Files
FlaxEngine/Source/Engine/Renderer/RenderList.cpp
2021-05-18 11:40:38 +02:00

775 lines
26 KiB
C++

// Copyright (c) 2012-2021 Wojciech Figat. All rights reserved.
#include "RenderList.h"
#include "Engine/Core/Collections/Sorting.h"
#include "Engine/Graphics/Materials/IMaterial.h"
#include "Engine/Graphics/RenderTask.h"
#include "Engine/Graphics/GPUContext.h"
#include "Engine/Graphics/GPUDevice.h"
#include "Engine/Graphics/PostProcessBase.h"
#include "Engine/Graphics/GPULimits.h"
#include "Engine/Graphics/RenderTargetPool.h"
#include "Engine/Profiler/Profiler.h"
#include "Engine/Content/Assets/CubeTexture.h"
#include "Engine/Level/Scene/Lightmap.h"
#include "Engine/Level/Actors/PostFxVolume.h"
// Amount of bits to use for draw calls batches hash key
#define USE_BATCH_KEY_MASK 0
#define BATCH_KEY_BITS 32
#define BATCH_KEY_MASK ((1 << BATCH_KEY_BITS) - 1)
static_assert(sizeof(DrawCall) <= 280, "Too big draw call data size.");
static_assert(sizeof(DrawCall::Surface) >= sizeof(DrawCall::Terrain), "Wrong draw call data size.");
static_assert(sizeof(DrawCall::Surface) >= sizeof(DrawCall::Particle), "Wrong draw call data size.");
static_assert(sizeof(DrawCall::Surface) >= sizeof(DrawCall::Custom), "Wrong draw call data size.");
namespace
{
// Cached data for the draw calls sorting
Array<uint64> SortingKeys[2];
Array<int32> SortingIndices;
Array<RenderList*> FreeRenderList;
}
#define PREPARE_CACHE(list) (list).Clear(); (list).Resize(listSize)
void RendererDirectionalLightData::SetupLightData(LightData* data, const RenderView& view, bool useShadow) const
{
data->SpotAngles.X = -2.0f;
data->SpotAngles.Y = 1.0f;
data->SourceRadius = 0;
data->SourceLength = 0;
data->Color = Color;
data->MinRoughness = Math::Max(MinRoughness, MIN_ROUGHNESS);
data->Position = Vector3::Zero;
data->CastShadows = useShadow ? 1.0f : 0.0f;
data->Direction = -Direction;
data->Radius = 0;
data->FalloffExponent = 0;
data->InverseSquared = 0;
data->RadiusInv = 0;
}
void RendererSpotLightData::SetupLightData(LightData* data, const RenderView& view, bool useShadow) const
{
data->SpotAngles.X = CosOuterCone;
data->SpotAngles.Y = InvCosConeDifference;
data->SourceRadius = SourceRadius;
data->SourceLength = 0.0f;
data->Color = Color;
data->MinRoughness = Math::Max(MinRoughness, MIN_ROUGHNESS);
data->Position = Position;
data->CastShadows = useShadow ? 1.0f : 0.0f;
data->Direction = Direction;
data->Radius = Radius;
data->FalloffExponent = FallOffExponent;
data->InverseSquared = UseInverseSquaredFalloff ? 1.0f : 0.0f;
data->RadiusInv = 1.0f / Radius;
}
void RendererPointLightData::SetupLightData(LightData* data, const RenderView& view, bool useShadow) const
{
data->SpotAngles.X = -2.0f;
data->SpotAngles.Y = 1.0f;
data->SourceRadius = SourceRadius;
data->SourceLength = SourceLength;
