Files
FlaxEngine/Source/Engine/AI/BehaviorTreeNodes.cpp
2024-02-26 19:00:48 +01:00

724 lines
24 KiB
C++

// Copyright (c) 2012-2024 Wojciech Figat. All rights reserved.
#include "BehaviorTreeNodes.h"
#include "Behavior.h"
#include "BehaviorKnowledge.h"
#include "Engine/Core/Random.h"
#include "Engine/Scripting/Scripting.h"
#if USE_CSHARP
#include "Engine/Core/Utilities.h"
#include "Engine/Scripting/ManagedCLR/MClass.h"
#endif
#include "Engine/Engine/Engine.h"
#include "Engine/Engine/Time.h"
#include "Engine/Level/Actor.h"
#include "Engine/Navigation/NavMeshRuntime.h"
#include "Engine/Physics/Actors/RigidBody.h"
#include "Engine/Physics/Colliders/CapsuleCollider.h"
#include "Engine/Physics/Colliders/CharacterController.h"
#include "Engine/Profiler/ProfilerCPU.h"
#include "Engine/Serialization/Serialization.h"
bool IsAssignableFrom(const StringAnsiView& to, const StringAnsiView& from)
{
// Special case of null
if (to.IsEmpty())
return from.IsEmpty();
if (from.IsEmpty())
return false;
// Exact typename math
if (to == from)
return true;
// Scripting Type match
const ScriptingTypeHandle typeHandleTo = Scripting::FindScriptingType(to);
const ScriptingTypeHandle typeHandleFrom = Scripting::FindScriptingType(from);
if (typeHandleTo && typeHandleFrom)
return typeHandleTo.IsAssignableFrom(typeHandleFrom);
#if USE_CSHARP
// MClass match
const auto mclassTo = Scripting::FindClass(to);
const auto mclassFrom = Scripting::FindClass(from);
if (mclassTo && mclassFrom)
return mclassTo == mclassFrom || mclassFrom->IsSubClassOf(mclassTo);
#endif
return false;
}
BehaviorUpdateResult BehaviorTreeNode::InvokeUpdate(const BehaviorUpdateContext& context)
{
ASSERT_LOW_LAYER(_executionIndex != -1);
const BitArray<>& relevantNodes = *(const BitArray<>*)context.RelevantNodes;
// If node is not yet relevant
if (relevantNodes.Get(_executionIndex) == false)
{
// Check decorators if node can be executed
for (BehaviorTreeDecorator* decorator : _decorators)
{
ASSERT_LOW_LAYER(decorator->_executionIndex != -1);
if (relevantNodes.Get(decorator->_executionIndex) == false)
decorator->BecomeRelevant(context);
if (!decorator->CanUpdate(context))
{
return BehaviorUpdateResult::Failed;
}
}
// Make node relevant
BecomeRelevant(context);
}
// Update decorators
bool decoratorFailed = false;
for (BehaviorTreeDecorator* decorator : _decorators)
{
decoratorFailed |= decorator->Update(context) == BehaviorUpdateResult::Failed;
}
// Node-specific update
BehaviorUpdateResult result;
if (decoratorFailed)
result = BehaviorUpdateResult::Failed;
else
result = Update(context);
if ((int32)result < 0 || (int32)result > (int32)BehaviorUpdateResult::Failed)
result = BehaviorUpdateResult::Failed; // Invalid value is a failure
// Post-process result from decorators
for (BehaviorTreeDecorator* decorator : _decorators)
{
decorator->PostUpdate(context, result);
}
// Check if node is not relevant anymore
if (result != BehaviorUpdateResult::Running)
BecomeIrrelevant(context);
return result;
}
void BehaviorTreeNode::BecomeRelevant(const BehaviorUpdateContext& context)
{
// Initialize state
BitArray<>& relevantNodes = *(BitArray<>*)context.RelevantNodes;
ASSERT_LOW_LAYER(relevantNodes.Get(_executionIndex) == false);
relevantNodes.Set(_executionIndex, true);
InitState(context);
}
void BehaviorTreeNode::BecomeIrrelevant(const BehaviorUpdateContext& context)
{
// Release state
BitArray<>& relevantNodes = *(BitArray<>*)context.RelevantNodes;
ASSERT_LOW_LAYER(relevantNodes.Get(_executionIndex) == true);
