1031 lines
39 KiB
C++
1031 lines
39 KiB
C++
// Copyright (c) 2012-2024 Wojciech Figat. All rights reserved.
|
|
|
|
#include "RenderList.h"
|
|
#include "Engine/Core/Collections/Sorting.h"
|
|
#include "Engine/Graphics/Materials/IMaterial.h"
|
|
#include "Engine/Graphics/Materials/MaterialShader.h"
|
|
#include "Engine/Graphics/RenderTask.h"
|
|
#include "Engine/Graphics/GPUContext.h"
|
|
#include "Engine/Graphics/GPUDevice.h"
|
|
#include "Engine/Graphics/GPULimits.h"
|
|
#include "Engine/Graphics/RenderTargetPool.h"
|
|
#include "Engine/Graphics/RenderTools.h"
|
|
#include "Engine/Graphics/Graphics.h"
|
|
#include "Engine/Graphics/PostProcessEffect.h"
|
|
#include "Engine/Profiler/Profiler.h"
|
|
#include "Engine/Content/Assets/CubeTexture.h"
|
|
#include "Engine/Core/Log.h"
|
|
#include "Engine/Level/Scene/Lightmap.h"
|
|
#include "Engine/Level/Actors/PostFxVolume.h"
|
|
|
|
static_assert(sizeof(DrawCall) <= 288, "Too big draw call data size.");
|
|
static_assert(sizeof(DrawCall::Surface) >= sizeof(DrawCall::Terrain), "Wrong draw call data size.");
|
|
static_assert(sizeof(DrawCall::Surface) >= sizeof(DrawCall::Particle), "Wrong draw call data size.");
|
|
static_assert(sizeof(DrawCall::Surface) >= sizeof(DrawCall::Custom), "Wrong draw call data size.");
|
|
static_assert(sizeof(ShaderObjectData) == sizeof(Float4) * ARRAY_COUNT(ShaderObjectData::Raw), "Wrong object data.");
|
|
|
|
namespace
|
|
{
|
|
Array<RenderList*> FreeRenderList;
|
|
Array<Pair<void*, uintptr>> MemPool;
|
|
CriticalSection MemPoolLocker;
|
|
}
|
|
|
|
void ShaderObjectData::Store(const Matrix& worldMatrix, const Matrix& prevWorldMatrix, const Rectangle& lightmapUVsArea, const Float3& geometrySize, float perInstanceRandom, float worldDeterminantSign, float lodDitherFactor)
|
|
{
|
|
Half4 lightmapUVsAreaPacked(*(Float4*)&lightmapUVsArea);
|
|
Float2 lightmapUVsAreaPackedAliased = *(Float2*)&lightmapUVsAreaPacked;
|
|
Raw[0] = Float4(worldMatrix.M11, worldMatrix.M12, worldMatrix.M13, worldMatrix.M41);
|
|
Raw[1] = Float4(worldMatrix.M21, worldMatrix.M22, worldMatrix.M23, worldMatrix.M42);
|
|
Raw[2] = Float4(worldMatrix.M31, worldMatrix.M32, worldMatrix.M33, worldMatrix.M43);
|
|
Raw[3] = Float4(prevWorldMatrix.M11, prevWorldMatrix.M12, prevWorldMatrix.M13, prevWorldMatrix.M41);
|
|
Raw[4] = Float4(prevWorldMatrix.M21, prevWorldMatrix.M22, prevWorldMatrix.M23, prevWorldMatrix.M42);
|
|
Raw[5] = Float4(prevWorldMatrix.M31, prevWorldMatrix.M32, prevWorldMatrix.M33, prevWorldMatrix.M43);
|
|
Raw[6] = Float4(geometrySize, perInstanceRandom);
|
|
Raw[7] = Float4(worldDeterminantSign, lodDitherFactor, lightmapUVsAreaPackedAliased.X, lightmapUVsAreaPackedAliased.Y);
|
|
// TODO: pack WorldDeterminantSign and LODDitherFactor
|
|
}
|
|
|
|
void ShaderObjectData::Load(Matrix& worldMatrix, Matrix& prevWorldMatrix, Rectangle& lightmapUVsArea, Float3& geometrySize, float& perInstanceRandom, float& worldDeterminantSign, float& lodDitherFactor) const
|
|
{
|
|
worldMatrix.SetRow1(Float4(Float3(Raw[0]), 0.0f));
|
|
worldMatrix.SetRow2(Float4(Float3(Raw[1]), 0.0f));
|
|
worldMatrix.SetRow3(Float4(Float3(Raw[2]), 0.0f));
|
|
worldMatrix.SetRow4(Float4(Raw[0].W, Raw[1].W, Raw[2].W, 1.0f));
|
|
prevWorldMatrix.SetRow1(Float4(Float3(Raw[3]), 0.0f));
|
|
prevWorldMatrix.SetRow2(Float4(Float3(Raw[4]), 0.0f));
|
|
prevWorldMatrix.SetRow3(Float4(Float3(Raw[5]), 0.0f));
|
|
prevWorldMatrix.SetRow4(Float4(Raw[3].W, Raw[4].W, Raw[5].W, 1.0f));
|
|
geometrySize = Float3(Raw[6]);
|
|
perInstanceRandom = Raw[6].W;
|
|
worldDeterminantSign = Raw[7].X;
|
|
lodDitherFactor = Raw[7].Y;
|
|
Float2 lightmapUVsAreaPackedAliased(Raw[7].Z, Raw[7].W);
|
|
Half4 lightmapUVsAreaPacked(*(Half4*)&lightmapUVsAreaPackedAliased);
|
|
*(Float4*)&lightmapUVsArea = lightmapUVsAreaPacked.ToFloat4();
|
|
}
|
|
|
|
bool RenderLightData::CanRenderShadow(const RenderView& view) const
|
|
{
|
|
bool result = false;
|
|
switch (ShadowsMode)
|
|
{
|
|
case ShadowsCastingMode::StaticOnly:
|
|
result = view.IsOfflinePass;
|
|
break;
|
|
case ShadowsCastingMode::DynamicOnly:
|
|
result = !view.IsOfflinePass;
|
|
break;
|
|
case ShadowsCastingMode::All:
|
|
result = true;
|
|
break;
|
|
}
|
|
return result && ShadowsStrength > ZeroTolerance;
|
|
}
|
|
|
|
void RenderDirectionalLightData::SetShaderData(ShaderLightData& data, bool useShadow) const
|
|
{
|
|
data.SpotAngles.X = -2.0f;
|
|
data.SpotAngles.Y = 1.0f;
|
|
data.SourceRadius = 0;
|
|
data.SourceLength = 0;
|
|
data.Color = Color;
|
|
data.MinRoughness = Math::Max(MinRoughness, MIN_ROUGHNESS);
|
|
data.Position = Float3::Zero;
|
|
data.ShadowsBufferAddress = useShadow ? ShadowsBufferAddress : 0;
|
|
data.Direction = -Direction;
|
|
data.Radius = 0;
|
|
data.FalloffExponent = 0;
|
|
data.InverseSquared = 0;
|
|
data.RadiusInv = 0;
|
|
}
|
|
|
|
bool RenderLocalLightData::CanRenderShadow(const RenderView& view) const
|
|
{
|
|
// Fade shadow on distance
|
|
const float fadeDistance = Math::Max(ShadowsFadeDistance, 0.1f);
|
|
const float dstLightToView = Float3::Distance(Position, view.Position);
