Files
FlaxEngine/Source/Engine/ContentImporters/ImportIES.cpp
2024-02-26 19:00:48 +01:00

343 lines
8.3 KiB
C++

// Copyright (c) 2012-2024 Wojciech Figat. All rights reserved.
#if COMPILE_WITH_ASSETS_IMPORTER
#include "ImportIES.h"
#include "Engine/Core/Log.h"
#include "Engine/Core/RandomStream.h"
#include "Engine/Core/Math/Packed.h"
#define MAX_LINE 200
static void SkipWhiteSpace(const uint8*& bufferPos)
{
while (*bufferPos)
{
if (*bufferPos == 13 && *(bufferPos + 1) == 10)
{
bufferPos += 2;
continue;
}
if (*bufferPos == 10)
{
bufferPos++;
continue;
}
if (*bufferPos <= ' ')
{
bufferPos++;
continue;
}
break;
}
}
static void ReadLine(const uint8*& bufferPos, char line[MAX_LINE], bool skipUntilWhitespace)
{
SkipWhiteSpace(bufferPos);
char* linePtr = line;
uint32 i;
for (i = 0; i < 255; i++)
{
if (*bufferPos == 0)
{
break;
}
if (*bufferPos == 13 && *(bufferPos + 1) == 10)
{
bufferPos += 2;
break;
}
if (*bufferPos == 10)
{
bufferPos++;
continue;
}
if (skipUntilWhitespace && *bufferPos <= ' ')
{
bufferPos++;
break;
}
*linePtr++ = *bufferPos++;
}
line[i] = 0;
}
static bool ReadFloat(const uint8*& bufferPos, float& ret)
{
char line[MAX_LINE];
ReadLine(bufferPos, line, true);
ret = static_cast<float>(atof(line));
return true;
}
static bool ReadLine(const uint8*& bufferPos, int32& ret)
{
char line[MAX_LINE];
ReadLine(bufferPos, line, true);
ret = atoi(line);
return true;
}
#define PARSE_FLOAT(x) float x; if (!ReadFloat(bufferPos, x)) { return true; }
#define PARSE_INT(x) int32 x; if (!ReadLine(bufferPos, x)) { return true; }
bool ImportIES::Load(const byte* buffer)
{
// Referenced IES file format:
// http://www.ltblight.com/English.lproj/LTBLhelp/pages/iesformat.html
const uint8* bufferPos = buffer;
const char* version;
{
char line[MAX_LINE];
ReadLine(bufferPos, line, false);
if (StringUtils::CompareIgnoreCase(line, "IESNA:LM-63-1995") == 0)
{
version = "EIESV_1995";
}
else if (StringUtils::CompareIgnoreCase(line, "IESNA91") == 0)
{
version = "EIESV_1991";
}
else if (StringUtils::CompareIgnoreCase(line, "IESNA:LM-63-2002") == 0)
{
version = "EIESV_2002";
}
else
{
version = "EIESV_1986";
}
}
while (*bufferPos)
{
char line[MAX_LINE];
ReadLine(bufferPos, line, false);
if (StringUtils::Compare(line, "TILT=NONE") == 0)
{
break;
}
if (StringUtils::Compare(line, "TILT=", 5) == 0)
{
return true;
}
}
PARSE_INT(lights);
PARSE_FLOAT(lumensPerLight);
PARSE_FLOAT(candalaScale);
PARSE_INT(vAnglesCount);
PARSE_INT(hAnglesCount);
PARSE_INT(photometricType);
PARSE_INT(unitType);
PARSE_FLOAT(width);
PARSE_FLOAT(length);
PARSE_FLOAT(height);
PARSE_FLOAT(ballastWeight);
PARSE_FLOAT(dummy);
PARSE_FLOAT(watts);
if (lights < 1)
{
return true;
}
if (candalaScale < 0 || vAnglesCount < 0 || hAnglesCount < 0)
{
return true;
}
_brightness = lumensPerLight / lights;
{
float minValue = MIN_float;
_vAngles.SetCapacity(vAnglesCount, false);
for (int32 y = 0; y < vAnglesCount; y++)
{
PARSE_FLOAT(value);
if (value < minValue)
return true;
minValue = value;
_vAngles.Add(value);
}
}
{
float minValue = MIN_float;
_hAngles.SetCapacity(hAnglesCount, false);
for (int32 x = 0; x < hAnglesCount; x++)
{
PARSE_FLOAT(value);
if (value < minValue)
return true;
minValue = value;
_hAngles.Add(value);
}
}
_candalaValues.SetCapacity(hAnglesCount * vAnglesCount, false);
for (int32 y = 0; y < hAnglesCount; y++)
{
for (int32 x = 0; x < vAnglesCount; x++)
{
PARSE_FLOAT(value);
_candalaValues.Add(value * candalaScale);