relevantNodes.Set(_executionIndex, false);
ReleaseState(context);
// Release decorators
for (BehaviorTreeDecorator* decorator : _decorators)
{
if (relevantNodes.Get(decorator->_executionIndex) == true)
{
decorator->BecomeIrrelevant(context);
}
}
}
void BehaviorTreeNode::Serialize(SerializeStream& stream, const void* otherObj)
{
SerializableScriptingObject::Serialize(stream, otherObj);
SERIALIZE_GET_OTHER_OBJ(BehaviorTreeNode);
SERIALIZE(Name);
}
void BehaviorTreeNode::Deserialize(DeserializeStream& stream, ISerializeModifier* modifier)
{
SerializableScriptingObject::Deserialize(stream, modifier);
Name.Clear(); // Missing Name is assumes as unnamed node
DESERIALIZE(Name);
}
void BehaviorTreeCompoundNode::Init(BehaviorTree* tree)
{
for (BehaviorTreeNode* child : Children)
child->Init(tree);
}
BehaviorUpdateResult BehaviorTreeCompoundNode::Update(const BehaviorUpdateContext& context)
{
auto result = BehaviorUpdateResult::Success;
for (int32 i = 0; i < Children.Count() && result == BehaviorUpdateResult::Success; i++)
{
BehaviorTreeNode* child = Children[i];
result = child->InvokeUpdate(context);
}
return result;
}
void BehaviorTreeCompoundNode::BecomeIrrelevant(const BehaviorUpdateContext& context)
{
// Make any nested nodes irrelevant as well
const BitArray<>& relevantNodes = *(const BitArray<>*)context.RelevantNodes;
for (BehaviorTreeNode* child : Children)
{
if (relevantNodes.Get(child->_executionIndex) == true)
{
child->BecomeIrrelevant(context);
}
}
BehaviorTreeNode::BecomeIrrelevant(context);
}
int32 BehaviorTreeSequenceNode::GetStateSize() const
{
return sizeof(State);
}
void BehaviorTreeSequenceNode::InitState(const BehaviorUpdateContext& context)
{
auto state = GetState<State>(context.Memory);
new(state)State();
}
BehaviorUpdateResult BehaviorTreeSequenceNode::Update(const BehaviorUpdateContext& context)
{
auto state = GetState<State>(context.Memory);
if (state->CurrentChildIndex >= Children.Count())
return BehaviorUpdateResult::Success;
if (state->CurrentChildIndex == -1)
return BehaviorUpdateResult::Failed;
auto result = Children[state->CurrentChildIndex]->InvokeUpdate(context);
switch (result)
{
case BehaviorUpdateResult::Success:
state->CurrentChildIndex++; // Move to the next node
if (state->CurrentChildIndex < Children.Count())
result = BehaviorUpdateResult::Running; // Keep on running to the next child on the next update
break;
case BehaviorUpdateResult::Failed:
state->CurrentChildIndex = -1; // Mark whole sequence as failed
break;
}
return result;
}
int32 BehaviorTreeSelectorNode::GetStateSize() const
{
return sizeof(State);
}
void BehaviorTreeSelectorNode::InitState(const BehaviorUpdateContext& context)
{
auto state = GetState<State>(context.Memory);
new(state)State();
}
BehaviorUpdateResult BehaviorTreeSelectorNode::Update(const BehaviorUpdateContext& context)
{
auto state = GetState<State>(context.Memory);
if (state->CurrentChildIndex >= Children.Count())
return BehaviorUpdateResult::Failed;
auto result = Children[state->CurrentChildIndex]->InvokeUpdate(context);
switch (result)
{
case BehaviorUpdateResult::Success:
return BehaviorUpdateResult::Success;
case BehaviorUpdateResult::Failed:
state->CurrentChildIndex++; // Move to the next node
if (state->CurrentChildIndex < Children.Count())
result = BehaviorUpdateResult::Running; // Keep on running to the next child on the next update
break;
}
return result;
}
int32 BehaviorTreeDelayNode::GetStateSize() const
{
return sizeof(State);
