return false;
VB = GPUDevice::Instance->CreateBuffer(TEXT("SpriteParticleRenderer,VB"));
IB = GPUDevice::Instance->CreateBuffer(TEXT("SpriteParticleRenderer.IB"));
static SpriteParticleVertex vertexBuffer[] =
{
{ -0.5f, -0.5f, 0.0f, 0.0f },
{ +0.5f, -0.5f, 1.0f, 0.0f },
{ +0.5f, +0.5f, 1.0f, 1.0f },
{ -0.5f, +0.5f, 0.0f, 1.0f },
};
static uint16 indexBuffer[] = { 0, 1, 2, 0, 2, 3, };
return VB->Init(GPUBufferDescription::Vertex(sizeof(SpriteParticleVertex), VertexCount, vertexBuffer)) || IB->Init(GPUBufferDescription::Index(sizeof(uint16), IndexCount, indexBuffer));
}
void Dispose()
{
SAFE_DELETE_GPU_RESOURCE(VB);
SAFE_DELETE_GPU_RESOURCE(IB);
}
void SetupDrawCall(DrawCall& drawCall) const
{
drawCall.Geometry.IndexBuffer = IB;
drawCall.Geometry.VertexBuffers[0] = VB;
drawCall.Geometry.VertexBuffers[1] = nullptr;
drawCall.Geometry.VertexBuffers[2] = nullptr;
drawCall.Geometry.VertexBuffersOffsets[0] = 0;
drawCall.Geometry.VertexBuffersOffsets[1] = 0;
drawCall.Geometry.VertexBuffersOffsets[2] = 0;
drawCall.Draw.StartIndex = 0;
drawCall.Draw.IndicesCount = IndexCount;
}
};
struct EmitterCache
{
double LastTimeUsed;
ParticleBuffer* Buffer;
};
namespace ParticleManagerImpl
{
CriticalSection PoolLocker;
Dictionary<ParticleEmitter*, Array<EmitterCache>> Pool;
Array<ParticleEffect*> UpdateList;
#if COMPILE_WITH_GPU_PARTICLES
CriticalSection GpuUpdateListLocker;
Array<ParticleEffect*> GpuUpdateList;
RenderTask* GpuRenderTask = nullptr;
#endif
}
using namespace ParticleManagerImpl;
TaskGraphSystem* Particles::System = nullptr;
bool Particles::EnableParticleBufferPooling = true;
float Particles::ParticleBufferRecycleTimeout = 10.0f;
SpriteParticleRenderer SpriteRenderer;
namespace ParticlesDrawCPU
{
Array<uint32> SortingKeys[2];
Array<int32> SortingIndices;
Array<int32> SortedIndices;
Array<float> RibbonTotalDistances;
}
class ParticleManagerService : public EngineService
{
public:
ParticleManagerService()
: EngineService(TEXT("Particle Manager"), 65)
{
}
bool Init() override;
void Dispose() override;
};
class ParticlesSystem : public TaskGraphSystem
{
public:
float DeltaTime, UnscaledDeltaTime, Time, UnscaledTime;
void Job(int32 index);
void Execute(TaskGraph* graph) override;
void PostExecute(TaskGraph* graph) override;
};
ParticleManagerService ParticleManagerServiceInstance;
void Particles::UpdateEffect(ParticleEffect* effect)
{
UpdateList.Add(effect);
}
void Particles::OnEffectDestroy(ParticleEffect* effect)
{
UpdateList.Remove(effect);
#if COMPILE_WITH_GPU_PARTICLES
GpuUpdateList.Remove(effect);
#endif
}
typedef Array<int32, FixedAllocation<PARTICLE_EMITTER_MAX_MODULES>> RenderModulesIndices;
void DrawEmitterCPU(RenderContext& renderContext, ParticleBuffer* buffer, DrawCall& drawCall, DrawPass drawModes, StaticFlags staticFlags, ParticleEmitterInstance& emitterData, const RenderModulesIndices& renderModulesIndices)
{
// Skip if CPU buffer is empty
if (buffer->CPU.Count == 0)
return;
const auto context = GPUDevice::Instance->GetMainContext();
auto emitter = buffer->Emitter;
// Check if need to perform any particles sorting
if (emitter->Graph.SortModules.HasItems() && renderContext.View.Pass != DrawPass::Depth)
{
// Prepare sorting data
if (!buffer->GPU.SortedIndices)
buffer->AllocateSortBuffer();
// Execute all sorting modules
for (int32 moduleIndex = 0; moduleIndex < emitter->Graph.SortModules.Count(); moduleIndex++)
{
auto module = emitter->Graph.SortModules[moduleIndex];
const int32 sortedIndicesOffset = module->SortedIndicesOffset;
const auto sortMode = static_cast<ParticleSortMode>(module->Values[2].AsInt);
const int32 stride = buffer->Stride;
const int32 listSize = buffer->CPU.Count;
#define PREPARE_CACHE(list) (ParticlesDrawCPU::list).Clear(); (ParticlesDrawCPU::list).Resize(listSize)
PREPARE_CACHE(SortingKeys[0]);
PREPARE_CACHE(SortingKeys[1]);
PREPARE_CACHE(SortingIndices);
#undef PREPARE_CACHE
uint32* sortedKeys = ParticlesDrawCPU::SortingKeys[0].Get();
const uint32 sortKeyXor = sortMode != ParticleSortMode::CustomAscending ? MAX_uint32 : 0;
switch (sortMode)
{
case ParticleSortMode::ViewDepth:
{
const Matrix viewProjection = renderContext.View.ViewProjection();
byte* positionPtr = buffer->CPU.Buffer.Get() + emitter->Graph.GetPositionAttributeOffset();
if (emitter->SimulationSpace == ParticlesSimulationSpace::Local)
{
for (int32 i = 0; i < buffer->CPU.Count; i++)
{
// TODO: use SIMD
sortedKeys[i] = RenderTools::ComputeDistanceSortKey(Matrix::TransformPosition(viewProjection, Matrix::TransformPosition(drawCall.World, *(Vector3*)positionPtr)).W) ^ sortKeyXor;
positionPtr += stride;
}
}
else
{
for (int32 i = 0; i < buffer->CPU.Count; i++)
{
sortedKeys[i] = RenderTools::ComputeDistanceSortKey(Matrix::TransformPosition(viewProjection, *(Vector3*)positionPtr).W) ^ sortKeyXor;
positionPtr += stride;
}
}
break;
}
case ParticleSortMode::ViewDistance:
{
const Vector3 viewPosition = renderContext.View.Position;
byte* positionPtr = buffer->CPU.Buffer.Get() + emitter->Graph.GetPositionAttributeOffset();
if (emitter->SimulationSpace == ParticlesSimulationSpace::Local)
{
for (int32 i = 0; i < buffer->CPU.Count; i++)
{
// TODO: use SIMD
sortedKeys[i] = RenderTools::ComputeDistanceSortKey((viewPosition - Vector3::Transform(*(Vector3*)positionPtr, drawCall.World)).LengthSquared()) ^ sortKeyXor;
positionPtr += stride;
}
}
else
{
for (int32 i = 0; i < buffer->CPU.Count; i++)
{
// TODO: use SIMD
sortedKeys[i] = RenderTools::ComputeDistanceSortKey((viewPosition - *(Vector3*)positionPtr).LengthSquared()) ^ sortKeyXor;
positionPtr += stride;
}
}
break;
}
case ParticleSortMode::CustomAscending:
case ParticleSortMode::CustomDescending:
{
int32 attributeIdx = module->Attributes[0];
if (attributeIdx == -1)
break;
byte* attributePtr = buffer->CPU.Buffer.Get() + emitter->Graph.Layout.Attributes[attributeIdx].Offset;
for (int32 i = 0; i < buffer->CPU.Count; i++)
{
sortedKeys[i] = RenderTools::ComputeDistanceSortKey(*(float*)attributePtr) ^ sortKeyXor;
attributePtr += stride;
}
break;
}
#if !BUILD_RELEASE
default:
CRASH;
#endif
}
// Generate sorting indices
int32* sortedIndices;
{
ParticlesDrawCPU::SortedIndices.Resize(listSize);
sortedIndices = ParticlesDrawCPU::SortedIndices.Get();
for (int i = 0; i < listSize; i++)
sortedIndices[i] = i;
}
// Sort keys with indices
{
Sorting::RadixSort(sortedKeys, sortedIndices, ParticlesDrawCPU::SortingKeys[1].Get(), ParticlesDrawCPU::SortingIndices.Get(), listSize);
}
// Upload CPU particles indices
{
context->UpdateBuffer(buffer->GPU.SortedIndices, sortedIndices, listSize * sizeof(int32), sortedIndicesOffset);
}
}
}
// Upload CPU particles data to GPU
{
context->UpdateBuffer(buffer->GPU.Buffer, buffer->CPU.Buffer.Get(), buffer->CPU.Count * buffer->Stride);
}
// Check if need to setup ribbon modules
int32 ribbonModuleIndex = 0;
int32 ribbonModulesDrawIndicesPos = 0;
int32 ribbonModulesDrawIndicesStart[PARTICLE_EMITTER_MAX_RIBBONS];
int32 ribbonModulesDrawIndicesCount[PARTICLE_EMITTER_MAX_RIBBONS];
int32 ribbonModulesSegmentCount[PARTICLE_EMITTER_MAX_RIBBONS];
if (emitter->Graph.RibbonRenderingModules.HasItems())
{
// Prepare ribbon data
if (!buffer->GPU.RibbonIndexBufferDynamic)
{
buffer->GPU.RibbonIndexBufferDynamic = New<DynamicIndexBuffer>(0, (uint32)sizeof(uint16), TEXT("RibbonIndexBufferDynamic"));
}
buffer->GPU.RibbonIndexBufferDynamic->Clear();
// Setup all ribbon modules
auto& totalDistances = ParticlesDrawCPU::RibbonTotalDistances;
totalDistances.Clear();
for (int32 index = 0; index < renderModulesIndices.Count(); index++)
{
const int32 moduleIndex = renderModulesIndices[index];
auto module = emitter->Graph.RenderModules[moduleIndex];
if (module->TypeID != 404 || ribbonModuleIndex >= PARTICLE_EMITTER_MAX_RIBBONS)
continue;
ribbonModulesDrawIndicesStart[ribbonModuleIndex] = ribbonModulesDrawIndicesPos;
ribbonModulesDrawIndicesCount[ribbonModuleIndex] = 0;
// Prepare particles buffer access
auto positionOffset = emitter->Graph.GetPositionAttributeOffset();
if (positionOffset == -1 || buffer->CPU.Count < 2 || buffer->CPU.RibbonOrder.IsEmpty())
break;
int32 count = buffer->CPU.Count;
ASSERT(buffer->CPU.RibbonOrder.Count() == emitter->Graph.RibbonRenderingModules.Count() * buffer->Capacity);
int32* ribbonOrderData = buffer->CPU.RibbonOrder.Get() + module->RibbonOrderOffset;
ParticleBufferCPUDataAccessor<Vector3> positionData(buffer, emitter->Graph.Layout.GetAttributeOffset(module->Attributes[0]));
int32 indices = 0;
float totalDistance = 0.0f;
uint32 lastParticleIdx = ribbonOrderData[0];
for (int32 i = 0; i < count; i++)
{
bool isNotLast = i != count - 1;
uint32 idx0 = ribbonOrderData[i];
uint32 idx1 = 0;
Vector3 direction;
if (isNotLast)
{
idx1 = ribbonOrderData[i + 1];
direction = positionData[idx1] - positionData[lastParticleIdx];
}
else
{
idx1 = ribbonOrderData[i - 1];
direction = positionData[lastParticleIdx] - positionData[idx1];
}
if (direction.LengthSquared() > 0.002f || !isNotLast)
{
totalDistances.Add(totalDistance);
lastParticleIdx = idx1;
if (isNotLast)
{
auto idx = buffer->GPU.RibbonIndexBufferDynamic->Data.Count();
buffer->GPU.RibbonIndexBufferDynamic->Data.AddDefault(6 * sizeof(uint16));
auto ptr = (uint16*)(buffer->GPU.RibbonIndexBufferDynamic->Data.Get() + idx);
idx0 *= 2;
idx1 *= 2;
*ptr++ = idx0 + 1;
*ptr++ = idx1;
*ptr++ = idx0;
*ptr++ = idx0 + 1;
*ptr++ = idx1 + 1;
*ptr++ = idx1;
indices += 6;
}
}
totalDistance += direction.Length();
}
if (indices == 0)
break;
// Setup ribbon data
ribbonModulesSegmentCount[ribbonModuleIndex] = totalDistances.Count();
if (totalDistances.HasItems())
{
auto& ribbonSegmentDistancesBuffer = buffer->GPU.RibbonSegmentDistances[index];
if (!ribbonSegmentDistancesBuffer)
{