|
|
const float fade = 1 - Math::Saturate((dstLightToView - Radius - ShadowsDistance + fadeDistance) / fadeDistance);
|
|
return fade > ZeroTolerance && Radius > 10 && RenderLightData::CanRenderShadow(view);
|
|
}
|
|
|
|
void RenderSpotLightData::SetShaderData(ShaderLightData& data, bool useShadow) const
|
|
{
|
|
data.SpotAngles.X = CosOuterCone;
|
|
data.SpotAngles.Y = InvCosConeDifference;
|
|
data.SourceRadius = SourceRadius;
|
|
data.SourceLength = 0.0f;
|
|
data.Color = Color;
|
|
data.MinRoughness = Math::Max(MinRoughness, MIN_ROUGHNESS);
|
|
data.Position = Position;
|
|
data.ShadowsBufferAddress = useShadow ? ShadowsBufferAddress : 0;
|
|
data.Direction = Direction;
|
|
data.Radius = Radius;
|
|
data.FalloffExponent = FallOffExponent;
|
|
data.InverseSquared = UseInverseSquaredFalloff ? 1.0f : 0.0f;
|
|
data.RadiusInv = 1.0f / Radius;
|
|
}
|
|
|
|
void RenderPointLightData::SetShaderData(ShaderLightData& data, bool useShadow) const
|
|
{
|
|
data.SpotAngles.X = -2.0f;
|
|
data.SpotAngles.Y = 1.0f;
|
|
data.SourceRadius = SourceRadius;
|
|
data.SourceLength = SourceLength;
|
|
data.Color = Color;
|
|
data.MinRoughness = Math::Max(MinRoughness, MIN_ROUGHNESS);
|
|
data.Position = Position;
|
|
data.ShadowsBufferAddress = useShadow ? ShadowsBufferAddress : 0;
|
|
data.Direction = Direction;
|
|
data.Radius = Radius;
|
|
data.FalloffExponent = FallOffExponent;
|
|
data.InverseSquared = UseInverseSquaredFalloff ? 1.0f : 0.0f;
|
|
data.RadiusInv = 1.0f / Radius;
|
|
}
|
|
|
|
void RenderSkyLightData::SetShaderData(ShaderLightData& data, bool useShadow) const
|
|
{
|
|
data.SpotAngles.X = AdditiveColor.X;
|
|
data.SpotAngles.Y = AdditiveColor.Y;
|
|
data.SourceRadius = AdditiveColor.Z;
|
|
data.SourceLength = Image ? Image->StreamingTexture()->TotalMipLevels() - 2.0f : 0.0f;
|
|
data.Color = Color;
|
|
data.MinRoughness = MIN_ROUGHNESS;
|
|
data.Position = Position;
|
|
data.ShadowsBufferAddress = useShadow ? ShadowsBufferAddress : 0;
|
|
data.Direction = Float3::Forward;
|
|
data.Radius = Radius;
|
|
data.FalloffExponent = 0;
|
|
data.InverseSquared = 0;
|
|
data.RadiusInv = 1.0f / Radius;
|
|
}
|
|
|
|
void RenderEnvironmentProbeData::SetShaderData(ShaderEnvProbeData& data) const
|
|
{
|
|
data.Data0 = Float4(Position, 0);
|
|
data.Data1 = Float4(Radius, 1.0f / Radius, Brightness, 0);
|
|
}
|
|
|
|
void* RendererAllocation::Allocate(uintptr size)
|
|
{
|
|
void* result = nullptr;
|
|
MemPoolLocker.Lock();
|
|
for (int32 i = 0; i < MemPool.Count(); i++)
|
|
{
|
|
if (MemPool.Get()[i].Second == size)
|
|
{
|
|
result = MemPool.Get()[i].First;
|
|
MemPool.RemoveAt(i);
|
|
break;
|
|
}
|
|
}
|
|
MemPoolLocker.Unlock();
|
|
if (!result)
|
|
result = Platform::Allocate(size, 16);
|
|
return result;
|
|
}
|
|
|
|
void RendererAllocation::Free(void* ptr, uintptr size)
|
|
{
|
|
MemPoolLocker.Lock();
|
|
MemPool.Add({ ptr, size });
|
|
MemPoolLocker.Unlock();
|
|
}
|
|
|
|
RenderList* RenderList::GetFromPool()
|
|
{
|
|
MemPoolLocker.Lock();
|
|
if (FreeRenderList.HasItems())
|
|
{
|
|
const auto result = FreeRenderList.Last();
|
|
FreeRenderList.RemoveLast();
|
|
MemPoolLocker.Unlock();
|
|
return result;
|
|
}
|
|
MemPoolLocker.Unlock();
|
|
|
|
return New<RenderList>();
|
|
}
|
|
|
|
void RenderList::ReturnToPool(RenderList* cache)
|
|
{
|
|
if (!cache)
|
|
return;
|
|
cache->Clear();
|
|
|
|
MemPoolLocker.Lock();
|
|
ASSERT(!FreeRenderList.Contains(cache));
|
|
FreeRenderList.Add(cache);
|
|
MemPoolLocker.Unlock();
|
|
}
|
|
|
|
void RenderList::CleanupCache()
|
|
{
|
|
// Don't call it during rendering (data may be already in use)
|
|
ASSERT(GPUDevice::Instance == nullptr || GPUDevice::Instance->CurrentTask == nullptr);
|
|
|
|
MemPoolLocker.Lock();
|
|
FreeRenderList.ClearDelete();
|
|
for (auto& e : MemPool)
|
|
Platform::Free(e.First);
|
|
MemPool.Clear();
|
|
MemPoolLocker.Unlock();
|
|
}
|
|
|
|
bool RenderList::BlendableSettings::operator<(const BlendableSettings& other) const
|
|
{
|
|
// Sort by higher priority
|
|
if (Priority != other.Priority)
|
|
return Priority < other.Priority;
|
|
|
|
// Sort by lower size
|
|
return other.VolumeSizeSqr < VolumeSizeSqr;
|
|
}
|
|
|
|
void RenderList::AddSettingsBlend(IPostFxSettingsProvider* provider, float weight, int32 priority, float volumeSizeSqr)
|
|
{
|
|
BlendableSettings blend;
|
|
blend.Provider = provider;
|
|
blend.Weight = weight;
|
|
blend.Priority = priority;
|
|
blend.VolumeSizeSqr = volumeSizeSqr;
|
|
Blendable.Add(blend);
|
|
}
|
|
|
|
void RenderList::BlendSettings()
|
|
{
|
|
PROFILE_CPU();
|
|
Sorting::QuickSort(Blendable);
|
|
Settings = Graphics::PostProcessSettings;
|
|
for (auto& b : Blendable)
|
|
{
|
|
b.Provider->Blend(Settings, b.Weight);
|
|
}
|
|
}
|
|
|
|
void RenderList::RunPostFxPass(GPUContext* context, RenderContext& renderContext, MaterialPostFxLocation locationA, PostProcessEffectLocation locationB, GPUTexture*& inputOutput)
|
|
{
|
|
// Note: during this stage engine is using additive rendering to the light buffer (given as inputOutput parameter).