data->Color = Color;
data->MinRoughness = Math::Max(MinRoughness, MIN_ROUGHNESS);
data->Position = Position;
data->CastShadows = useShadow ? 1.0f : 0.0f;
data->Direction = Direction;
data->Radius = Radius;
data->FalloffExponent = FallOffExponent;
data->InverseSquared = UseInverseSquaredFalloff ? 1.0f : 0.0f;
data->RadiusInv = 1.0f / Radius;
}
void RendererSkyLightData::SetupLightData(LightData* data, const RenderView& view, bool useShadow) const
{
data->SpotAngles.X = AdditiveColor.X;
data->SpotAngles.Y = AdditiveColor.Y;
data->SourceRadius = AdditiveColor.Z;
data->SourceLength = Image ? Image->StreamingTexture()->TotalMipLevels() - 2.0f : 0.0f;
data->Color = Color;
data->MinRoughness = MIN_ROUGHNESS;
data->Position = Position;
data->CastShadows = useShadow ? 1.0f : 0.0f;
data->Direction = Vector3::Forward;
data->Radius = Radius;
data->FalloffExponent = 0;
data->InverseSquared = 0;
data->RadiusInv = 1.0f / Radius;
}
RenderList* RenderList::GetFromPool()
{
if (FreeRenderList.HasItems())
{
const auto result = FreeRenderList.Last();
FreeRenderList.RemoveLast();
return result;
}
return New<RenderList>();
}
void RenderList::ReturnToPool(RenderList* cache)
{
if (!cache)
return;
ASSERT(!FreeRenderList.Contains(cache));
FreeRenderList.Add(cache);
cache->Clear();
}
void RenderList::CleanupCache()
{
// Don't call it during rendering (data may be already in use)
ASSERT(GPUDevice::Instance == nullptr || GPUDevice::Instance->CurrentTask == nullptr);
SortingKeys[0].Resize(0);
SortingKeys[1].Resize(0);
SortingIndices.Resize(0);
FreeRenderList.ClearDelete();
}
bool RenderList::BlendableSettings::operator<(const BlendableSettings& other) const
{
// Sort by higher priority
if (Priority != other.Priority)
return Priority < other.Priority;
// Sort by lower size
return other.VolumeSizeSqr < VolumeSizeSqr;
}
void RenderList::AddSettingsBlend(IPostFxSettingsProvider* provider, float weight, int32 priority, float volumeSizeSqr)
{
BlendableSettings blend;
blend.Provider = provider;
blend.Weight = weight;
blend.Priority = priority;
blend.VolumeSizeSqr = volumeSizeSqr;
Blendable.Add(blend);
}
void RenderList::BlendSettings()
{
PROFILE_CPU();
Sorting::QuickSort(Blendable.Get(), Blendable.Count());
for (auto& b : Blendable)
{
b.Provider->Blend(Settings, b.Weight);
}
}
void RenderList::RunPostFxPass(GPUContext* context, RenderContext& renderContext, MaterialPostFxLocation locationA, PostProcessEffectLocation locationB, GPUTexture*& inputOutput)
{
// Note: during this stage engine is using additive rendering to the light buffer (given as inputOutput parameter).
// Materials PostFx and Custom PostFx prefer sampling the input texture while rendering to the output.
// So we need to allocate a temporary render target (or reuse from cache) and use it as a ping pong buffer.