ribbonSegmentDistancesBuffer = GPUDevice::Instance->CreateBuffer(TEXT("RibbonSegmentDistances"));
ribbonSegmentDistancesBuffer->Init(GPUBufferDescription::Typed(buffer->Capacity, PixelFormat::R32_Float, false, GPUResourceUsage::Dynamic));
}
context->UpdateBuffer(ribbonSegmentDistancesBuffer, totalDistances.Get(), totalDistances.Count() * sizeof(float));
}
ribbonModulesDrawIndicesCount[index] = indices;
ribbonModulesDrawIndicesPos += indices;
ribbonModuleIndex++;
}
if (ribbonModuleIndex != 0)
{
// Upload data to the GPU buffer
buffer->GPU.RibbonIndexBufferDynamic->Flush(context);
}
}
// Execute all rendering modules
ribbonModuleIndex = 0;
for (int32 index = 0; index < renderModulesIndices.Count(); index++)
{
const int32 moduleIndex = renderModulesIndices[index];
auto module = emitter->Graph.RenderModules[moduleIndex];
drawCall.Particle.Module = module;
switch (module->TypeID)
{
// Sprite Rendering
case 400:
{
const auto material = (MaterialBase*)module->Assets[0].Get();
const auto moduleDrawModes = module->Values.Count() > 3 ? (DrawPass)module->Values[3].AsInt : DrawPass::Default;
drawCall.Material = material;
// Submit draw call
SpriteRenderer.SetupDrawCall(drawCall);
drawCall.InstanceCount = buffer->CPU.Count;
renderContext.List->AddDrawCall((DrawPass)(drawModes & moduleDrawModes), staticFlags, drawCall, false);
break;
}
// Model Rendering
case 403:
{
const auto model = (Model*)module->Assets[0].Get();
const auto material = (MaterialBase*)module->Assets[1].Get();
const auto moduleDrawModes = module->Values.Count() > 4 ? (DrawPass)module->Values[4].AsInt : DrawPass::Default;
drawCall.Material = material;
// TODO: model LOD picking for particles?
int32 lodIndex = 0;
ModelLOD& lod = model->LODs[lodIndex];
for (int32 meshIndex = 0; meshIndex < lod.Meshes.Count(); meshIndex++)
{
Mesh& mesh = lod.Meshes[meshIndex];
if (!mesh.IsInitialized())
continue;
// TODO: include mesh entry transformation, visibility and shadows mode?
// Submit draw call
mesh.GetDrawCallGeometry(drawCall);
drawCall.InstanceCount = buffer->CPU.Count;
renderContext.List->AddDrawCall((DrawPass)(drawModes & moduleDrawModes), staticFlags, drawCall, false);
}
break;
}
// Ribbon Rendering
case 404:
{
if (ribbonModulesDrawIndicesCount[ribbonModuleIndex] == 0)
break;
const auto material = (MaterialBase*)module->Assets[0].Get();
const auto moduleDrawModes = module->Values.Count() > 6 ? (DrawPass)module->Values[6].AsInt : DrawPass::Default;
drawCall.Material = material;
// Node properties
float uvTilingDistance = module->Values[3].AsFloat;
Vector2 uvScale = module->Values[4].AsVector2();
Vector2 uvOffset = module->Values[5].AsVector2();
ParticleBufferCPUDataAccessor<float> sortKeyData(buffer, emitter->Graph.Layout.GetAttributeOffset(module->Attributes[1]));
int32* ribbonOrderData = buffer->CPU.RibbonOrder.Get() + module->RibbonOrderOffset;
int32 count = buffer->CPU.Count;
// Setup ribbon data
auto& ribbon = drawCall.Particle.Ribbon;
ribbon.UVTilingDistance = uvTilingDistance;
ribbon.SegmentCount = ribbonModulesSegmentCount[ribbonModuleIndex];
ribbon.UVScaleX = uvScale.X;
ribbon.UVScaleY = uvScale.Y;
ribbon.UVOffsetX = uvOffset.X;
ribbon.UVOffsetY = uvOffset.Y;
if (ribbon.SegmentCount != 0 && Math::IsZero(uvTilingDistance) && sortKeyData.IsValid())
{
float firstSortValue = sortKeyData[ribbonOrderData[0]];
float lastSortValue = sortKeyData[ribbonOrderData[count - 1]];
float sortUScale = lastSortValue - firstSortValue;
float sortUOffset = firstSortValue;
ribbon.UVScaleX *= sortUScale;
ribbon.UVOffsetX += sortUOffset * uvScale.X;
}
ribbon.SegmentDistances = ribbon.SegmentCount != 0 ? buffer->GPU.RibbonSegmentDistances[index] : nullptr;
// TODO: invert particles rendering order if camera is closer to the ribbon end than start
// Submit draw call
drawCall.Geometry.IndexBuffer = buffer->GPU.RibbonIndexBufferDynamic->GetBuffer();
drawCall.Geometry.VertexBuffers[0] = nullptr;
drawCall.Geometry.VertexBuffers[1] = nullptr;
drawCall.Geometry.VertexBuffers[2] = nullptr;
drawCall.Geometry.VertexBuffersOffsets[0] = 0;
drawCall.Geometry.VertexBuffersOffsets[1] = 0;
drawCall.Geometry.VertexBuffersOffsets[2] = 0;
drawCall.Draw.StartIndex = ribbonModulesDrawIndicesStart[ribbonModuleIndex];
drawCall.Draw.IndicesCount = ribbonModulesDrawIndicesCount[ribbonModuleIndex];
drawCall.InstanceCount = 1;
renderContext.List->AddDrawCall((DrawPass)(drawModes & moduleDrawModes), staticFlags, drawCall, false);
ribbonModuleIndex++;
break;
}
// Volumetric Fog Rendering
case 405:
{
const auto material = (MaterialBase*)module->Assets[0].Get();
drawCall.Material = material;
drawCall.InstanceCount = 1;
auto positionOffset = emitter->Graph.Layout.GetAttributeOffset(module->Attributes[0]);
int32 count = buffer->CPU.Count;
if (positionOffset == -1 || count < 0)
break;
auto radiusOffset = emitter->Graph.Layout.GetAttributeOffset(module->Attributes[1]);