}
}
SkipWhiteSpace(bufferPos);
if (*bufferPos)
{
char line[MAX_LINE];
ReadLine(bufferPos, line, true);
if (StringUtils::Compare(line, "END") == 0)
{
SkipWhiteSpace(bufferPos);
}
}
if (*bufferPos)
{
return true;
}
if (_brightness <= 0)
{
_brightness = 1000;
}
return false;
}
#undef PARSE_FLOAT
#undef PARSE_INT
float ImportIES::ExtractInR16(Array<byte>& output)
{
const uint32 width = GetWidth();
const uint32 height = GetHeight();
output.Clear();
output.Resize(width * height * sizeof(Half), false);
Half* out = reinterpret_cast<Half*>(output.Get());
const float invWidth = 1.0f / (float)width;
float maxValue = _candalaValues[0];
for (int32 i = 1; i < _candalaValues.Count(); i++)
maxValue = Math::Max(maxValue, _candalaValues[i]);
const float invMaxValue = 1.0f / maxValue;
const uint32 hAnglesCount = static_cast<uint32>(_hAngles.Count());
for (uint32 y = 0; y < height; y++)
{
for (uint32 x = 0; x < width; x++)
{
const float vAngle = (float)x * invWidth * 180.0f;
const float v = ComputeFilterPos(vAngle, _vAngles);
float result = 0.0f;
for (uint32 i = 0; i < hAnglesCount; i++)
result += InterpolateBilinear(static_cast<float>(i), v);
*out++ = Float16Compressor::Compress(invMaxValue * result / (float)hAnglesCount);
}
}
float integral;
{
// Calculate integral using Monte Carlo
const int32 count = 500000;
const RandomStream randomStream(0x1234);
double sum = 0;
for (uint32 i = 0; i < count; i++)
{
const Float3 v = randomStream.GetUnitVector();
const float hAngle = Math::Acos(v.Z) / PI * 180;
const float vAngle = Math::Atan2(v.Y, v.X) / PI * 180 + 180;
sum += InterpolateBilinear(ComputeFilterPos(hAngle, _hAngles), ComputeFilterPos(vAngle, _vAngles));
}
integral = static_cast<float>(sum / count);
}
return maxValue / integral;
}
float ImportIES::InterpolatePoint(int32 x, int32 y) const
{
x %= _hAngles.Count();
y %= _vAngles.Count();
return _candalaValues[y + _vAngles.Count() * x];
}
float ImportIES::InterpolateBilinear(float x, float y) const
{
const int32 xInt = static_cast<int32>(x);
const int32 yInt = static_cast<int32>(y);
const float xFrac = x - xInt;
const float yFrac = y - yInt;
const float p00 = InterpolatePoint(xInt + 0, yInt + 0);
const float p10 = InterpolatePoint(xInt + 1, yInt + 0);
const float p01 = InterpolatePoint(xInt + 0, yInt + 1);
const float p11 = InterpolatePoint(xInt + 1, yInt + 1);
const float p0 = Math::Lerp(p00, p01, yFrac);
const float p1 = Math::Lerp(p10, p11, yFrac);
return Math::Lerp(p0, p1, xFrac);
}
float ImportIES::ComputeFilterPos(float value, const Array<float>& sortedValues)
{
ASSERT(sortedValues.HasItems());
uint32 startPos = 0;
uint32 endPos = sortedValues.Count() - 1;
if (value < sortedValues[startPos])
{
return 0.0f;
}
if (value > sortedValues[endPos])
{
return static_cast<float>(endPos);
}
while (startPos < endPos)
{
const uint32 testPos = (startPos + endPos + 1) / 2;
const float testValue = sortedValues[testPos];
if (value >= testValue)
{
ASSERT(startPos != testPos);
startPos = testPos;
}
else
{
ASSERT(endPos != testPos - 1);
endPos = testPos - 1;
}
}
const float leftValue = sortedValues[startPos];
float fraction = 0.0f;
if (startPos + 1 < static_cast<uint32>(sortedValues.Count()))
{
const float rightValue = sortedValues[startPos + 1];
const float deltaValue = rightValue - leftValue;
if (deltaValue > 0.00005f)
{
fraction = (value - leftValue) / deltaValue;
}
}
return startPos + fraction;
}
#endif