bool skipPass = true;
bool needTempTarget = true;
for (int32 i = 0; i < Settings.PostFxMaterials.Materials.Count(); i++)
{
const auto material = Settings.PostFxMaterials.Materials[i].Get();
if (material && material->IsReady() && material->IsPostFx() && material->GetInfo().PostFxLocation == locationA)
{
skipPass = false;
needTempTarget = true;
}
}
if (renderContext.View.Flags & ViewFlags::CustomPostProcess)
{
for (int32 i = 0; i < renderContext.List->PostFx.Count(); i++)
{
const auto fx = renderContext.List->PostFx[i];
if (fx->IsReady() && fx->GetLocation() == locationB)
{
skipPass = false;
needTempTarget |= !fx->GetUseSingleTarget();
}
}
}
if (skipPass)
return;
auto tempDesc = inputOutput->GetDescription();
auto temp = needTempTarget ? RenderTargetPool::Get(tempDesc) : nullptr;
auto input = inputOutput;
auto output = temp;
context->ResetRenderTarget();
MaterialBase::BindParameters bindParams(context, renderContext);
for (int32 i = 0; i < Settings.PostFxMaterials.Materials.Count(); i++)
{
auto material = Settings.PostFxMaterials.Materials[i].Get();
if (material && material->IsReady() && material->IsPostFx() && material->GetInfo().PostFxLocation == locationA)
{
ASSERT(needTempTarget);
context->SetRenderTarget(*output);
bindParams.Input = *input;
material->Bind(bindParams);
context->DrawFullscreenTriangle();
context->ResetRenderTarget();
Swap(output, input);
}
}
if (renderContext.View.Flags & ViewFlags::CustomPostProcess)
{
for (int32 i = 0; i < renderContext.List->PostFx.Count(); i++)
{
auto fx = renderContext.List->PostFx[i];
if (fx->IsReady() && fx->GetLocation() == locationB)
{
if (fx->GetUseSingleTarget())
{
fx->Render(renderContext, input, nullptr);
}
else
{
ASSERT(needTempTarget);
fx->Render(renderContext, input, output);
Swap(input, output);
}
context->ResetRenderTarget();
}
}
}
inputOutput = input;
if (needTempTarget)
RenderTargetPool::Release(output);
}
void RenderList::RunMaterialPostFxPass(GPUContext* context, RenderContext& renderContext, MaterialPostFxLocation location, GPUTexture*& input, GPUTexture*& output)
{
MaterialBase::BindParameters bindParams(context, renderContext);
for (int32 i = 0; i < Settings.PostFxMaterials.Materials.Count(); i++)
{
auto material = Settings.PostFxMaterials.Materials[i].Get();
if (material && material->IsReady() && material->IsPostFx() && material->GetInfo().PostFxLocation == location)
{
context->SetRenderTarget(*output);
bindParams.Input = *input;
material->Bind(bindParams);
context->DrawFullscreenTriangle();
context->ResetRenderTarget();
Swap(output, input);
}
}
}
void RenderList::RunCustomPostFxPass(GPUContext* context, RenderContext& renderContext, PostProcessEffectLocation location, GPUTexture*& input, GPUTexture*& output)
{
if (!(renderContext.View.Flags & ViewFlags::CustomPostProcess))
return;
for (int32 i = 0; i < renderContext.List->PostFx.Count(); i++)
{
auto fx = renderContext.List->PostFx[i];
if (fx->IsReady() && fx->GetLocation() == location)
{
if (fx->GetUseSingleTarget())
{
fx->Render(renderContext, input, nullptr);
}
else
{
fx->Render(renderContext, input, output);
Swap(input, output);
}
context->ResetRenderTarget();
}
}
}
bool RenderList::HasAnyPostAA(RenderContext& renderContext) const
{
for (int32 i = 0; i < Settings.PostFxMaterials.Materials.Count(); i++)
{
auto material = Settings.PostFxMaterials.Materials[i].Get();