}
void BehaviorTreeDelayNode::InitState(const BehaviorUpdateContext& context)
{
auto state = GetState<State>(context.Memory);
if (!WaitTimeSelector.TryGet(context.Knowledge, state->TimeLeft))
state->TimeLeft = WaitTime;
state->TimeLeft = Random::RandRange(Math::Max(state->TimeLeft - RandomDeviation, 0.0f), state->TimeLeft + RandomDeviation);
}
BehaviorUpdateResult BehaviorTreeDelayNode::Update(const BehaviorUpdateContext& context)
{
auto state = GetState<State>(context.Memory);
state->TimeLeft -= context.DeltaTime;
return state->TimeLeft <= 0.0f ? BehaviorUpdateResult::Success : BehaviorUpdateResult::Running;
}
#if USE_EDITOR
String BehaviorTreeDelayNode::GetDebugInfo(const BehaviorUpdateContext& context) const
{
if (context.Memory)
{
const auto state = GetState<State>(context.Memory);
return String::Format(TEXT("Time Left: {}s"), Utilities::RoundTo2DecimalPlaces(state->TimeLeft));
}
String delay;
if (WaitTimeSelector.Path.HasChars())
delay = String(WaitTimeSelector.Path);
else
delay = StringUtils::ToString(WaitTime);
if (RandomDeviation > 0.0f)
delay += String::Format(TEXT("+/-{}"), RandomDeviation);
return String::Format(TEXT("Delay: {}s"), delay);
}
#endif
int32 BehaviorTreeSubTreeNode::GetStateSize() const
{
return sizeof(State);
}
void BehaviorTreeSubTreeNode::InitState(const BehaviorUpdateContext& context)
{
auto state = GetState<State>(context.Memory);
new(state)State();
const BehaviorTree* tree = Tree.Get();
if (!tree || tree->WaitForLoaded())
return;
state->Memory.Resize(tree->Graph.NodesStatesSize);
state->RelevantNodes.Resize(tree->Graph.NodesCount, false);
state->RelevantNodes.SetAll(false);
}
void BehaviorTreeSubTreeNode::ReleaseState(const BehaviorUpdateContext& context)
{
auto state = GetState<State>(context.Memory);
const BehaviorTree* tree = Tree.Get();
if (tree && tree->IsLoaded())
{
// Override memory with custom one for the subtree
BehaviorUpdateContext subContext = context;
subContext.Memory = state->Memory.Get();
subContext.RelevantNodes = &state->RelevantNodes;
for (const auto& node : tree->Graph.Nodes)
{
if (node.Instance && node.Instance->_executionIndex != -1 && state->RelevantNodes.HasItems() && state->RelevantNodes[node.Instance->_executionIndex])
node.Instance->ReleaseState(subContext);
}
}
state->~State();
}
BehaviorUpdateResult BehaviorTreeSubTreeNode::Update(const BehaviorUpdateContext& context)
{
const BehaviorTree* tree = Tree.Get();
if (!tree || !tree->Graph.Root)
return BehaviorUpdateResult::Failed;
const StringAnsiView treeBlackboardType = tree->Graph.Root->BlackboardType;
if (treeBlackboardType.HasChars())
{
// Validate if nested tree blackboard data matches (the same type or base type)
const VariantType& blackboardType = context.Knowledge->Blackboard.Type;
if (IsAssignableFrom(treeBlackboardType, StringAnsiView(blackboardType.GetTypeName())))
{
LOG(Error, "Cannot use nested '{}' with Blackboard of type '{}' inside '{}' with Blackboard of type '{}'",
tree->ToString(), String(treeBlackboardType),
context.Knowledge->Tree->ToString(), blackboardType.ToString());
return BehaviorUpdateResult::Failed;
}
}
// Override memory with custom one for the subtree
auto state = GetState<State>(context.Memory);
BehaviorUpdateContext subContext = context;
subContext.Memory = state->Memory.Get();
subContext.RelevantNodes = &state->RelevantNodes;
// Run nested tree
return tree->Graph.Root->InvokeUpdate(subContext);
}
BehaviorUpdateResult BehaviorTreeForceFinishNode::Update(const BehaviorUpdateContext& context)