ParticleBufferCPUDataAccessor<Vector3> positionData(buffer, positionOffset);
ParticleBufferCPUDataAccessor<float> radiusData(buffer, radiusOffset);
const bool hasRadius = radiusOffset != -1;
for (int32 i = 0; i < count; i++)
{
// Submit draw call
// TODO: use instancing for volumetric fog particles (combine it with instanced circle rasterization into 3d texture)
drawCall.Particle.VolumetricFog.Position = positionData[i];
if (emitter->SimulationSpace == ParticlesSimulationSpace::Local)
Vector3::Transform(drawCall.Particle.VolumetricFog.Position, drawCall.World, drawCall.Particle.VolumetricFog.Position);
drawCall.Particle.VolumetricFog.Radius = hasRadius ? radiusData[i] : 100.0f;
drawCall.Particle.VolumetricFog.ParticleIndex = i;
renderContext.List->VolumetricFogParticles.Add(drawCall);
}
break;
}
}
}
}
#if COMPILE_WITH_GPU_PARTICLES
PACK_STRUCT(struct GPUParticlesSortingData {
Vector3 ViewPosition;
uint32 ParticleCounterOffset;
uint32 ParticleStride;
uint32 ParticleCapacity;
uint32 PositionOffset;
uint32 CustomOffset;
Matrix PositionTransform;
});
AssetReference<Shader> GPUParticlesSorting;
GPUConstantBuffer* GPUParticlesSortingCB;
GPUShaderProgramCS* GPUParticlesSortingCS[3];
#if COMPILE_WITH_DEV_ENV
void OnShaderReloading(Asset* obj)
{
GPUParticlesSortingCB = nullptr;
Platform::MemoryClear(GPUParticlesSortingCS, sizeof(GPUParticlesSortingCS));
}
#endif
void CleanupGPUParticlesSorting()
{
GPUParticlesSorting = nullptr;
}
void DrawEmitterGPU(RenderContext& renderContext, ParticleBuffer* buffer, DrawCall& drawCall, DrawPass drawModes, StaticFlags staticFlags, ParticleEmitterInstance& emitterData, const RenderModulesIndices& renderModulesIndices)
{
const auto context = GPUDevice::Instance->GetMainContext();
auto emitter = buffer->Emitter;
// Check if need to perform any particles sorting
if (emitter->Graph.SortModules.HasItems() && renderContext.View.Pass != DrawPass::Depth)
{
PROFILE_GPU_CPU("Sort Particles");
// Prepare pipeline
if (GPUParticlesSorting == nullptr)
{
// TODO: preload shader if platform supports GPU particles
GPUParticlesSorting = Content::LoadAsyncInternal<Shader>(TEXT("Shaders/GPUParticlesSorting"));
if (GPUParticlesSorting == nullptr || GPUParticlesSorting->WaitForLoaded())
return;
#if COMPILE_WITH_DEV_ENV
GPUParticlesSorting.Get()->OnReloading.Bind<OnShaderReloading>();
#endif
}
if (!GPUParticlesSortingCB)
{
const auto shader = GPUParticlesSorting->GetShader();
const StringAnsiView CS_Sort("CS_Sort");
GPUParticlesSortingCS[0] = shader->GetCS(CS_Sort, 0);
GPUParticlesSortingCS[1] = shader->GetCS(CS_Sort, 1);
GPUParticlesSortingCS[2] = shader->GetCS(CS_Sort, 2);
GPUParticlesSortingCB = shader->GetCB(0);
ASSERT(GPUParticlesSortingCB);
}
// Prepare sorting data
if (!buffer->GPU.SortedIndices)
buffer->AllocateSortBuffer();
ASSERT(buffer->GPU.SortingKeysBuffer);
// Execute all sorting modules
for (int32 moduleIndex = 0; moduleIndex < emitter->Graph.SortModules.Count(); moduleIndex++)
{
auto module = emitter->Graph.SortModules[moduleIndex];
const auto sortMode = static_cast<ParticleSortMode>(module->Values[2].AsInt);
// Generate sorting keys based on sorting mode
GPUParticlesSortingData data;
data.ParticleCounterOffset = buffer->GPU.ParticleCounterOffset;
data.ParticleStride = buffer->Stride;
data.ParticleCapacity = buffer->Capacity;
int32 permutationIndex;
bool sortAscending;
switch (sortMode)
{
case ParticleSortMode::ViewDepth:
{
permutationIndex = 0;
sortAscending = false;
data.PositionOffset = emitter->Graph.GetPositionAttributeOffset();
const Matrix viewProjection = renderContext.View.ViewProjection();
if (emitter->SimulationSpace == ParticlesSimulationSpace::Local)
{
Matrix matrix;
Matrix::Multiply(drawCall.World, viewProjection, matrix);
Matrix::Transpose(matrix, data.PositionTransform);
}
else
{
Matrix::Transpose(viewProjection, data.PositionTransform);
}
break;
}
case ParticleSortMode::ViewDistance:
{
permutationIndex = 1;
sortAscending = false;
data.PositionOffset = emitter->Graph.GetPositionAttributeOffset();
data.ViewPosition = renderContext.View.Position;
if (emitter->SimulationSpace == ParticlesSimulationSpace::Local)
{
Matrix::Transpose(drawCall.World, data.PositionTransform);
}
else
{
Matrix::Transpose(Matrix::Identity, data.PositionTransform);
}
break;
}
case ParticleSortMode::CustomAscending:
case ParticleSortMode::CustomDescending:
{
permutationIndex = 2;
sortAscending = sortMode == ParticleSortMode::CustomAscending;
int32 attributeIdx = module->Attributes[0];
if (attributeIdx == -1)
break;
data.CustomOffset = emitter->Graph.Layout.Attributes[attributeIdx].Offset;
break;
}
#if !BUILD_RELEASE
default:
CRASH;
return;
#endif
}
context->UpdateCB(GPUParticlesSortingCB, &data);
context->BindCB(0, GPUParticlesSortingCB);
context->BindSR(0, buffer->GPU.Buffer->View());
context->BindUA(0, buffer->GPU.SortingKeysBuffer->View());