|
|
// Materials PostFx and Custom PostFx prefer sampling the input texture while rendering to the output.
|
|
// So we need to allocate a temporary render target (or reuse from cache) and use it as a ping pong buffer.
|
|
|
|
bool skipPass = true;
|
|
bool needTempTarget = true;
|
|
for (int32 i = 0; i < Settings.PostFxMaterials.Materials.Count(); i++)
|
|
{
|
|
const auto material = Settings.PostFxMaterials.Materials[i].Get();
|
|
if (material && material->IsReady() && material->IsPostFx() && material->GetInfo().PostFxLocation == locationA)
|
|
{
|
|
skipPass = false;
|
|
needTempTarget = true;
|
|
}
|
|
}
|
|
if (EnumHasAnyFlags(renderContext.View.Flags, ViewFlags::CustomPostProcess))
|
|
{
|
|
for (const PostProcessEffect* fx : renderContext.List->PostFx)
|
|
{
|
|
if (fx->Location == locationB)
|
|
{
|
|
skipPass = false;
|
|
needTempTarget |= !fx->UseSingleTarget;
|
|
}
|
|
}
|
|
}
|
|
if (skipPass)
|
|
return;
|
|
|
|
auto tempDesc = inputOutput->GetDescription();
|
|
auto temp = needTempTarget ? RenderTargetPool::Get(tempDesc) : nullptr;
|
|
if (needTempTarget)
|
|
{
|
|
RENDER_TARGET_POOL_SET_NAME(temp, "RenderList.RunPostFxPassTemp");
|
|
}
|
|
|
|
auto input = inputOutput;
|
|
auto output = temp;
|
|
|
|
context->ResetRenderTarget();
|
|
|
|
MaterialBase::BindParameters bindParams(context, renderContext);
|
|
for (int32 i = 0; i < Settings.PostFxMaterials.Materials.Count(); i++)
|
|
{
|
|
auto material = Settings.PostFxMaterials.Materials[i].Get();
|
|
if (material && material->IsReady() && material->IsPostFx() && material->GetInfo().PostFxLocation == locationA)
|
|
{
|
|
ASSERT(needTempTarget);
|
|
context->SetRenderTarget(*output);
|
|
bindParams.Input = *input;
|
|
material->Bind(bindParams);
|
|
context->DrawFullscreenTriangle();
|
|
context->ResetRenderTarget();
|
|
Swap(output, input);
|
|
}
|
|
}
|
|
if (EnumHasAnyFlags(renderContext.View.Flags, ViewFlags::CustomPostProcess))
|
|
{
|
|
for (PostProcessEffect* fx : renderContext.List->PostFx)
|
|
{
|
|
if (fx->Location == locationB)
|
|
{
|
|
context->ResetSR();
|
|
context->ResetUA();
|
|
if (fx->UseSingleTarget || output == nullptr)
|
|
{
|
|
fx->Render(context, renderContext, input, nullptr);
|
|
}
|
|
else
|
|
{
|
|
ASSERT(needTempTarget);
|
|
fx->Render(context, renderContext, input, output);
|
|
Swap(input, output);
|
|
}
|
|
context->ResetRenderTarget();
|
|
}
|
|
}
|
|
}
|
|
|
|
inputOutput = input;
|
|
|
|
if (needTempTarget)
|
|
RenderTargetPool::Release(output);
|
|
}
|
|
|
|
void RenderList::RunMaterialPostFxPass(GPUContext* context, RenderContext& renderContext, MaterialPostFxLocation location, GPUTexture*& input, GPUTexture*& output)
|
|
{
|
|
MaterialBase::BindParameters bindParams(context, renderContext);
|
|
for (int32 i = 0; i < Settings.PostFxMaterials.Materials.Count(); i++)
|
|
{
|
|
auto material = Settings.PostFxMaterials.Materials[i].Get();
|
|
if (material && material->IsReady() && material->IsPostFx() && material->GetInfo().PostFxLocation == location)
|
|
{
|
|
context->SetRenderTarget(*output);
|
|
bindParams.Input = *input;
|
|
material->Bind(bindParams);
|
|
context->DrawFullscreenTriangle();
|
|
Swap(output, input);
|
|
}
|
|
context->ResetRenderTarget();
|
|
}
|
|
}
|
|
|
|
void RenderList::RunCustomPostFxPass(GPUContext* context, RenderContext& renderContext, PostProcessEffectLocation location, GPUTexture*& input, GPUTexture*& output)
|
|
{
|
|
if (!(renderContext.View.Flags & ViewFlags::CustomPostProcess))
|
|
return;
|
|
for (PostProcessEffect* fx : renderContext.List->PostFx)
|
|
{
|
|
if (fx->Location == location)
|
|
{
|
|
if (fx->UseSingleTarget || output == nullptr)
|
|
{
|
|
fx->Render(context, renderContext, input, nullptr);
|
|
}
|
|
else
|
|
{
|
|
fx->Render(context, renderContext, input, output);
|
|
Swap(input, output);
|
|
}
|
|
context->ResetRenderTarget();
|
|
}
|
|
}
|
|
}
|
|
|
|
bool RenderList::HasAnyPostFx(const RenderContext& renderContext, PostProcessEffectLocation postProcess) const
|
|
{
|
|
if (EnumHasAnyFlags(renderContext.View.Flags, ViewFlags::CustomPostProcess))
|
|
{
|
|
for (const PostProcessEffect* fx : renderContext.List->PostFx)
|
|
{
|
|
if (fx->Location == postProcess)
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool RenderList::HasAnyPostFx(const RenderContext& renderContext, MaterialPostFxLocation materialPostFx) const
|
|
{
|
|
for (int32 i = 0; i < Settings.PostFxMaterials.Materials.Count(); i++)
|
|
{
|
|
auto material = Settings.PostFxMaterials.Materials[i].Get();
|
|
if (material && material->IsReady() && material->IsPostFx() && material->GetInfo().PostFxLocation == materialPostFx)
