Files
FlaxEngine/Source/Shaders/MaterialCommon.hlsl
2025-04-16 10:01:23 +02:00

330 lines
8.9 KiB
HLSL

// Copyright (c) Wojciech Figat. All rights reserved.
#ifndef __MATERIAL_COMMON__
#define __MATERIAL_COMMON__
// Material input types
#define MATERIAL_DOMAIN_SURFACE 0
#define MATERIAL_DOMAIN_POSTPROCESS 1
#define MATERIAL_DOMAIN_DECAL 2
#define MATERIAL_BLEND_OPAQUE 0
#define MATERIAL_BLEND_TRANSPARENT 1
#define MATERIAL_BLEND_ADDITIVE 2
#define MATERIAL_BLEND_MULTIPLY 3
#define MATERIAL_TESSELLATION_NONE 0
#define MATERIAL_TESSELLATION_FLAT 1
#define MATERIAL_TESSELLATION_PN 2
#define MATERIAL_TESSELLATION_PHONG 3
#define USE_CUSTOM_VERTEX_INTERPOLATORS (CUSTOM_VERTEX_INTERPOLATORS_COUNT > 0)
// Validate inputs
#ifndef MATERIAL
#define MATERIAL 0
#endif
#ifndef MATERIAL_DOMAIN
#define MATERIAL_DOMAIN MATERIAL_DOMAIN_SURFACE
#endif
#ifndef MATERIAL_BLEND
#define MATERIAL_BLEND MATERIAL_BLEND_OPAQUE
#endif
#ifndef MATERIAL_SHADING_MODEL
#define MATERIAL_SHADING_MODEL SHADING_MODEL_LIT
#endif
#ifndef MATERIAL_TEXCOORDS
#define MATERIAL_TEXCOORDS 1
#endif
#ifndef USE_INSTANCING
#define USE_INSTANCING 0
#endif
#ifndef USE_SKINNING
#define USE_SKINNING 0
#endif
#ifndef USE_LIGHTMAP
#define USE_LIGHTMAP 0
#endif
#ifndef USE_POSITION_OFFSET
#define USE_POSITION_OFFSET 0
#endif
#ifndef USE_VERTEX_COLOR
#define USE_VERTEX_COLOR 0
#endif
#ifndef USE_DISPLACEMENT
#define USE_DISPLACEMENT 0
#endif
#ifndef USE_TESSELLATION
#define USE_TESSELLATION 0
#endif
#ifndef USE_DITHERED_LOD_TRANSITION
#define USE_DITHERED_LOD_TRANSITION 0
#endif
#ifndef USE_PER_VIEW_CONSTANTS
#define USE_PER_VIEW_CONSTANTS 0
#endif
#ifndef USE_PER_DRAW_CONSTANTS
#define USE_PER_DRAW_CONSTANTS 0
#endif
#ifndef MATERIAL_TESSELLATION
#define MATERIAL_TESSELLATION MATERIAL_TESSELLATION_NONE
#endif
#ifndef MAX_TESSELLATION_FACTOR
#define MAX_TESSELLATION_FACTOR 15
#endif
#ifndef PER_BONE_MOTION_BLUR
#define PER_BONE_MOTION_BLUR 0
#endif
// Object properties
struct ObjectData
{
float4x4 WorldMatrix;
float4x4 PrevWorldMatrix;
float3 GeometrySize;
float WorldDeterminantSign;
float LODDitherFactor;
float PerInstanceRandom;
float4 LightmapArea;
};
float2 UnpackHalf2(uint xy)
{
return float2(f16tof32(xy & 0xffff), f16tof32(xy >> 16));
}
// Loads the object data from the global buffer
ObjectData LoadObject(Buffer<float4> objectsBuffer, uint objectIndex)
{
// This must match ShaderObjectData::Store
objectIndex *= 8;
ObjectData object = (ObjectData)0;
float4 vector0 = objectsBuffer.Load(objectIndex + 0);
float4 vector1 = objectsBuffer.Load(objectIndex + 1);
float4 vector2 = objectsBuffer.Load(objectIndex + 2);
float4 vector3 = objectsBuffer.Load(objectIndex + 3);
float4 vector4 = objectsBuffer.Load(objectIndex + 4);
float4 vector5 = objectsBuffer.Load(objectIndex + 5);
float4 vector6 = objectsBuffer.Load(objectIndex + 6);
float4 vector7 = objectsBuffer.Load(objectIndex + 7);