// TODO: optimize it by using DispatchIndirect with shared invoke args generated after particles update
const int32 threadGroupSize = 1024;
context->Dispatch(GPUParticlesSortingCS[permutationIndex], Math::DivideAndRoundUp(buffer->GPU.ParticlesCountMax, threadGroupSize), 1, 1);
// Perform sorting
BitonicSort::Instance()->Sort(context, buffer->GPU.SortingKeysBuffer, buffer->GPU.Buffer, data.ParticleCounterOffset, sortAscending, buffer->GPU.SortedIndices);
}
}
// Count draw calls to perform during this emitter rendering
int32 drawCalls = 0;
for (int32 index = 0; index < renderModulesIndices.Count(); index++)
{
int32 moduleIndex = renderModulesIndices[index];
auto module = emitter->Graph.RenderModules[moduleIndex];
switch (module->TypeID)
{
// Sprite Rendering
case 400:
{
drawCalls++;
break;
}
// Model Rendering
case 403:
{
const auto model = (Model*)module->Assets[0].Get();
// TODO: model LOD picking for particles?
int32 lodIndex = 0;
ModelLOD& lod = model->LODs[lodIndex];
drawCalls += lod.Meshes.Count();
for (int32 meshIndex = 0; meshIndex < lod.Meshes.Count(); meshIndex++)
{
Mesh& mesh = lod.Meshes[meshIndex];
if (!mesh.IsInitialized())
continue;
drawCalls++;
}
break;
}
// Ribbon Rendering
case 404:
{
// Not supported
break;
}
// Volumetric Fog Rendering
case 405:
{
// Not supported
break;
}
}
}
if (drawCalls == 0)
return;
// Ensure to have enough space for indirect draw arguments
const uint32 minSize = drawCalls * sizeof(GPUDrawIndexedIndirectArgs);
if (buffer->GPU.IndirectDrawArgsBuffer->GetSize() < minSize)
{
buffer->GPU.IndirectDrawArgsBuffer->Init(GPUBufferDescription::Argument(minSize));
}
// Initialize indirect draw arguments contents (do it before drawing to reduce memory barriers amount when updating arguments buffer)
int32 indirectDrawCallIndex = 0;
for (int32 index = 0; index < renderModulesIndices.Count(); index++)
{
int32 moduleIndex = renderModulesIndices[index];
auto module = emitter->Graph.RenderModules[moduleIndex];
switch (module->TypeID)
{
// Sprite Rendering
case 400:
{
GPUDrawIndexedIndirectArgs indirectArgsBufferInitData{ SpriteParticleRenderer::IndexCount, 1, 0, 0, 0 };
const uint32 offset = indirectDrawCallIndex * sizeof(GPUDrawIndexedIndirectArgs);
context->UpdateBuffer(buffer->GPU.IndirectDrawArgsBuffer, &indirectArgsBufferInitData, sizeof(indirectArgsBufferInitData), offset);
const uint32 counterOffset = buffer->GPU.ParticleCounterOffset;
context->CopyBuffer(buffer->GPU.IndirectDrawArgsBuffer, buffer->GPU.Buffer, 4, offset + 4, counterOffset);
indirectDrawCallIndex++;
break;
}
// Model Rendering
case 403:
{
const auto model = (Model*)module->Assets[0].Get();
// TODO: model LOD picking for particles?
int32 lodIndex = 0;
ModelLOD& lod = model->LODs[lodIndex];
for (int32 meshIndex = 0; meshIndex < lod.Meshes.Count(); meshIndex++)
{
Mesh& mesh = lod.Meshes[meshIndex];
if (!mesh.IsInitialized())
continue;
GPUDrawIndexedIndirectArgs indirectArgsBufferInitData = { (uint32)mesh.GetTriangleCount() * 3, 1, 0, 0, 0 };
const uint32 offset = indirectDrawCallIndex * sizeof(GPUDrawIndexedIndirectArgs);
context->UpdateBuffer(buffer->GPU.IndirectDrawArgsBuffer, &indirectArgsBufferInitData, sizeof(indirectArgsBufferInitData), offset);
const uint32 counterOffset = buffer->GPU.ParticleCounterOffset;
context->CopyBuffer(buffer->GPU.IndirectDrawArgsBuffer, buffer->GPU.Buffer, 4, offset + 4, counterOffset);
indirectDrawCallIndex++;
}
break;
}
// Ribbon Rendering
case 404:
{
// Not supported
break;
}
// Volumetric Fog Rendering
case 405:
{
// Not supported
break;
}
}
}
// Execute all rendering modules
indirectDrawCallIndex = 0;
for (int32 index = 0; index < renderModulesIndices.Count(); index++)
{
int32 moduleIndex = renderModulesIndices[index];
auto module = emitter->Graph.RenderModules[moduleIndex];
drawCall.Particle.Module = module;
switch (module->TypeID)
{
// Sprite Rendering
case 400:
{
const auto material = (MaterialBase*)module->Assets[0].Get();
const auto moduleDrawModes = module->Values.Count() > 3 ? (DrawPass)module->Values[3].AsInt : DrawPass::Default;
drawCall.Material = material;
// Submit draw call
SpriteRenderer.SetupDrawCall(drawCall);
drawCall.InstanceCount = 0;
drawCall.Draw.IndirectArgsBuffer = buffer->GPU.IndirectDrawArgsBuffer;
drawCall.Draw.IndirectArgsOffset = indirectDrawCallIndex * sizeof(GPUDrawIndexedIndirectArgs);
renderContext.List->AddDrawCall((DrawPass)(drawModes & moduleDrawModes), staticFlags, drawCall, false);
indirectDrawCallIndex++;
break;
}
// Model Rendering
case 403:
{
const auto model = (Model*)module->Assets[0].Get();
const auto material = (MaterialBase*)module->Assets[1].Get();
const auto moduleDrawModes = module->Values.Count() > 4 ? (DrawPass)module->Values[4].AsInt : DrawPass::Default;
drawCall.Material = material;
// TODO: model LOD picking for particles?