|
|
{
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void DrawCallsList::Clear()
|
|
{
|
|
Indices.Clear();
|
|
PreBatchedDrawCalls.Clear();
|
|
Batches.Clear();
|
|
CanUseInstancing = true;
|
|
}
|
|
|
|
bool DrawCallsList::IsEmpty() const
|
|
{
|
|
return Indices.Count() + PreBatchedDrawCalls.Count() == 0;
|
|
}
|
|
|
|
RenderList::RenderList(const SpawnParams& params)
|
|
: ScriptingObject(params)
|
|
, DirectionalLights(4)
|
|
, PointLights(32)
|
|
, SpotLights(32)
|
|
, SkyLights(4)
|
|
, EnvironmentProbes(32)
|
|
, Decals(64)
|
|
, Sky(nullptr)
|
|
, AtmosphericFog(nullptr)
|
|
, Fog(nullptr)
|
|
, Blendable(32)
|
|
, ObjectBuffer(0, PixelFormat::R32G32B32A32_Float, false, TEXT("Object Bufffer"))
|
|
, _instanceBuffer(0, sizeof(ShaderObjectDrawInstanceData), TEXT("Instance Buffer"))
|
|
{
|
|
}
|
|
|
|
void RenderList::Init(RenderContext& renderContext)
|
|
{
|
|
renderContext.View.Frustum.GetCorners(FrustumCornersWs);
|
|
for (int32 i = 0; i < 8; i++)
|
|
Float3::Transform(FrustumCornersWs[i], renderContext.View.View, FrustumCornersVs[i]);
|
|
}
|
|
|
|
void RenderList::Clear()
|
|
{
|
|
Scenes.Clear();
|
|
DrawCalls.Clear();
|
|
BatchedDrawCalls.Clear();
|
|
for (auto& list : DrawCallsLists)
|
|
list.Clear();
|
|
ShadowDepthDrawCallsList.Clear();
|
|
PointLights.Clear();
|
|
SpotLights.Clear();
|
|
SkyLights.Clear();
|
|
DirectionalLights.Clear();
|
|
EnvironmentProbes.Clear();
|
|
Decals.Clear();
|
|
VolumetricFogParticles.Clear();
|
|
Sky = nullptr;
|
|
AtmosphericFog = nullptr;
|
|
Fog = nullptr;
|
|
PostFx.Clear();
|
|
Settings = PostProcessSettings();
|
|
Blendable.Clear();
|
|
_instanceBuffer.Clear();
|
|
ObjectBuffer.Clear();
|
|
}
|
|
|
|
struct PackedSortKey
|
|
{
|
|
union
|
|
{
|
|
uint64 Data;
|
|
|
|
struct
|
|
{
|
|
// Sorting order: By Sort Order -> By Material -> By Geometry -> By Distance
|
|
uint32 DistanceKey;
|
|
uint8 DrawKey;
|
|
uint16 BatchKey;
|
|
uint8 SortKey;
|
|
};
|
|
};
|
|
};
|
|
|
|
FORCE_INLINE void CalculateSortKey(const RenderContext& renderContext, DrawCall& drawCall, int8 sortOrder)
|
|
{
|
|
const Float3 planeNormal = renderContext.View.Direction;
|
|
const float planePoint = -Float3::Dot(planeNormal, renderContext.View.Position);
|
|
const float distance = Float3::Dot(planeNormal, drawCall.ObjectPosition) - planePoint;
|
|
PackedSortKey key;
|
|
key.DistanceKey = RenderTools::ComputeDistanceSortKey(distance);
|
|
uint32 batchKey = GetHash(drawCall.Material);
|
|
IMaterial::InstancingHandler handler;
|
|
if (drawCall.Material->CanUseInstancing(handler))
|
|
handler.GetHash(drawCall, batchKey);
|
|
key.BatchKey = (uint16)batchKey;
|
|
uint32 drawKey = (uint32)(471 * drawCall.WorldDeterminantSign);
|
|
drawKey = (drawKey * 397) ^ GetHash(drawCall.Geometry.VertexBuffers[0]);
|
|
drawKey = (drawKey * 397) ^ GetHash(drawCall.Geometry.VertexBuffers[1]);
|
|
drawKey = (drawKey * 397) ^ GetHash(drawCall.Geometry.VertexBuffers[2]);
|
|
drawKey = (drawKey * 397) ^ GetHash(drawCall.Geometry.IndexBuffer);
|
|
key.DrawKey = (uint8)drawKey;
|
|
key.SortKey = (uint8)(sortOrder - MIN_int8);
|
|
drawCall.SortKey = key.Data;
|
|
}
|
|
|
|
void RenderList::AddDrawCall(const RenderContext& renderContext, DrawPass drawModes, StaticFlags staticFlags, DrawCall& drawCall, bool receivesDecals, int8 sortOrder)
|
|
{
|
|
#if ENABLE_ASSERTION_LOW_LAYERS
|
|
// Ensure that draw modes are non-empty and in conjunction with material draw modes
|
|
auto materialDrawModes = drawCall.Material->GetDrawModes();
|
|
ASSERT_LOW_LAYER(drawModes != DrawPass::None && ((uint32)drawModes & ~(uint32)materialDrawModes) == 0);
|
|
#endif
|
|
|
|
// Append draw call data
|
|
CalculateSortKey(renderContext, drawCall, sortOrder);
|
|
const int32 index = DrawCalls.Add(drawCall);
|
|
|
|
// Add draw call to proper draw lists
|
|
if ((drawModes & DrawPass::Depth) != DrawPass::None)
|
|
{
|
|
DrawCallsLists[(int32)DrawCallsListType::Depth].Indices.Add(index);
|
|
}
|
|
if ((drawModes & (DrawPass::GBuffer | DrawPass::GlobalSurfaceAtlas)) != DrawPass::None)
|
|
{
|
|
if (receivesDecals)
|
|
DrawCallsLists[(int32)DrawCallsListType::GBuffer].Indices.Add(index);
|
|
else
|
|
DrawCallsLists[(int32)DrawCallsListType::GBufferNoDecals].Indices.Add(index);
|
|
}
|
|
if ((drawModes & DrawPass::Forward) != DrawPass::None)
|
|
{
|
|
DrawCallsLists[(int32)DrawCallsListType::Forward].Indices.Add(index);
|
|
}
|
|
if ((drawModes & DrawPass::Distortion) != DrawPass::None)
|
|
{
|
|
DrawCallsLists[(int32)DrawCallsListType::Distortion].Indices.Add(index);
|
|
}
|
|