object.WorldMatrix[0] = float4(vector0.xyz, 0.0f);
object.WorldMatrix[1] = float4(vector1.xyz, 0.0f);
object.WorldMatrix[2] = float4(vector2.xyz, 0.0f);
object.WorldMatrix[3] = float4(vector0.w, vector1.w, vector2.w, 1.0f);
object.PrevWorldMatrix[0] = float4(vector3.xyz, 0.0f);
object.PrevWorldMatrix[1] = float4(vector4.xyz, 0.0f);
object.PrevWorldMatrix[2] = float4(vector5.xyz, 0.0f);
object.PrevWorldMatrix[3] = float4(vector3.w, vector4.w, vector5.w, 1.0f);
object.GeometrySize = vector6.xyz;
object.PerInstanceRandom = vector6.w;
object.WorldDeterminantSign = vector7.x;
object.LODDitherFactor = vector7.y;
object.LightmapArea.xy = UnpackHalf2(asuint(vector7.z));
object.LightmapArea.zw = UnpackHalf2(asuint(vector7.w));
return object;
}
#ifndef LoadObjectFromCB
// Loads the object data from the constant buffer into the variable
#define LoadObjectFromCB(var) \
var = (ObjectData)0; \
var.WorldMatrix = ToMatrix4x4(WorldMatrix); \
var.PrevWorldMatrix = ToMatrix4x4(PrevWorldMatrix); \
var.GeometrySize = GeometrySize; \
var.PerInstanceRandom = PerInstanceRandom; \
var.WorldDeterminantSign = WorldDeterminantSign; \
var.LODDitherFactor = LODDitherFactor; \
var.LightmapArea = LightmapArea;
#endif
// Material properties
struct Material
{
float3 Emissive;
float Roughness;
float3 Color;
float AO;
float3 WorldNormal;
float Metalness;
float3 TangentNormal;
float Specular;
float3 PositionOffset;
float Opacity;
float3 SubsurfaceColor;
float Refraction;
float3 WorldDisplacement;
float Mask;
float TessellationMultiplier;
#if USE_CUSTOM_VERTEX_INTERPOLATORS
float4 CustomVSToPS[CUSTOM_VERTEX_INTERPOLATORS_COUNT];
#endif
};
// Secondary constant buffer (with per-view constants at slot 1)
#if USE_PER_VIEW_CONSTANTS
cbuffer ViewData : register(b1)
{
float4x4 ViewMatrix;
float4x4 ViewProjectionMatrix;
float4x4 PrevViewProjectionMatrix;
float4x4 MainViewProjectionMatrix;
float4 MainScreenSize;
float3 ViewPos;
float ViewFar;
float3 ViewDir;
float TimeParam;
float4 ViewInfo;
float4 ScreenSize;
float4 TemporalAAJitter;
float3 LargeWorldsChunkIndex;
float LargeWorldsChunkSize;
};
#endif
// Draw pipeline constant buffer (with per-draw constants at slot 2)
#if USE_PER_DRAW_CONSTANTS
cbuffer DrawData : register(b2)
{
float3 DrawPadding;
uint DrawObjectIndex;
};
#endif
struct ModelInput
{
float3 Position : POSITION;
#if MATERIAL_TEXCOORDS > 0
float2 TexCoord0 : TEXCOORD0;
#endif
#if MATERIAL_TEXCOORDS > 1
float2 TexCoord1 : TEXCOORD1;
#endif
#if MATERIAL_TEXCOORDS > 2
float2 TexCoord2 : TEXCOORD2;
#endif
#if MATERIAL_TEXCOORDS > 3
float2 TexCoord3 : TEXCOORD3;
#endif
float2 LightmapUV : LIGHTMAP;
float4 Normal : NORMAL;
float4 Tangent : TANGENT;
#if USE_VERTEX_COLOR
half4 Color : COLOR;
#endif
#if USE_INSTANCING
uint ObjectIndex : ATTRIBUTE0;
#endif
};
struct ModelInput_PosOnly
{
float3 Position : POSITION;
#if USE_INSTANCING
uint ObjectIndex : ATTRIBUTE0;