if (material && material->IsReady() && material->IsPostFx() && material->GetInfo().PostFxLocation == MaterialPostFxLocation::AfterAntiAliasingPass)
{
return true;
}
}
if (renderContext.View.Flags & ViewFlags::CustomPostProcess)
{
for (int32 i = 0; i < renderContext.List->PostFx.Count(); i++)
{
auto fx = renderContext.List->PostFx[i];
if (fx->IsReady() && fx->GetLocation() == PostProcessEffectLocation::AfterAntiAliasingPass)
{
return true;
}
}
}
return false;
}
RenderList::RenderList(const SpawnParams& params)
: PersistentScriptingObject(params)
, DirectionalLights(4)
, PointLights(32)
, SpotLights(32)
, SkyLights(4)
, EnvironmentProbes(32)
, Decals(64)
, Sky(nullptr)
, AtmosphericFog(nullptr)
, Fog(nullptr)
, Blendable(32)
, _instanceBuffer(1024 * sizeof(InstanceData), sizeof(InstanceData), TEXT("Instance Buffer"))
{
}
void RenderList::Init(RenderContext& renderContext)
{
renderContext.View.Frustum.GetCorners(FrustumCornersWs);
Vector3::Transform(FrustumCornersWs, renderContext.View.View, FrustumCornersVs, 8);
}
void RenderList::Clear()
{
DrawCalls.Clear();
for (auto& list : DrawCallsLists)
list.Clear();
PointLights.Clear();
SpotLights.Clear();
SkyLights.Clear();
DirectionalLights.Clear();
EnvironmentProbes.Clear();
Decals.Clear();
VolumetricFogParticles.Clear();
Sky = nullptr;
AtmosphericFog = nullptr;
Fog = nullptr;
PostFx.Clear();
Settings = PostProcessSettings();
Blendable.Clear();
_instanceBuffer.Clear();
}
void RenderList::AddDrawCall(DrawPass drawModes, StaticFlags staticFlags, DrawCall& drawCall, bool receivesDecals)
{
ASSERT_LOW_LAYER(drawCall.Geometry.IndexBuffer);
// Mix object mask with material mask
const auto mask = (DrawPass)(drawModes & drawCall.Material->GetDrawModes());
if (mask == DrawPass::None)
return;
// Append draw call data
const int32 index = DrawCalls.Count();
DrawCalls.Add(drawCall);
// Add draw call to proper draw lists
if (mask & DrawPass::Depth)
{
DrawCallsLists[(int32)DrawCallsListType::Depth].Indices.Add(index);
}
if (mask & DrawPass::GBuffer)
{
if (receivesDecals)
DrawCallsLists[(int32)DrawCallsListType::GBuffer].Indices.Add(index);
else
DrawCallsLists[(int32)DrawCallsListType::GBufferNoDecals].Indices.Add(index);
}
if (mask & DrawPass::Forward)
{
DrawCallsLists[(int32)DrawCallsListType::Forward].Indices.Add(index);
}
if (mask & DrawPass::Distortion)
{
DrawCallsLists[(int32)DrawCallsListType::Distortion].Indices.Add(index);
}
if (mask & DrawPass::MotionVectors && (staticFlags & StaticFlags::Transform) == 0)
{
DrawCallsLists[(int32)DrawCallsListType::MotionVectors].Indices.Add(index);
}
}
uint32 ComputeDistance(float distance)
{
// Compute sort key (http://aras-p.info/blog/2014/01/16/rough-sorting-by-depth/)
uint32 distanceI = *((uint32*)&distance);
return ((uint32)(-(int32)(distanceI >> 31)) | 0x80000000) ^ distanceI;
}
/// <summary>
/// Sorts the linear data array using Radix Sort algorithm (uses temporary keys collection).
/// </summary>
/// <param name="inputKeys">The data pointer to the input sorting keys array. When this method completes it contains a pointer to the original data or the temporary depending on the algorithm passes count. Use it as a results container.</param>
/// <param name="inputValues">The data pointer to the input values array. When this method completes it contains a pointer to the original data or the temporary depending on the algorithm passes count. Use it as a results container.</param>