if ((drawModes & DrawPass::MotionVectors) != DrawPass::None && (staticFlags & StaticFlags::Transform) == StaticFlags::None)
|
|
{
|
|
DrawCallsLists[(int32)DrawCallsListType::MotionVectors].Indices.Add(index);
|
|
}
|
|
}
|
|
|
|
void RenderList::AddDrawCall(const RenderContextBatch& renderContextBatch, DrawPass drawModes, StaticFlags staticFlags, ShadowsCastingMode shadowsMode, const BoundingSphere& bounds, DrawCall& drawCall, bool receivesDecals, int8 sortOrder)
|
|
{
|
|
#if ENABLE_ASSERTION_LOW_LAYERS
|
|
// Ensure that draw modes are non-empty and in conjunction with material draw modes
|
|
auto materialDrawModes = drawCall.Material->GetDrawModes();
|
|
ASSERT_LOW_LAYER(drawModes != DrawPass::None && ((uint32)drawModes & ~(uint32)materialDrawModes) == 0);
|
|
#endif
|
|
const RenderContext& mainRenderContext = renderContextBatch.Contexts.Get()[0];
|
|
|
|
// Append draw call data
|
|
CalculateSortKey(mainRenderContext, drawCall, sortOrder);
|
|
const int32 index = DrawCalls.Add(drawCall);
|
|
|
|
// Add draw call to proper draw lists
|
|
DrawPass modes = drawModes & mainRenderContext.View.GetShadowsDrawPassMask(shadowsMode);
|
|
drawModes = modes & mainRenderContext.View.Pass;
|
|
if (drawModes != DrawPass::None && mainRenderContext.View.CullingFrustum.Intersects(bounds))
|
|
{
|
|
if ((drawModes & DrawPass::Depth) != DrawPass::None)
|
|
{
|
|
DrawCallsLists[(int32)DrawCallsListType::Depth].Indices.Add(index);
|
|
}
|
|
if ((drawModes & (DrawPass::GBuffer | DrawPass::GlobalSurfaceAtlas)) != DrawPass::None)
|
|
{
|
|
if (receivesDecals)
|
|
DrawCallsLists[(int32)DrawCallsListType::GBuffer].Indices.Add(index);
|
|
else
|
|
DrawCallsLists[(int32)DrawCallsListType::GBufferNoDecals].Indices.Add(index);
|
|
}
|
|
if ((drawModes & DrawPass::Forward) != DrawPass::None)
|
|
{
|
|
DrawCallsLists[(int32)DrawCallsListType::Forward].Indices.Add(index);
|
|
}
|
|
if ((drawModes & DrawPass::Distortion) != DrawPass::None)
|
|
{
|
|
DrawCallsLists[(int32)DrawCallsListType::Distortion].Indices.Add(index);
|
|
}
|
|
if ((drawModes & DrawPass::MotionVectors) != DrawPass::None && (staticFlags & StaticFlags::Transform) == StaticFlags::None)
|
|
{
|
|
DrawCallsLists[(int32)DrawCallsListType::MotionVectors].Indices.Add(index);
|
|
}
|
|
}
|
|
for (int32 i = 1; i < renderContextBatch.Contexts.Count(); i++)
|
|
{
|
|
const RenderContext& renderContext = renderContextBatch.Contexts.Get()[i];
|
|
ASSERT_LOW_LAYER(renderContext.View.Pass == DrawPass::Depth);
|
|
drawModes = modes & renderContext.View.Pass;
|
|
if (drawModes != DrawPass::None &&
|
|
(staticFlags & renderContext.View.StaticFlagsMask) == renderContext.View.StaticFlagsCompare &&
|
|
renderContext.View.CullingFrustum.Intersects(bounds))
|
|
{
|
|
renderContext.List->ShadowDepthDrawCallsList.Indices.Add(index);
|
|
}
|
|
}
|
|
}
|
|
|
|
void RenderList::BuildObjectsBuffer()
|
|
{
|
|
int32 count = DrawCalls.Count();
|
|
for (const auto& e : BatchedDrawCalls)
|
|
count += e.Instances.Count();
|
|
ObjectBuffer.Clear();
|
|
if (count == 0)
|
|
return;
|
|
PROFILE_CPU();
|
|
ObjectBuffer.Data.Resize(count * sizeof(ShaderObjectData));
|
|
auto* src = (const DrawCall*)DrawCalls.Get();
|
|
auto* dst = (ShaderObjectData*)ObjectBuffer.Data.Get();
|
|
for (int32 i = 0; i < DrawCalls.Count(); i++)
|
|
{
|
|
dst->Store(src[i]);
|
|
dst++;
|
|
}
|
|
int32 startIndex = DrawCalls.Count();
|
|
for (auto& batch : BatchedDrawCalls)
|
|
{
|
|
batch.ObjectsStartIndex = startIndex;
|
|
Platform::MemoryCopy(dst, batch.Instances.Get(), batch.Instances.Count() * sizeof(ShaderObjectData));
|
|
dst += batch.Instances.Count();
|
|
startIndex += batch.Instances.Count();
|
|
}
|
|
ZoneValue(ObjectBuffer.Data.Count() / 1024); // Objects Buffer size in kB
|
|
}
|
|
|
|
void RenderList::SortDrawCalls(const RenderContext& renderContext, bool reverseDistance, DrawCallsList& list, const RenderListBuffer<DrawCall>& drawCalls, DrawPass pass, bool stable)
|
|
{
|
|
PROFILE_CPU();
|
|
const auto* drawCallsData = drawCalls.Get();
|
|
const auto* listData = list.Indices.Get();
|
|
const int32 listSize = list.Indices.Count();
|
|
ZoneValue(listSize);
|
|
|
|
// Use shared memory from renderer allocator
|
|
Array<uint64, RendererAllocation> SortingKeys[2];
|
|
Array<int32, RendererAllocation> SortingIndices;
|
|
SortingKeys[0].Resize(listSize);
|
|
SortingKeys[1].Resize(listSize);
|
|
SortingIndices.Resize(listSize);
|
|
uint64* sortedKeys = SortingKeys[0].Get();
|
|
|
|
// Setup sort keys
|
|
if (reverseDistance)
|
|
{
|
|
for (int32 i = 0; i < listSize; i++)
|
|
{
|
|
const DrawCall& drawCall = drawCallsData[listData[i]];
|
|
PackedSortKey key;
|
|
key.Data = drawCall.SortKey;