int32 lodIndex = 0;
ModelLOD& lod = model->LODs[lodIndex];
for (int32 meshIndex = 0; meshIndex < lod.Meshes.Count(); meshIndex++)
{
Mesh& mesh = lod.Meshes[meshIndex];
if (!mesh.IsInitialized())
continue;
// TODO: include mesh entry transformation, visibility and shadows mode?
// Execute draw call
mesh.GetDrawCallGeometry(drawCall);
drawCall.InstanceCount = 0;
drawCall.Draw.IndirectArgsBuffer = buffer->GPU.IndirectDrawArgsBuffer;
drawCall.Draw.IndirectArgsOffset = indirectDrawCallIndex * sizeof(GPUDrawIndexedIndirectArgs);
renderContext.List->AddDrawCall((DrawPass)(drawModes & moduleDrawModes), staticFlags, drawCall, false);
indirectDrawCallIndex++;
}
break;
}
// Ribbon Rendering
case 404:
{
// Not supported
break;
}
// Volumetric Fog Rendering
case 405:
{
// Not supported
break;
}
}
}
}
#endif
void Particles::DrawParticles(RenderContext& renderContext, ParticleEffect* effect)
{
// Setup
auto& view = renderContext.View;
const auto drawModes = static_cast<DrawPass>(view.Pass & effect->DrawModes);
if (drawModes == DrawPass::None || SpriteRenderer.Init())
return;
Matrix world;
effect->GetWorld(&world);
const auto staticFlags = effect->GetStaticFlags();
// Draw lights
for (int32 emitterIndex = 0; emitterIndex < effect->Instance.Emitters.Count(); emitterIndex++)
{
auto& emitterData = effect->Instance.Emitters[emitterIndex];
const auto buffer = emitterData.Buffer;
if (!buffer || (buffer->Mode == ParticlesSimulationMode::CPU && buffer->CPU.Count == 0))
continue;
buffer->Emitter->GraphExecutorCPU.Draw(buffer->Emitter, effect, emitterData, renderContext, world);
}
// Setup a draw call common data
DrawCall drawCall;
drawCall.PerInstanceRandom = effect->GetPerInstanceRandom();
drawCall.ObjectPosition = world.GetTranslation();
// Draw all emitters
for (int32 emitterIndex = 0; emitterIndex < effect->Instance.Emitters.Count(); emitterIndex++)
{
auto& emitterData = effect->Instance.Emitters[emitterIndex];
const auto buffer = emitterData.Buffer;
if (!buffer)
continue;
auto emitter = buffer->Emitter;
drawCall.World = emitter->SimulationSpace == ParticlesSimulationSpace::World ? Matrix::Identity : world;
drawCall.WorldDeterminantSign = Math::FloatSelect(drawCall.World.RotDeterminant(), 1, -1);
drawCall.Particle.Particles = buffer;
// Check if need to render any module
RenderModulesIndices renderModulesIndices;
for (int32 moduleIndex = 0; moduleIndex < emitter->Graph.RenderModules.Count(); moduleIndex++)
{
auto module = emitter->Graph.RenderModules[moduleIndex];
switch (module->TypeID)
{
// Sprite Rendering
case 400:
{
const auto material = (MaterialBase*)module->Assets[0].Get();
const auto moduleDrawModes = module->Values.Count() > 3 ? module->Values[3].AsInt : (int32)DrawPass::Default;
if (!material ||
!material->IsReady() ||
!material->IsParticle() ||
(view.Pass & material->GetDrawModes() & moduleDrawModes) == 0
)
break;
renderModulesIndices.Add(moduleIndex);
break;
}
// Model Rendering
case 403:
{
const auto model = (Model*)module->Assets[0].Get();
const auto moduleDrawModes = module->Values.Count() > 4 ? module->Values[4].AsInt : (int32)DrawPass::Default;
if (!model ||
!model->IsLoaded() ||
!model->CanBeRendered())
break;
const auto material = (MaterialBase*)module->Assets[1].Get();
if (!material ||
!material->IsReady() ||
!material->IsParticle() ||
(view.Pass & material->GetDrawModes() & moduleDrawModes) == 0
)
break;
renderModulesIndices.Add(moduleIndex);
break;
}
// Ribbon Rendering
case 404:
{
const auto material = (MaterialBase*)module->Assets[0].Get();
const auto moduleDrawModes = module->Values.Count() > 6 ? module->Values[6].AsInt : (int32)DrawPass::Default;
if (!material ||
!material->IsReady() ||
!material->IsParticle() ||
(view.Pass & material->GetDrawModes() & moduleDrawModes) == 0
)
break;
renderModulesIndices.Add(moduleIndex);
break;
}
// Volumetric Fog Rendering
case 405:
{
const auto material = (MaterialBase*)module->Assets[0].Get();
if (!material ||
!material->IsReady() ||
material->GetInfo().Domain != MaterialDomain::VolumeParticle ||
(view.Flags & ViewFlags::Fog) == 0
)
break;
renderModulesIndices.Add(moduleIndex);
break;
}
}
}
if (renderModulesIndices.IsEmpty())
continue;
// Draw
switch (buffer->Mode)
{
case ParticlesSimulationMode::CPU:
DrawEmitterCPU(renderContext, buffer, drawCall, drawModes, staticFlags, emitterData, renderModulesIndices);
break;
#if COMPILE_WITH_GPU_PARTICLES
case ParticlesSimulationMode::GPU:
DrawEmitterGPU(renderContext, buffer, drawCall, drawModes, staticFlags, emitterData, renderModulesIndices);
break;
#endif
}
}
}
#if COMPILE_WITH_GPU_PARTICLES
void UpdateGPU(RenderTask* task, GPUContext* context)
{
ScopeLock lock(GpuUpdateListLocker);
if (GpuUpdateList.IsEmpty())
return;
PROFILE_GPU("GPU Particles");
for (ParticleEffect* effect : GpuUpdateList)
{
auto& instance = effect->Instance;
const auto particleSystem = effect->ParticleSystem.Get();
if (!particleSystem || !particleSystem->IsLoaded())
continue;
// Update all emitter tracks
for (int32 j = 0; j < particleSystem->Tracks.Count(); j++)
{
const auto& track = particleSystem->Tracks[j];