/// <param name="tmpKeys">The data pointer to the temporary sorting keys array.</param>
/// <param name="tmpValues">The data pointer to the temporary values array.</param>
/// <param name="count">The elements count.</param>
template<typename T, typename U>
static void RadixSort(T*& inputKeys, U* inputValues, T* tmpKeys, U* tmpValues, int32 count)
{
// Based on: https://github.com/bkaradzic/bx/blob/master/include/bx/inline/sort.inl
enum
{
RADIXSORT_BITS = 11,
RADIXSORT_HISTOGRAM_SIZE = 1 << RADIXSORT_BITS,
RADIXSORT_BIT_MASK = RADIXSORT_HISTOGRAM_SIZE - 1
};
if (count < 2)
return;
T* keys = inputKeys;
T* tempKeys = tmpKeys;
U* values = inputValues;
U* tempValues = tmpValues;
uint32 histogram[RADIXSORT_HISTOGRAM_SIZE];
uint16 shift = 0;
int32 pass = 0;
for (; pass < 6; pass++)
{
Platform::MemoryClear(histogram, sizeof(uint32) * RADIXSORT_HISTOGRAM_SIZE);
bool sorted = true;
T key = keys[0];
T prevKey = key;
for (int32 i = 0; i < count; i++)
{
key = keys[i];
const uint16 index = (key >> shift) & RADIXSORT_BIT_MASK;
++histogram[index];
sorted &= prevKey <= key;
prevKey = key;
}
if (sorted)
{
goto end;
}
uint32 offset = 0;
for (int32 i = 0; i < RADIXSORT_HISTOGRAM_SIZE; ++i)
{
const uint32 cnt = histogram[i];
histogram[i] = offset;
offset += cnt;
}
for (int32 i = 0; i < count; i++)
{
const T k = keys[i];
const uint16 index = (k >> shift) & RADIXSORT_BIT_MASK;
const uint32 dest = histogram[index]++;
tempKeys[dest] = k;
tempValues[dest] = values[i];
}
T* const swapKeys = tempKeys;
tempKeys = keys;
keys = swapKeys;
U* const swapValues = tempValues;
tempValues = values;
values = swapValues;
shift += RADIXSORT_BITS;
}
end:
if (pass & 1)
{
// Use temporary keys as a result
inputKeys = tmpKeys;
#if 0
// Use temporary values as a result
inputValues = tmpValues;
#else
// Odd number of passes needs to do copy to the destination
Platform::MemoryCopy(inputValues, tmpValues, sizeof(U) * count);
#endif
}
}
namespace
{
/// <summary>
/// Checks if this draw call be batched together with the other one.
/// </summary>
/// <param name="a">The first draw call.</param>
/// <param name="b">The second draw call.</param>
/// <returns>True if can merge them, otherwise false.</returns>
FORCE_INLINE bool CanBatchWith(const DrawCall& a, const DrawCall& b)
{
IMaterial::InstancingHandler handler;
return a.Material == b.Material &&
a.Material->CanUseInstancing(handler) &&
Platform::MemoryCompare(&a.Geometry, &b.Geometry, sizeof(a.Geometry)) == 0 &&
a.InstanceCount != 0 &&
b.InstanceCount != 0 &&
handler.CanBatch(a, b) &&
a.WorldDeterminantSign == b.WorldDeterminantSign;
}
}
void RenderList::SortDrawCalls(const RenderContext& renderContext, bool reverseDistance, DrawCallsList& list)
{
PROFILE_CPU();
const int32 listSize = (int32)list.Indices.Count();
const Plane plane(renderContext.View.Position, renderContext.View.Direction);
// Peek shared memory
PREPARE_CACHE(SortingKeys[0]);
PREPARE_CACHE(SortingKeys[1]);
PREPARE_CACHE(SortingIndices);
uint64* sortedKeys = SortingKeys[0].Get();
// Generate sort keys (by depth) and batch keys (higher bits)
const uint32 sortKeyXor = reverseDistance ? MAX_uint32 : 0;
for (int32 i = 0; i < listSize; i++)
{
auto& drawCall = DrawCalls[list.Indices[i]];
const auto distance = CollisionsHelper::DistancePlanePoint(plane, drawCall.ObjectPosition);
const uint32 sortKey = ComputeDistance(distance) ^ sortKeyXor;