{
context.Behavior->StopLogic(Result);
return Result;
}
bool BehaviorTreeMoveToNode::Move(Actor* agent, const Vector3& move) const
{
agent->AddMovement(move);
return false;
}
NavMeshRuntime* BehaviorTreeMoveToNode::GetNavMesh(Actor* agent) const
{
return NavMeshRuntime::Get();
}
void BehaviorTreeMoveToNode::GetAgentSize(Actor* agent, float& outRadius, float& outHeight) const
{
if (const auto* characterController = Cast<CharacterController>(agent))
{
// Character Controller is an capsule
outRadius = characterController->GetRadius();
outHeight = characterController->GetHeight() + 2 * outRadius;
return;
}
if (const auto* rigidBody = Cast<RigidBody>(agent))
{
// Rigid Body with a single Capsule collider (directed Up)
Array<Collider*, InlinedAllocation<16>> colliders;
rigidBody->GetColliders(colliders);
const auto* capsuleCollider = colliders.Count() == 1 ? (CapsuleCollider*)colliders[0] : nullptr;
if (capsuleCollider && (capsuleCollider->GetLocalOrientation() == Quaternion::Euler(0, 0, 90) || capsuleCollider->GetLocalOrientation() == Quaternion::Euler(0, 0, -90)))
{
outRadius = capsuleCollider->GetRadius();
outHeight = capsuleCollider->GetHeight() + 2 * outRadius;
return;
}
}
// Estimate actor bounds to extract capsule information
const BoundingBox box = agent->GetBox();
const BoundingSphere sphere = agent->GetSphere();
outRadius = sphere.Radius;
outHeight = box.GetSize().Y;
}
int32 BehaviorTreeMoveToNode::GetStateSize() const
{
return sizeof(State);
}
void BehaviorTreeMoveToNode::InitState(const BehaviorUpdateContext& context)
{
auto state = GetState<State>(context.Memory);
new(state)State();
state->Node = this;
state->Knowledge = context.Knowledge;
// Get agent to move
if (Agent.Path.HasChars())
state->Agent = Agent.Get(context.Knowledge);
else
state->Agent = context.Behavior->GetActor();
}
void BehaviorTreeMoveToNode::ReleaseState(const BehaviorUpdateContext& context)
{
auto state = GetState<State>(context.Memory);
if (state->HasTick)
Engine::Update.Unbind<State, &State::OnUpdate>(state);
state->~State();
}
BehaviorUpdateResult BehaviorTreeMoveToNode::Update(const BehaviorUpdateContext& context)
{
auto state = GetState<State>(context.Memory);
if (state->Agent == nullptr)
return BehaviorUpdateResult::Failed;
bool repath = !state->HasPath;
Vector3 goalLocation = state->GoalLocation;
if (repath || UseTargetGoalUpdate)
{
// Get current goal location
const Actor* target = Target.Get(context.Knowledge);
if (target)
goalLocation = target->GetPosition();
else
goalLocation = TargetLocation.Get(context.Knowledge);
repath |= Vector3::Distance(goalLocation, state->GoalLocation) > TargetGoalUpdateTolerance;
state->GoalLocation = goalLocation;
}
if (repath)
{
// Clear path
state->HasPath = false;
state->Path.Clear();
state->AgentOffset = Vector3::Zero;
state->UpVector = Float3::Up;
state->NavAgentRadius = 0;
// Find a new path
const Vector3 agentLocation = state->Agent->GetPosition();
if (UsePathfinding)
{
const NavMeshRuntime* navMesh = GetNavMesh(state->Agent);
if (!navMesh)
return BehaviorUpdateResult::Failed;
NavMeshPathFlags pathFlags;
if (!navMesh->FindPath(agentLocation, goalLocation, state->Path, pathFlags))
return BehaviorUpdateResult::Failed;
if (!UsePartialPath && EnumHasAnyFlags(pathFlags, NavMeshPathFlags::PartialPath))
return BehaviorUpdateResult::Failed;
state->UpVector = Float3::Transform(Float3::Up, navMesh->Properties.Rotation);
state->NavAgentRadius = navMesh->Properties.Agent.Radius;