if (track.Type != ParticleSystem::Track::Types::Emitter || track.Disabled)
continue;
const int32 emitterIndex = track.AsEmitter.Index;
ParticleEmitter* emitter = particleSystem->Emitters[emitterIndex].Get();
if (!emitter || !emitter->IsLoaded() || emitter->SimulationMode != ParticlesSimulationMode::GPU || instance.Emitters.Count() <= emitterIndex)
continue;
ParticleEmitterInstance& data = instance.Emitters[emitterIndex];
if (!data.Buffer)
continue;
ASSERT(emitter->Capacity != 0 && emitter->Graph.Layout.Size != 0);
// TODO: use async context for particles to update them on compute during GBuffer rendering
emitter->GPU.Execute(context, emitter, effect, emitterIndex, data);
}
}
GpuUpdateList.Clear();
context->ResetSR();
context->ResetUA();
context->FlushState();
}
#endif
ParticleBuffer* Particles::AcquireParticleBuffer(ParticleEmitter* emitter)
{
ParticleBuffer* result = nullptr;
ASSERT(emitter && emitter->IsLoaded());
if (emitter->EnablePooling && EnableParticleBufferPooling)
{
PoolLocker.Lock();
const auto entries = Pool.TryGet(emitter);
if (entries)
{
while (entries->HasItems())
{
// Reuse buffer
result = entries->Last().Buffer;
entries->RemoveLast();
// Remove old buffers
if (result->Version != emitter->Graph.Version)
{
Delete(result);
result = nullptr;
if (entries->IsEmpty())
{
Pool.Remove(emitter);
break;
}
}
}
}
PoolLocker.Unlock();
}
if (!result)
{
// Create new buffer
result = New<ParticleBuffer>();
if (result->Init(emitter))
{
LOG(Error, "Failed to create particle buffer for emitter {0}", emitter->ToString());
Delete(result);
return nullptr;
}
}
else
{
// Prepare buffer
result->Clear();
}
return result;
}
void Particles::RecycleParticleBuffer(ParticleBuffer* buffer)
{
if (buffer->Emitter->EnablePooling && EnableParticleBufferPooling)
{
// Return to pool
EmitterCache c;
c.LastTimeUsed = Platform::GetTimeSeconds();
c.Buffer = buffer;
PoolLocker.Lock();
Pool[buffer->Emitter].Add(c);
PoolLocker.Unlock();
}
else
{
// Destroy
Delete(buffer);
}
}
void Particles::OnEmitterUnload(ParticleEmitter* emitter)
{
PoolLocker.Lock();
const auto entries = Pool.TryGet(emitter);
if (entries)
{
for (int32 i = 0; i < entries->Count(); i++)
{
Delete(entries->At(i).Buffer);
}
entries->Clear();
Pool.Remove(emitter);
}
PoolLocker.Unlock();
#if COMPILE_WITH_GPU_PARTICLES
GpuUpdateListLocker.Lock();
for (int32 i = GpuUpdateList.Count() - 1; i >= 0; i--)
{
if (GpuUpdateList[i]->Instance.ContainsEmitter(emitter))
GpuUpdateList.RemoveAt(i);
}
GpuUpdateListLocker.Unlock();
#endif
}
bool ParticleManagerService::Init()
{
Particles::System = New<ParticlesSystem>();
Particles::System->Order = 10000;
Engine::UpdateGraph->AddSystem(Particles::System);
return false;
}
void ParticleManagerService::Dispose()
{
UpdateList.Clear();
#if COMPILE_WITH_GPU_PARTICLES
GpuUpdateList.Clear();
if (GpuRenderTask)
{
ScopeLock lock(RenderTask::TasksLocker);
RenderTask::Tasks.Remove(GpuRenderTask);
Delete(GpuRenderTask);
GpuRenderTask = nullptr;
}
CleanupGPUParticlesSorting();
#endif
ParticlesDrawCPU::SortingKeys[0].SetCapacity(0);
ParticlesDrawCPU::SortingKeys[1].SetCapacity(0);
ParticlesDrawCPU::SortingIndices.SetCapacity(0);
ParticlesDrawCPU::SortedIndices.SetCapacity(0);
ParticlesDrawCPU::RibbonTotalDistances.SetCapacity(0);
PoolLocker.Lock();
for (auto i = Pool.Begin(); i.IsNotEnd(); ++i)
{
auto& entries = i->Value;
for (int32 j = 0; j < entries.Count(); j++)
{
Delete(entries[j].Buffer);
}
entries.Clear();
}
Pool.Clear();
PoolLocker.Unlock();
SpriteRenderer.Dispose();
SAFE_DELETE(Particles::System);
}
void ParticlesSystem::Job(int32 index)
{
PROFILE_CPU_NAMED("Particles.Job");
auto effect = UpdateList[index];
auto& instance = effect->Instance;
const auto particleSystem = effect->ParticleSystem.Get();
if (!particleSystem || !particleSystem->IsLoaded())
return;
bool anyEmitterNotReady = false;
for (int32 j = 0; j < particleSystem->Tracks.Count(); j++)
{
const auto& track = particleSystem->Tracks[j];
if (track.Type != ParticleSystem::Track::Types::Emitter || track.Disabled)
continue;
auto emitter = particleSystem->Emitters[track.AsEmitter.Index].Get();
if (!emitter || !emitter->IsLoaded())
{
anyEmitterNotReady = true;
break;
}
}
if (anyEmitterNotReady)
return;
#if COMPILE_WITH_PROFILER && TRACY_ENABLE
const StringView particleSystemName(particleSystem->GetPath());
ZoneName(*particleSystemName, particleSystemName.Length());
#endif
// Prepare instance data
instance.Sync(particleSystem);
bool updateBounds = false;
bool updateGpu = false;
// Simulation delta time can be based on a time since last update or the current delta time
bool useTimeScale = effect->UseTimeScale;
#if USE_EDITOR
if (!Editor::IsPlayMode)
useTimeScale = false;
#endif
float dt = useTimeScale ? DeltaTime : UnscaledDeltaTime;
float t = useTimeScale ? Time : UnscaledTime;
const float lastUpdateTime = instance.LastUpdateTime;
if (lastUpdateTime > 0 && t > lastUpdateTime)
{
dt = t - lastUpdateTime;
}
else if (lastUpdateTime < 0)
{
// Update bounds after first system update
updateBounds = true;
}
// TODO: if using fixed timestep quantize the dt and accumulate remaining part for the next update?