int32 batchKey = GetHash(drawCall.Geometry.IndexBuffer);
batchKey = (batchKey * 397) ^ GetHash(drawCall.Geometry.VertexBuffers[0]);
batchKey = (batchKey * 397) ^ GetHash(drawCall.Geometry.VertexBuffers[1]);
batchKey = (batchKey * 397) ^ GetHash(drawCall.Geometry.VertexBuffers[2]);
batchKey = (batchKey * 397) ^ GetHash(drawCall.Material);
IMaterial::InstancingHandler handler;
if (drawCall.Material->CanUseInstancing(handler))
handler.GetHash(drawCall, batchKey);
batchKey += (int32)(471 * drawCall.WorldDeterminantSign);
#if USE_BATCH_KEY_MASK
const uint32 batchHashKey = (uint32)batchKey & BATCH_KEY_MASK;
#else
const uint32 batchHashKey = (uint32)batchKey;
#endif
sortedKeys[i] = (uint64)batchHashKey << 32 | (uint64)sortKey;
}
// Sort draw calls indices
RadixSort(sortedKeys, list.Indices.Get(), SortingKeys[1].Get(), SortingIndices.Get(), listSize);
// Perform draw calls batching
list.Batches.Clear();
for (int32 i = 0; i < listSize;)
{
const auto& drawCall = DrawCalls[list.Indices[i]];
int32 batchSize = 1;
int32 instanceCount = drawCall.InstanceCount;
// Check the following draw calls to merge them (using instancing)
for (int32 j = i + 1; j < listSize; j++)
{
const auto& other = DrawCalls[list.Indices[j]];
if (!CanBatchWith(drawCall, other))
break;
batchSize++;
instanceCount += other.InstanceCount;
}
DrawBatch batch;
batch.SortKey = sortedKeys[i] & MAX_uint32;
batch.StartIndex = i;
batch.BatchSize = batchSize;
batch.InstanceCount = instanceCount;
list.Batches.Add(batch);
i += batchSize;
}
// Sort draw calls batches by depth
Sorting::QuickSort(list.Batches.Get(), list.Batches.Count());
}
bool CanUseInstancing(DrawPass pass)
{
return pass == DrawPass::GBuffer || pass == DrawPass::Depth;
}
void RenderList::ExecuteDrawCalls(const RenderContext& renderContext, DrawCallsList& list)
{
// Skip if no rendering to perform
if (list.Batches.IsEmpty())
return;
PROFILE_GPU_CPU("Drawing");
const int32 batchesSize = list.Batches.Count();
const auto context = GPUDevice::Instance->GetMainContext();
bool useInstancing = list.CanUseInstancing && CanUseInstancing(renderContext.View.Pass) && GPUDevice::Instance->Limits.HasInstancing;
// Clear SR slots to prevent any resources binding issues (leftovers from the previous passes)
context->ResetSR();
// Prepare instance buffer
if (useInstancing)
{
// Prepare buffer memory
int32 batchesCount = 0;
for (int32 i = 0; i < batchesSize; i++)
{
auto& batch = list.Batches[i];
if (batch.BatchSize > 1)
{
batchesCount += batch.BatchSize;
}
}
if (batchesCount == 0)
{
// Faster path if none of the draw batches requires instancing
useInstancing = false;
goto DRAW;
}
_instanceBuffer.Clear();
_instanceBuffer.Data.Resize(batchesCount * sizeof(InstanceData));
auto instanceData = (InstanceData*)_instanceBuffer.Data.Get();
// Write to instance buffer
for (int32 i = 0; i < batchesSize; i++)
{
auto& batch = list.Batches[i];
if (batch.BatchSize > 1)
{
IMaterial::InstancingHandler handler;
DrawCalls[list.Indices[batch.StartIndex]].Material->CanUseInstancing(handler);
for (int32 j = 0; j < batch.BatchSize; j++)
{
auto& drawCall = DrawCalls[list.Indices[batch.StartIndex + j]];
handler.WriteDrawCall(instanceData, drawCall);
instanceData++;
}
}
}
// Upload data
_instanceBuffer.Flush(context);
}
DRAW:
// Execute draw calls
MaterialBase::BindParameters bindParams(context, renderContext);
if (useInstancing)