|
|
key.DistanceKey ^= MAX_uint32; // Reverse depth
|
|
key.SortKey ^= MAX_uint16; // Reverse sort order
|
|
sortedKeys[i] = key.Data;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (int32 i = 0; i < listSize; i++)
|
|
{
|
|
const DrawCall& drawCall = drawCallsData[listData[i]];
|
|
sortedKeys[i] = drawCall.SortKey;
|
|
}
|
|
}
|
|
|
|
// Sort draw calls indices
|
|
int32* resultIndices = list.Indices.Get();
|
|
Sorting::RadixSort(sortedKeys, resultIndices, SortingKeys[1].Get(), SortingIndices.Get(), listSize);
|
|
if (resultIndices != list.Indices.Get())
|
|
Platform::MemoryCopy(list.Indices.Get(), resultIndices, sizeof(int32) * listSize);
|
|
|
|
// Perform draw calls batching
|
|
list.Batches.Clear();
|
|
for (int32 i = 0; i < listSize;)
|
|
{
|
|
const DrawCall& drawCall = drawCallsData[listData[i]];
|
|
int32 batchSize = 1;
|
|
int32 instanceCount = drawCall.InstanceCount;
|
|
IMaterial::InstancingHandler drawCallHandler, otherHandler;
|
|
if (instanceCount != 0 && drawCall.Material->CanUseInstancing(drawCallHandler))
|
|
{
|
|
// Check the following draw calls sequence to merge them
|
|
for (int32 j = i + 1; j < listSize; j++)
|
|
{
|
|
const DrawCall& other = drawCallsData[listData[j]];
|
|
const bool canBatch =
|
|
other.Material->CanUseInstancing(otherHandler) &&
|
|
other.InstanceCount != 0 &&
|
|
drawCallHandler.CanBatch == otherHandler.CanBatch &&
|
|
drawCallHandler.CanBatch(drawCall, other, pass) &&
|
|
drawCall.WorldDeterminantSign * other.WorldDeterminantSign > 0;
|
|
if (!canBatch)
|
|
break;
|
|
batchSize++;
|
|
instanceCount += other.InstanceCount;
|
|
}
|
|
}
|
|
|
|
DrawBatch batch;
|
|
static_assert(sizeof(DrawBatch) == sizeof(uint64) * 2, "Fix the size of draw batch to optimize memory access.");
|
|
batch.SortKey = sortedKeys[i];
|
|
batch.StartIndex = i;
|
|
batch.BatchSize = batchSize;
|
|
batch.InstanceCount = instanceCount;
|
|
list.Batches.Add(batch);
|
|
|
|
i += batchSize;
|
|
}
|
|
|
|
// When using depth buffer draw calls are already almost ideally sorted by Radix Sort but transparency needs more stability to prevent flickering
|
|
if (stable)
|
|
{
|
|
// Sort draw calls batches by depth
|
|
Array<DrawBatch, RendererAllocation> sortingBatches;
|
|
Sorting::MergeSort(list.Batches, &sortingBatches);
|
|
}
|
|
}
|
|
|
|
FORCE_INLINE bool CanUseInstancing(DrawPass pass)
|
|
{
|
|
return pass == DrawPass::GBuffer || pass == DrawPass::Depth;
|
|
}
|
|
|
|
FORCE_INLINE bool DrawsEqual(const DrawCall* a, const DrawCall* b)
|
|
{
|
|
return a->Geometry.IndexBuffer == b->Geometry.IndexBuffer &&
|
|
a->Draw.IndicesCount == b->Draw.IndicesCount &&
|
|
a->Draw.StartIndex == b->Draw.StartIndex &&
|
|
Platform::MemoryCompare(a->Geometry.VertexBuffers, b->Geometry.VertexBuffers, sizeof(a->Geometry.VertexBuffers) + sizeof(a->Geometry.VertexBuffersOffsets)) == 0;
|
|
}
|
|
|
|
void RenderList::ExecuteDrawCalls(const RenderContext& renderContext, DrawCallsList& list, RenderList* drawCallsList, GPUTextureView* input)
|
|
{
|
|
if (list.IsEmpty())
|
|
return;
|
|
PROFILE_GPU_CPU("Drawing");
|
|
const auto* drawCallsData = drawCallsList->DrawCalls.Get();
|
|
const auto* listData = list.Indices.Get();
|
|
const auto* batchesData = list.Batches.Get();
|
|
const auto context = GPUDevice::Instance->GetMainContext();
|
|
bool useInstancing = list.CanUseInstancing && CanUseInstancing(renderContext.View.Pass) && GPUDevice::Instance->Limits.HasInstancing;
|
|
TaaJitterRemoveContext taaJitterRemove(renderContext.View);
|
|
|
|
// Lazy-init objects buffer (if user didn't do it)
|
|
if (drawCallsList->ObjectBuffer.Data.IsEmpty())
|
|
{
|
|
drawCallsList->BuildObjectsBuffer();
|
|
drawCallsList->ObjectBuffer.Flush(context);
|
|
}
|
|
|
|
// Clear SR slots to prevent any resources binding issues (leftovers from the previous passes)
|
|
context->ResetSR();
|
|
|
|
// Prepare instance buffer
|
|
if (useInstancing)
|
|
{
|
|
// Estimate the maximum amount of elements for all instanced draws
|
|
int32 instancesCount = 0;
|
|
for (int32 i = 0; i < list.Batches.Count(); i++)
|
|
{
|
|
const DrawBatch& batch = batchesData[i];
|
|
if (batch.BatchSize > 1)
|
|
instancesCount += batch.BatchSize;
|
|
}
|
|
for (int32 i = 0; i < list.PreBatchedDrawCalls.Count(); i++)
|
|
{
|
|
const BatchedDrawCall& batch = BatchedDrawCalls.Get()[list.PreBatchedDrawCalls.Get()[i]];
|
|
instancesCount += batch.Instances.Count();
|
|
}
|
|
if (instancesCount != 0)
|
|
{
|
|
PROFILE_CPU_NAMED("Build Instancing");
|
|
_instanceBuffer.Clear();
|
|
_instanceBuffer.Data.Resize(instancesCount * sizeof(ShaderObjectDrawInstanceData));
|
|