if (dt <= 1.0f / 240.0f)
return;
dt *= effect->SimulationSpeed;
instance.Time += dt;
const float fps = particleSystem->FramesPerSecond;
const float duration = (float)particleSystem->DurationFrames / fps;
if (instance.Time > duration)
{
if (effect->IsLooping)
{
// Loop
// TODO: accumulate (duration - instance.Time) into next update dt
instance.Time = 0;
for (int32 j = 0; j < instance.Emitters.Count(); j++)
{
auto& e = instance.Emitters[j];
e.Time = 0;
for (auto& s : e.SpawnModulesData)
{
s.NextSpawnTime = 0.0f;
}
}
}
else
{
// End
instance.Time = duration;
for (auto& emitterInstance : instance.Emitters)
{
if (emitterInstance.Buffer)
{
Particles::RecycleParticleBuffer(emitterInstance.Buffer);
emitterInstance.Buffer = nullptr;
}
}
return;
}
}
instance.LastUpdateTime = t;
// Update all emitter tracks
for (int32 j = 0; j < particleSystem->Tracks.Count(); j++)
{
const auto& track = particleSystem->Tracks[j];
if (track.Type != ParticleSystem::Track::Types::Emitter || track.Disabled)
continue;
auto emitter = particleSystem->Emitters[track.AsEmitter.Index].Get();
auto& data = instance.Emitters[track.AsEmitter.Index];
ASSERT(emitter && emitter->IsLoaded());
ASSERT(emitter->Capacity != 0 && emitter->Graph.Layout.Size != 0);
PROFILE_CPU_ASSET(emitter);
// Calculate new time position
const float startTime = (float)track.AsEmitter.StartFrame / fps;
const float durationTime = (float)track.AsEmitter.DurationFrames / fps;
const bool canSpawn = startTime <= instance.Time && instance.Time <= startTime + durationTime;
// Update instance data
data.Sync(effect->Instance, particleSystem, track.AsEmitter.Index);
if (!data.Buffer)
{
data.Buffer = Particles::AcquireParticleBuffer(emitter);
}
data.Time += dt;
// Update particles simulation
switch (emitter->SimulationMode)
{
case ParticlesSimulationMode::CPU:
emitter->GraphExecutorCPU.Update(emitter, effect, data, dt, canSpawn);
updateBounds |= emitter->UseAutoBounds;
break;
#if COMPILE_WITH_GPU_PARTICLES
case ParticlesSimulationMode::GPU:
emitter->GPU.Update(emitter, effect, data, dt, canSpawn);
updateGpu = true;
break;
#endif
default:
break;
}
}
// Update bounds if any of the emitters uses auto-bounds
if (updateBounds)
{
effect->UpdateBounds();
}
#if COMPILE_WITH_GPU_PARTICLES
// Register for GPU update
if (updateGpu)
{
ScopeLock lock(GpuUpdateListLocker);
GpuUpdateList.Add(effect);
}
#endif
}
void ParticlesSystem::Execute(TaskGraph* graph)
{
if (UpdateList.Count() == 0)
return;
// Setup data for async update
const auto& tickData = Time::Update;
DeltaTime = tickData.DeltaTime.GetTotalSeconds();
UnscaledDeltaTime = tickData.UnscaledDeltaTime.GetTotalSeconds();
Time = tickData.Time.GetTotalSeconds();
UnscaledTime = tickData.UnscaledTime.GetTotalSeconds();
// Schedule work to update all particles in async
Function<void(int32)> job;
job.Bind<ParticlesSystem, &ParticlesSystem::Job>(this);
graph->DispatchJob(job, UpdateList.Count());
}
void ParticlesSystem::PostExecute(TaskGraph* graph)
{
PROFILE_CPU_NAMED("Particles.PostExecute");
UpdateList.Clear();
#if COMPILE_WITH_GPU_PARTICLES
// Create GPU render task if missing but required
if (GpuUpdateList.HasItems() && !GpuRenderTask)
{
GpuRenderTask = New<RenderTask>();
GpuRenderTask->Order = -10000000;
GpuRenderTask->Render.Bind(UpdateGPU);
ScopeLock lock(RenderTask::TasksLocker);
RenderTask::Tasks.Add(GpuRenderTask);
}
else if (GpuRenderTask)
{
ScopeLock lock(RenderTask::TasksLocker);
GpuRenderTask->Enabled = GpuUpdateList.HasItems();
}
#endif
// Recycle buffers
const auto timeSeconds = Platform::GetTimeSeconds();
PoolLocker.Lock();
for (auto i = Pool.Begin(); i.IsNotEnd(); ++i)
{
auto& entries = i->Value;
for (int32 j = 0; j < entries.Count(); j++)
{
auto& e = entries[j];
if (timeSeconds - e.LastTimeUsed >= Particles::ParticleBufferRecycleTimeout)
{
Delete(e.Buffer);
entries.RemoveAt(j--);
}
}
if (entries.IsEmpty())
Pool.Remove(i);
}
PoolLocker.Unlock();
}