Files
FlaxEngine/Source/Engine/Renderer/Utils/BitonicSort.cpp
Wojciech Figat a7e428a21c Merge branch 'master' into 1.5
# Conflicts:
#	Content/Shaders/GI/DDGI.flax
#	Content/Shaders/GI/GlobalSurfaceAtlas.flax
#	Content/Shaders/TAA.flax
#	Content/Shaders/VolumetricFog.flax
#	Source/Editor/CustomEditors/Editors/ActorTagEditor.cs
#	Source/Engine/Core/Config/GraphicsSettings.cpp
#	Source/Engine/Engine/PostProcessEffect.cs
#	Source/Engine/Graphics/GPUResourcesCollection.cpp
#	Source/Engine/Graphics/GPUResourcesCollection.h
#	Source/Engine/Graphics/PostProcessBase.h
#	Source/FlaxEngine.Gen.cs
2023-01-10 15:37:55 +01:00

181 lines
5.6 KiB
C++

// Copyright (c) 2012-2023 Wojciech Figat. All rights reserved.
#include "BitonicSort.h"
#include "Engine/Content/Content.h"
#include "Engine/Graphics/GPUBuffer.h"
#include "Engine/Graphics/GPUContext.h"
#include "Engine/Graphics/GPULimits.h"
#define INDIRECT_ARGS_STRIDE 12
// The sorting keys buffer item structure template. Matches the shader type.
struct Item
{
float Key;
uint32 Value;
};
PACK_STRUCT(struct Data {
Item NullItem;
uint32 CounterOffset;
uint32 MaxIterations;
uint32 LoopK;
float KeySign;
uint32 LoopJ;
float Dummy0;
});
String BitonicSort::ToString() const
{
return TEXT("BitonicSort");
}
bool BitonicSort::Init()
{
// Draw indirect and compute shaders support is required for this implementation
const auto& limits = GPUDevice::Instance->Limits;
if (!limits.HasDrawIndirect || !limits.HasCompute)
return false;
// Create indirect dispatch arguments buffer
_dispatchArgsBuffer = GPUDevice::Instance->CreateBuffer(TEXT("BitonicSortDispatchArgs"));
if (_dispatchArgsBuffer->Init(GPUBufferDescription::Raw(22 * 23 / 2 * INDIRECT_ARGS_STRIDE, GPUBufferFlags::Argument | GPUBufferFlags::UnorderedAccess)))
return true;
// Load asset
_shader = Content::LoadAsyncInternal<Shader>(TEXT("Shaders/BitonicSort"));
if (_shader == nullptr)
return true;
#if COMPILE_WITH_DEV_ENV
_shader.Get()->OnReloading.Bind<BitonicSort, &BitonicSort::OnShaderReloading>(this);
#endif
return false;
}
bool BitonicSort::setupResources()
{
// Check if shader has not been loaded
if (!_shader->IsLoaded())
return true;
const auto shader = _shader->GetShader();
// Validate shader constant buffer size
_cb = shader->GetCB(0);
if (_cb->GetSize() != sizeof(Data))
{
REPORT_INVALID_SHADER_PASS_CB_SIZE(shader, 0, Data);
return true;
}
// Cache compute shaders
_indirectArgsCS = shader->GetCS("CS_IndirectArgs");
_preSortCS = shader->GetCS("CS_PreSort");
_innerSortCS = shader->GetCS("CS_InnerSort");
_outerSortCS = shader->GetCS("CS_OuterSort");
_copyIndicesCS = shader->GetCS("CS_CopyIndices");
return false;
}
void BitonicSort::Dispose()
{
// Base
RendererPass::Dispose();
// Cleanup
SAFE_DELETE_GPU_RESOURCE(_dispatchArgsBuffer);
_cb = nullptr;
_indirectArgsCS = nullptr;
_preSortCS = nullptr;
_innerSortCS = nullptr;
_outerSortCS = nullptr;
_copyIndicesCS = nullptr;
_shader = nullptr;
}
void BitonicSort::Sort(GPUContext* context, GPUBuffer* sortingKeysBuffer, GPUBuffer* countBuffer, uint32 counterOffset, bool sortAscending, GPUBuffer* sortedIndicesBuffer)
{
ASSERT(context && sortingKeysBuffer && countBuffer);
PROFILE_GPU_CPU("Bitonic Sort");
// Check if has missing resources
if (checkIfSkipPass())
{
return;
}
// Prepare
const uint32 elementSizeBytes = sizeof(uint64);
const uint32 maxNumElements = sortingKeysBuffer->GetSize() / elementSizeBytes;
const uint32 alignedMaxNumElements = Math::RoundUpToPowerOf2(maxNumElements);
const uint32 maxIterations = (uint32)Math::Log2((float)Math::Max(2048u, alignedMaxNumElements)) - 10;
// Setup constants buffer
Data data;
data.CounterOffset = counterOffset;
data.NullItem.Key = sortAscending ? MAX_float : -MAX_float;
data.NullItem.Value = 0;
data.KeySign = sortAscending ? -1.0f : 1.0f;
data.MaxIterations = maxIterations;
data.LoopK = 0;
data.LoopJ = 0;
context->UpdateCB(_cb, &data);
context->BindCB(0, _cb);
// Generate execute indirect arguments
context->BindSR(0, countBuffer->View());
context->BindUA(0, _dispatchArgsBuffer->View());
context->Dispatch(_indirectArgsCS, 1, 1, 1);
// Pre-Sort the buffer up to k = 2048 (this also pads the list with invalid indices that will drift to the end of the sorted list)
context->BindUA(0, sortingKeysBuffer->View());
context->DispatchIndirect(_preSortCS, _dispatchArgsBuffer, 0);
// We have already pre-sorted up through k = 2048 when first writing our list, so we continue sorting with k = 4096
// For really large values of k, these indirect dispatches will be skipped over with thread counts of 0
uint32 indirectArgsOffset = INDIRECT_ARGS_STRIDE;
for (uint32 k = 4096; k <= alignedMaxNumElements; k *= 2)
{
for (uint32 j = k / 2; j >= 2048; j /= 2)
{
data.LoopK = k;
data.LoopJ = j;
context->UpdateCB(_cb, &data);
context->BindCB(0, _cb);
context->DispatchIndirect(_outerSortCS, _dispatchArgsBuffer, indirectArgsOffset);
indirectArgsOffset += INDIRECT_ARGS_STRIDE;
}
context->DispatchIndirect(_innerSortCS, _dispatchArgsBuffer, indirectArgsOffset);
indirectArgsOffset += INDIRECT_ARGS_STRIDE;
}
context->ResetUA();
if (sortedIndicesBuffer)
{
// Copy indices to another buffer
#if !BUILD_RELEASE
switch (sortedIndicesBuffer->GetDescription().Format)
{
case PixelFormat::R32_UInt:
case PixelFormat::R16_UInt:
case PixelFormat::R8_UInt:
break;
default:
LOG(Warning, "Invalid format {0} of sortedIndicesBuffer for BitonicSort. It needs to be UInt type.", (int32)sortedIndicesBuffer->GetDescription().Format);
}
#endif
context->BindSR(1, sortingKeysBuffer->View());
context->BindUA(0, sortedIndicesBuffer->View());
// TODO: use indirect dispatch to match the items count for copy
context->Dispatch(_copyIndicesCS, (alignedMaxNumElements + 1023) / 1024, 1, 1);
}
context->ResetUA();
context->ResetSR();
}