auto instanceData = (ShaderObjectDrawInstanceData*)_instanceBuffer.Data.Get();
|
|
|
|
// Write to instance buffer
|
|
for (int32 i = 0; i < list.Batches.Count(); i++)
|
|
{
|
|
const DrawBatch& batch = batchesData[i];
|
|
if (batch.BatchSize > 1)
|
|
{
|
|
for (int32 j = 0; j < batch.BatchSize; j++)
|
|
{
|
|
instanceData->ObjectIndex = listData[batch.StartIndex + j];
|
|
instanceData++;
|
|
}
|
|
}
|
|
}
|
|
for (int32 i = 0; i < list.PreBatchedDrawCalls.Count(); i++)
|
|
{
|
|
const BatchedDrawCall& batch = BatchedDrawCalls.Get()[list.PreBatchedDrawCalls.Get()[i]];
|
|
for (int32 j = 0; j < batch.Instances.Count(); j++)
|
|
{
|
|
instanceData->ObjectIndex = batch.ObjectsStartIndex + j;
|
|
instanceData++;
|
|
}
|
|
}
|
|
ASSERT((byte*)instanceData == _instanceBuffer.Data.end());
|
|
|
|
// Upload data
|
|
_instanceBuffer.Flush(context);
|
|
ZoneValue(instancesCount);
|
|
}
|
|
else
|
|
{
|
|
// No batches so no instancing
|
|
useInstancing = false;
|
|
}
|
|
}
|
|
|
|
// Execute draw calls
|
|
int32 materialBinds = list.Batches.Count();
|
|
MaterialBase::BindParameters bindParams(context, renderContext);
|
|
bindParams.ObjectBuffer = drawCallsList->ObjectBuffer.GetBuffer()->View();
|
|
bindParams.Input = input;
|
|
bindParams.BindViewData();
|
|
MaterialShaderDataPerDraw perDraw;
|
|
perDraw.DrawPadding = Float3::Zero;
|
|
GPUConstantBuffer* perDrawCB = IMaterial::BindParameters::PerDrawConstants;
|
|
context->BindCB(2, perDrawCB); // TODO: use rootSignature/pushConstants on D3D12/Vulkan
|
|
constexpr int32 vbMax = ARRAY_COUNT(DrawCall::Geometry.VertexBuffers);
|
|
if (useInstancing)
|
|
{
|
|
GPUBuffer* vb[vbMax + 1];
|
|
uint32 vbOffsets[vbMax + 1];
|
|
vb[3] = _instanceBuffer.GetBuffer(); // Pass object index in a vertex stream at slot 3 (used by VS in Surface.shader)
|
|
vbOffsets[3] = 0;
|
|
int32 instanceBufferOffset = 0;
|
|
for (int32 i = 0; i < list.Batches.Count(); i++)
|
|
{
|
|
const DrawBatch& batch = batchesData[i];
|
|
uint32 drawCallIndex = listData[batch.StartIndex];
|
|
const DrawCall& drawCall = drawCallsData[drawCallIndex];
|
|
|
|
bindParams.Instanced = batch.BatchSize != 1;
|
|
bindParams.DrawCall = &drawCall;
|
|
bindParams.DrawCall->Material->Bind(bindParams);
|
|
|
|
if (bindParams.Instanced)
|
|
{
|
|
// One or more draw calls per batch
|
|
const DrawCall* activeDraw = &drawCall;
|
|
int32 activeCount = 1;
|
|
for (int32 j = 1; j <= batch.BatchSize; j++)
|
|
{
|
|
if (j != batch.BatchSize && DrawsEqual(activeDraw, drawCallsData + listData[batch.StartIndex + j]))
|
|
{
|
|
// Group two draw calls into active draw call
|
|
activeCount++;
|
|
continue;
|
|
}
|
|
|
|
// Draw whole active draw (instanced)
|
|
Platform::MemoryCopy(vb, activeDraw->Geometry.VertexBuffers, sizeof(DrawCall::Geometry.VertexBuffers));
|
|
Platform::MemoryCopy(vbOffsets, activeDraw->Geometry.VertexBuffersOffsets, sizeof(DrawCall::Geometry.VertexBuffersOffsets));
|
|
context->BindIB(activeDraw->Geometry.IndexBuffer);
|
|
context->BindVB(ToSpan(vb, ARRAY_COUNT(vb)), vbOffsets);
|
|
context->DrawIndexedInstanced(activeDraw->Draw.IndicesCount, activeCount, instanceBufferOffset, 0, activeDraw->Draw.StartIndex);
|
|
instanceBufferOffset += activeCount;
|
|
|
|
// Reset active draw
|
|
activeDraw = drawCallsData + listData[batch.StartIndex + j];
|
|
activeCount = 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Pass object index in constant buffer
|
|
perDraw.DrawObjectIndex = drawCallIndex;
|
|
context->UpdateCB(perDrawCB, &perDraw);
|
|
|
|
// Single-draw call batch
|
|
context->BindIB(drawCall.Geometry.IndexBuffer);
|
|
context->BindVB(ToSpan(drawCall.Geometry.VertexBuffers, vbMax), drawCall.Geometry.VertexBuffersOffsets);
|
|
if (drawCall.InstanceCount == 0)
|
|
{
|
|
context->DrawIndexedInstancedIndirect(drawCall.Draw.IndirectArgsBuffer, drawCall.Draw.IndirectArgsOffset);
|
|
}
|
|
else
|
|
{
|
|
context->DrawIndexedInstanced(drawCall.Draw.IndicesCount, batch.InstanceCount, 0, 0, drawCall.Draw.StartIndex);
|
|
}
|
|
}
|
|
}
|
|
for (int32 i = 0; i < list.PreBatchedDrawCalls.Count(); i++)
|
|
{
|
|
const BatchedDrawCall& batch = BatchedDrawCalls.Get()[list.PreBatchedDrawCalls.Get()[i]];
|
|
const DrawCall& drawCall = batch.DrawCall;
|
|
|
|
bindParams.Instanced = true;
|
|
bindParams.DrawCall = &drawCall;
|
|
bindParams.DrawCall->Material->Bind(bindParams);
|
|
|
|
Platform::MemoryCopy(vb, drawCall.Geometry.VertexBuffers, sizeof(DrawCall::Geometry.VertexBuffers));
|
|
Platform::MemoryCopy(vbOffsets, drawCall.Geometry.VertexBuffersOffsets, sizeof(DrawCall::Geometry.VertexBuffersOffsets));
|
|
context->BindIB(drawCall.Geometry.IndexBuffer);