// Place start and end on navmesh
navMesh->ProjectPoint(state->Path.First(), state->Path.First());
navMesh->ProjectPoint(state->Path.Last(), state->Path.Last());
// Calculate offset between path and the agent (aka feet offset)
state->AgentOffset = state->Path.First() - agentLocation;
}
else
{
// Dummy movement
state->Path.Resize(2);
state->Path.Get()[0] = agentLocation;
state->Path.Get()[1] = goalLocation;
}
// Start path following
state->HasPath = true;
state->TargetPathIndex = 1;
state->Result = BehaviorUpdateResult::Running;
// TODO: add path debugging in Editor (eg. via BT window)
// Register for ticking the path following logic at game update rate (BT usually use lower FPS due to performance)
if (!state->HasTick)
{
state->HasTick = true;
Engine::Update.Bind<State, &State::OnUpdate>(state);
}
}
return state->Result;
}
#if USE_EDITOR
String BehaviorTreeMoveToNode::GetDebugInfo(const BehaviorUpdateContext& context) const
{
if (context.Memory)
{
const auto state = GetState<State>(context.Memory);
if (state->Agent)
{
const String agent = state->Agent->GetNamePath();
String goal;
const Actor* target = Target.Get(context.Knowledge);
if (target)
goal = target->GetNamePath();
else
goal = state->GoalLocation.ToString();
const Vector3 agentLocation = state->Agent->GetPosition();
const Vector3 agentLocationOnPath = agentLocation + state->AgentOffset;
float distanceLeft = state->Path.Count() > state->TargetPathIndex ? Vector3::Distance(state->Path[state->TargetPathIndex], agentLocationOnPath) : 0;
for (int32 i = state->TargetPathIndex; i < state->Path.Count(); i++)
distanceLeft += Vector3::Distance(state->Path[i - 1], state->Path[i]);
return String::Format(TEXT("Agent: '{}'\nGoal: '{}'\nDistance: {}"), agent, goal, (int32)distanceLeft);
}
}
return String::Empty;
}
#endif
void BehaviorTreeMoveToNode::State::OnUpdate()
{
if (Result != BehaviorUpdateResult::Running)
return;
PROFILE_CPU();
// Get agent properties
const Vector3 agentLocation = Agent->GetPosition();
float movementSpeed;
if (!Node->MovementSpeed.TryGet(Knowledge, movementSpeed))
movementSpeed = 100;
float agentRadius = 30.0f, agentHeight = 100.0f;
Node->GetAgentSize(Agent, agentRadius, agentHeight);
// Test if agent reached the next path segment
Vector3 pathSegmentEnd = Path[TargetPathIndex];
const Vector3 agentLocationOnPath = agentLocation + AgentOffset;
const bool isLastSegment = TargetPathIndex + 1 == Path.Count();
float testRadius;
if (isLastSegment)
testRadius = agentRadius + Node->AcceptableRadius;
else
testRadius = agentRadius * 0.05f + Math::Max(agentRadius - NavAgentRadius, 0.0f); // 5% threshold of agent radius and diff between navmesh vs agent radius as threshold for path segments reaching
const float acceptableHeightPercentage = 1.05f;
const float testHeight = agentHeight * acceptableHeightPercentage;
const Vector3 toGoal = agentLocationOnPath - pathSegmentEnd;
const float toGoalHeightDiff = (toGoal * UpVector).SumValues();
if (toGoal.Length() <= testRadius && toGoalHeightDiff <= testHeight)
{
TargetPathIndex++;
if (TargetPathIndex == Path.Count())
{
// Goal reached!
Result = BehaviorUpdateResult::Success;
return;
}
pathSegmentEnd = Path[TargetPathIndex];
}
// Move agent
const float maxMove = movementSpeed * Time::Update.DeltaTime.GetTotalSeconds();
if (maxMove <= ZeroTolerance)
return;
const Vector3 move = Vector3::MoveTowards(agentLocationOnPath, pathSegmentEnd, maxMove) - agentLocationOnPath;
if (Node->Move(Agent, move))
{
// Move failed!