#endif
};
struct ModelInput_Skinned
{
float3 Position : POSITION;
#if MATERIAL_TEXCOORDS > 0
float2 TexCoord0 : TEXCOORD0;
#endif
#if MATERIAL_TEXCOORDS > 1
float2 TexCoord1 : TEXCOORD1;
#endif
#if MATERIAL_TEXCOORDS > 2
float2 TexCoord2 : TEXCOORD2;
#endif
#if MATERIAL_TEXCOORDS > 3
float2 TexCoord3 : TEXCOORD3;
#endif
float4 Normal : NORMAL;
float4 Tangent : TANGENT;
#if USE_VERTEX_COLOR
half4 Color : COLOR;
#endif
uint4 BlendIndices : BLENDINDICES;
float4 BlendWeights : BLENDWEIGHTS;
};
struct Model_VS2PS
{
float4 Position : SV_Position;
float4 ScreenPos : TEXCOORD0;
};
struct GBufferOutput
{
float4 Light : SV_Target0;
float4 RT0 : SV_Target1;
float4 RT1 : SV_Target2;
float4 RT2 : SV_Target3;
float4 RT3 : SV_Target4;
};
float3 UnpackNormalMap(float2 value)
{
float3 normal;
normal.xy = value * 2.0 - 1.0;
normal.z = sqrt(saturate(1.0 - dot(normal.xy, normal.xy)));
return normal;
}
float3x3 CalcTangentBasis(float3 normal, float3 pos, float2 uv)
{
// References:
// http://www.thetenthplanet.de/archives/1180
// https://zhangdoa.com/posts/normal-and-normal-mapping
float3 dp1 = ddx(pos);
float3 dp2 = ddy(pos);
float2 duv1 = ddx(uv);
float2 duv2 = ddy(uv);
float3 dp2perp = cross(dp2, normal);
float3 dp1perp = cross(normal, dp1);
float3 tangent = normalize(dp2perp * duv1.x + dp1perp * duv2.x);
float3 bitangent = normalize(dp2perp * duv1.y + dp1perp * duv2.y);
return float3x3(tangent, bitangent, normal);
}
float3x3 CalcTangentBasisFromWorldNormal(float3 normal)
{
float3 tangent = cross(normal, float3(1, 0, 0));
float3 bitangent = cross(normal, tangent);
return float3x3(tangent, bitangent, normal);
}
float3x3 CalcTangentBasis(float3 normal, float4 tangent)
{
float3 bitangent = cross(normal, tangent.xyz) * tangent.w;
return float3x3(tangent.xyz, bitangent, normal);
}
// [Jimenez et al. 2016, "Practical Realtime Strategies for Accurate Indirect Occlusion"]
float3 AOMultiBounce(float visibility, float3 albedo)
{
float3 a = 2.0404 * albedo - 0.3324;
float3 b = -4.7951 * albedo + 0.6417;
float3 c = 2.7552 * albedo + 0.6903;
return max(visibility, ((visibility * a + b) * visibility + c) * visibility);
}
float2 Flipbook(float2 uv, float frame, float2 sizeXY, float2 flipXY = 0.0f)
{
uint tile = (uint)fmod(frame, sizeXY.x * sizeXY.y);
float2 tileCount = float2(1.0, 1.0) / sizeXY;
float tileY = abs(flipXY.y * sizeXY.y - (floor(tile * tileCount.x) + flipXY.y * 1));
float tileX = abs(flipXY.x * sizeXY.x - ((tile - sizeXY.x * floor(tile * tileCount.x)) + flipXY.x * 1));
return (uv + float2(tileX, tileY)) * tileCount;
}
// Calculates the world-position offset to stabilize tiling (eg. via triplanar mapping) due to Large Worlds view origin offset.
float3 GetLargeWorldsTileOffset(float tileSize)
{
#if USE_PER_VIEW_CONSTANTS
return LargeWorldsChunkIndex * fmod(LargeWorldsChunkSize, tileSize);
#else
return float3(0, 0, 0);
#endif
}
#endif