{
int32 instanceBufferOffset = 0;
GPUBuffer* vb[4];
uint32 vbOffsets[4];
for (int32 i = 0; i < batchesSize; i++)
{
auto& batch = list.Batches[i];
auto& drawCall = DrawCalls[list.Indices[batch.StartIndex]];
int32 vbCount = 0;
while (drawCall.Geometry.VertexBuffers[vbCount] && vbCount < ARRAY_COUNT(drawCall.Geometry.VertexBuffers))
{
vb[vbCount] = drawCall.Geometry.VertexBuffers[vbCount];
vbOffsets[vbCount] = drawCall.Geometry.VertexBuffersOffsets[vbCount];
vbCount++;
}
for (int32 j = vbCount; j < ARRAY_COUNT(drawCall.Geometry.VertexBuffers); j++)
{
vb[vbCount] = nullptr;
vbOffsets[vbCount] = 0;
}
bindParams.FirstDrawCall = &drawCall;
bindParams.DrawCallsCount = batch.BatchSize;
drawCall.Material->Bind(bindParams);
context->BindIB(drawCall.Geometry.IndexBuffer);
if (drawCall.InstanceCount == 0)
{
// No support for batching indirect draw calls
ASSERT_LOW_LAYER(batch.BatchSize == 1);
context->BindVB(ToSpan(vb, vbCount), vbOffsets);
context->DrawIndexedInstancedIndirect(drawCall.Draw.IndirectArgsBuffer, drawCall.Draw.IndirectArgsOffset);
}
else
{
if (batch.BatchSize == 1)
{
context->BindVB(ToSpan(vb, vbCount), vbOffsets);
context->DrawIndexedInstanced(drawCall.Draw.IndicesCount, batch.InstanceCount, 0, 0, drawCall.Draw.StartIndex);
}
else
{
vbCount = 3;
vb[vbCount] = _instanceBuffer.GetBuffer();
vbOffsets[vbCount] = 0;
vbCount++;
context->BindVB(ToSpan(vb, vbCount), vbOffsets);
context->DrawIndexedInstanced(drawCall.Draw.IndicesCount, batch.InstanceCount, instanceBufferOffset, 0, drawCall.Draw.StartIndex);
instanceBufferOffset += batch.BatchSize;
}
}
}
}
else
{
bindParams.DrawCallsCount = 1;
for (int32 i = 0; i < batchesSize; i++)
{
auto& batch = list.Batches[i];
for (int32 j = 0; j < batch.BatchSize; j++)
{
auto& drawCall = DrawCalls[list.Indices[batch.StartIndex + j]];
bindParams.FirstDrawCall = &drawCall;
drawCall.Material->Bind(bindParams);
context->BindIB(drawCall.Geometry.IndexBuffer);
context->BindVB(ToSpan(drawCall.Geometry.VertexBuffers, 3), drawCall.Geometry.VertexBuffersOffsets);
if (drawCall.InstanceCount == 0)
{
context->DrawIndexedInstancedIndirect(drawCall.Draw.IndirectArgsBuffer, drawCall.Draw.IndirectArgsOffset);
}
else
{
context->DrawIndexedInstanced(drawCall.Draw.IndicesCount, drawCall.InstanceCount, 0, 0, drawCall.Draw.StartIndex);
}
}
}
}
}
void SurfaceDrawCallHandler::GetHash(const DrawCall& drawCall, int32& batchKey)
{
batchKey = (batchKey * 397) ^ ::GetHash(drawCall.Surface.Lightmap);
}
bool SurfaceDrawCallHandler::CanBatch(const DrawCall& a, const DrawCall& b)
{
return a.Surface.Lightmap == b.Surface.Lightmap &&
a.Surface.Skinning == nullptr &&
b.Surface.Skinning == nullptr;
}
void SurfaceDrawCallHandler::WriteDrawCall(InstanceData* instanceData, const DrawCall& drawCall)
{
instanceData->InstanceOrigin = Vector3(drawCall.World.M41, drawCall.World.M42, drawCall.World.M43);
instanceData->PerInstanceRandom = drawCall.PerInstanceRandom;
instanceData->InstanceTransform1 = Vector3(drawCall.World.M11, drawCall.World.M12, drawCall.World.M13);
instanceData->LODDitherFactor = drawCall.Surface.LODDitherFactor;
instanceData->InstanceTransform2 = Vector3(drawCall.World.M21, drawCall.World.M22, drawCall.World.M23);
instanceData->InstanceTransform3 = Vector3(drawCall.World.M31, drawCall.World.M32, drawCall.World.M33);
instanceData->InstanceLightmapArea = Half4(drawCall.Surface.LightmapUVsArea);
}