Result = BehaviorUpdateResult::Failed;
}
}
void BehaviorTreeInvertDecorator::PostUpdate(const BehaviorUpdateContext& context, BehaviorUpdateResult& result)
{
if (result == BehaviorUpdateResult::Success)
result = BehaviorUpdateResult::Failed;
else if (result == BehaviorUpdateResult::Failed)
result = BehaviorUpdateResult::Success;
}
void BehaviorTreeForceSuccessDecorator::PostUpdate(const BehaviorUpdateContext& context, BehaviorUpdateResult& result)
{
if (result != BehaviorUpdateResult::Running)
result = BehaviorUpdateResult::Success;
}
void BehaviorTreeForceFailedDecorator::PostUpdate(const BehaviorUpdateContext& context, BehaviorUpdateResult& result)
{
if (result != BehaviorUpdateResult::Running)
result = BehaviorUpdateResult::Failed;
}
int32 BehaviorTreeLoopDecorator::GetStateSize() const
{
return sizeof(State);
}
void BehaviorTreeLoopDecorator::InitState(const BehaviorUpdateContext& context)
{
auto state = GetState<State>(context.Memory);
if (!LoopCountSelector.TryGet(context.Knowledge, state->Loops))
state->Loops = LoopCount;
}
void BehaviorTreeLoopDecorator::PostUpdate(const BehaviorUpdateContext& context, BehaviorUpdateResult& result)
{
// Continue looping only if node succeeds
if (result == BehaviorUpdateResult::Success)
{
auto state = GetState<State>(context.Memory);
if (!InfiniteLoop)
state->Loops--;
if (state->Loops > 0 || InfiniteLoop)
{
// Keep running in a loop but reset node's state (preserve self state)
result = BehaviorUpdateResult::Running;
BitArray<>& relevantNodes = *(BitArray<>*)context.RelevantNodes;
relevantNodes.Set(_executionIndex, false);
_parent->BecomeIrrelevant(context);
relevantNodes.Set(_executionIndex, true);
}
}
}
int32 BehaviorTreeTimeLimitDecorator::GetStateSize() const
{
return sizeof(State);
}
void BehaviorTreeTimeLimitDecorator::InitState(const BehaviorUpdateContext& context)
{
auto state = GetState<State>(context.Memory);
if (!MaxDurationSelector.TryGet(context.Knowledge, state->TimeLeft))
state->TimeLeft = MaxDuration;
state->TimeLeft = Random::RandRange(Math::Max(state->TimeLeft - RandomDeviation, 0.0f), state->TimeLeft + RandomDeviation);
}
BehaviorUpdateResult BehaviorTreeTimeLimitDecorator::Update(const BehaviorUpdateContext& context)
{
auto state = GetState<State>(context.Memory);
state->TimeLeft -= context.DeltaTime;
return state->TimeLeft <= 0.0f ? BehaviorUpdateResult::Failed : BehaviorUpdateResult::Success;
}
int32 BehaviorTreeCooldownDecorator::GetStateSize() const
{
return sizeof(State);
}
void BehaviorTreeCooldownDecorator::InitState(const BehaviorUpdateContext& context)
{
auto state = GetState<State>(context.Memory);
state->EndTime = 0; // Allow to entry on start
}
void BehaviorTreeCooldownDecorator::ReleaseState(const BehaviorUpdateContext& context)
{
// Preserve the decorator's state to keep cooldown
BitArray<>& relevantNodes = *(BitArray<>*)context.RelevantNodes;
relevantNodes.Set(_executionIndex, true);
}
bool BehaviorTreeCooldownDecorator::CanUpdate(const BehaviorUpdateContext& context)
{
auto state = GetState<State>(context.Memory);
return state->EndTime <= context.Time;
}
void BehaviorTreeCooldownDecorator::PostUpdate(const BehaviorUpdateContext& context, BehaviorUpdateResult& result)
{
if (result != BehaviorUpdateResult::Running)
{
// Initialize cooldown
auto state = GetState<State>(context.Memory);
if (!MinDurationSelector.TryGet(context.Knowledge, state->EndTime))
state->EndTime = MinDuration;
state->EndTime = Random::RandRange(Math::Max(state->EndTime - RandomDeviation, 0.0f), state->EndTime + RandomDeviation);
state->EndTime += context.Time;
}
}
bool BehaviorTreeKnowledgeConditionalDecorator::CanUpdate(const BehaviorUpdateContext& context)
{
return BehaviorKnowledge::CompareValues((float)ValueA.Get(context.Knowledge), ValueB, Comparison);
}
bool BehaviorTreeKnowledgeValuesConditionalDecorator::CanUpdate(const BehaviorUpdateContext& context)
{
return BehaviorKnowledge::CompareValues((float)ValueA.Get(context.Knowledge), (float)ValueB.Get(context.Knowledge), Comparison);
}
bool BehaviorTreeHasTagDecorator::CanUpdate(const BehaviorUpdateContext& context)
{
bool result = false;
::Actor* actor;
if (Actor.TryGet(context.Knowledge, actor) && actor)
result = actor->HasTag(Tag);
result ^= Invert;
return result;
}
bool BehaviorTreeHasGoalDecorator::CanUpdate(const BehaviorUpdateContext& context)
{
Variant value; // TODO: use HasGoal in Knowledge to optimize this (goal struct is copied by selector accessor)
return Goal.TryGet(context.Knowledge, value);
}