|
|
context->BindVB(ToSpan(vb, vbMax + 1), vbOffsets);
|
|
|
|
if (drawCall.InstanceCount == 0)
|
|
{
|
|
context->DrawIndexedInstancedIndirect(drawCall.Draw.IndirectArgsBuffer, drawCall.Draw.IndirectArgsOffset);
|
|
}
|
|
else
|
|
{
|
|
context->DrawIndexedInstanced(drawCall.Draw.IndicesCount, batch.Instances.Count(), instanceBufferOffset, 0, drawCall.Draw.StartIndex);
|
|
instanceBufferOffset += batch.Instances.Count();
|
|
}
|
|
}
|
|
materialBinds += list.PreBatchedDrawCalls.Count();
|
|
}
|
|
else
|
|
{
|
|
for (int32 i = 0; i < list.Batches.Count(); i++)
|
|
{
|
|
const DrawBatch& batch = batchesData[i];
|
|
|
|
bindParams.DrawCall = drawCallsData + listData[batch.StartIndex];
|
|
bindParams.DrawCall->Material->Bind(bindParams);
|
|
|
|
for (int32 j = 0; j < batch.BatchSize; j++)
|
|
{
|
|
perDraw.DrawObjectIndex = listData[batch.StartIndex + j];
|
|
context->UpdateCB(perDrawCB, &perDraw);
|
|
|
|
const DrawCall& drawCall = drawCallsData[perDraw.DrawObjectIndex];
|
|
context->BindIB(drawCall.Geometry.IndexBuffer);
|
|
context->BindVB(ToSpan(drawCall.Geometry.VertexBuffers, vbMax), drawCall.Geometry.VertexBuffersOffsets);
|
|
|
|
if (drawCall.InstanceCount == 0)
|
|
{
|
|
context->DrawIndexedInstancedIndirect(drawCall.Draw.IndirectArgsBuffer, drawCall.Draw.IndirectArgsOffset);
|
|
}
|
|
else
|
|
{
|
|
context->DrawIndexedInstanced(drawCall.Draw.IndicesCount, drawCall.InstanceCount, 0, 0, drawCall.Draw.StartIndex);
|
|
}
|
|
}
|
|
}
|
|
for (int32 i = 0; i < list.PreBatchedDrawCalls.Count(); i++)
|
|
{
|
|
const BatchedDrawCall& batch = BatchedDrawCalls.Get()[list.PreBatchedDrawCalls.Get()[i]];
|
|
const DrawCall& drawCall = batch.DrawCall;
|
|
|
|
bindParams.DrawCall = &drawCall;
|
|
bindParams.DrawCall->Material->Bind(bindParams);
|
|
|
|
context->BindIB(drawCall.Geometry.IndexBuffer);
|
|
context->BindVB(ToSpan(drawCall.Geometry.VertexBuffers, vbMax), drawCall.Geometry.VertexBuffersOffsets);
|
|
|
|
for (int32 j = 0; j < batch.Instances.Count(); j++)
|
|
{
|
|
perDraw.DrawObjectIndex = batch.ObjectsStartIndex + j;
|
|
context->UpdateCB(perDrawCB, &perDraw);
|
|
|
|
context->DrawIndexedInstanced(drawCall.Draw.IndicesCount, drawCall.InstanceCount, 0, 0, drawCall.Draw.StartIndex);
|
|
}
|
|
}
|
|
materialBinds += list.PreBatchedDrawCalls.Count();
|
|
if (list.Batches.IsEmpty() && list.Indices.Count() != 0)
|
|
{
|
|
// Draw calls list has bot been batched so execute draw calls separately
|
|
for (int32 j = 0; j < list.Indices.Count(); j++)
|
|
{
|
|
perDraw.DrawObjectIndex = listData[j];
|
|
context->UpdateCB(perDrawCB, &perDraw);
|
|
|
|
const DrawCall& drawCall = drawCallsData[perDraw.DrawObjectIndex];
|
|
bindParams.DrawCall = &drawCall;
|
|
drawCall.Material->Bind(bindParams);
|
|
|
|
context->BindIB(drawCall.Geometry.IndexBuffer);
|
|
context->BindVB(ToSpan(drawCall.Geometry.VertexBuffers, vbMax), drawCall.Geometry.VertexBuffersOffsets);
|
|
|
|
if (drawCall.InstanceCount == 0)
|
|
{
|
|
context->DrawIndexedInstancedIndirect(drawCall.Draw.IndirectArgsBuffer, drawCall.Draw.IndirectArgsOffset);
|
|
}
|
|
else
|
|
{
|
|
context->DrawIndexedInstanced(drawCall.Draw.IndicesCount, drawCall.InstanceCount, 0, 0, drawCall.Draw.StartIndex);
|
|
}
|
|
}
|
|
materialBinds += list.Indices.Count();
|
|
}
|
|
}
|
|
ZoneValue(materialBinds); // Material shaders bindings count
|
|
}
|
|
|
|
void SurfaceDrawCallHandler::GetHash(const DrawCall& drawCall, uint32& batchKey)
|
|
{
|
|
batchKey = (batchKey * 397) ^ ::GetHash(drawCall.Surface.Lightmap);
|
|
}
|
|
|
|
bool SurfaceDrawCallHandler::CanBatch(const DrawCall& a, const DrawCall& b, DrawPass pass)
|
|
{
|
|
// TODO: find reason why batching static meshes with lightmap causes problems with sampling in shader (flickering when meshes in batch order gets changes due to async draw calls collection)
|
|
if (a.Surface.Lightmap == nullptr && b.Surface.Lightmap == nullptr &&
|
|
a.Surface.Skinning == nullptr && b.Surface.Skinning == nullptr)
|
|
{
|
|
if (a.Material != b.Material)
|
|
{
|
|
// Batch simple materials during depth-only drawing (when using default vertex shader and no pixel shader)
|
|
if (pass == DrawPass::Depth)
|
|
{
|
|
constexpr MaterialUsageFlags complexUsageFlags = MaterialUsageFlags::UseMask | MaterialUsageFlags::UsePositionOffset | MaterialUsageFlags::UseDisplacement;
|
|
const bool aIsSimple = EnumHasNoneFlags(a.Material->GetInfo().UsageFlags, complexUsageFlags);
|
|
const bool bIsSimple = EnumHasNoneFlags(b.Material->GetInfo().UsageFlags, complexUsageFlags);
|
|
return aIsSimple && bIsSimple;
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|