Files
FlaxEngine/Source/Engine/Graphics/Models/Mesh.cpp

525 lines
22 KiB
C++

// Copyright (c) 2012-2024 Wojciech Figat. All rights reserved.
#include "Mesh.h"
#include "MeshAccessor.h"
#include "MeshDeformation.h"
#include "ModelInstanceEntry.h"
#include "Engine/Content/Assets/Material.h"
#include "Engine/Content/Assets/Model.h"
#include "Engine/Core/Log.h"
#include "Engine/Graphics/GPUContext.h"
#include "Engine/Graphics/GPUDevice.h"
#include "Engine/Graphics/RenderTask.h"
#include "Engine/Graphics/RenderTools.h"
#include "Engine/Graphics/Shaders/GPUVertexLayout.h"
#include "Engine/Renderer/RenderList.h"
#include "Engine/Scripting/ManagedCLR/MCore.h"
#include "Engine/Threading/Threading.h"
#if USE_EDITOR
#include "Engine/Renderer/GBufferPass.h"
#endif
PRAGMA_DISABLE_DEPRECATION_WARNINGS
GPUVertexLayout* VB0ElementType18::GetLayout()
{
return GPUVertexLayout::Get({
{ VertexElement::Types::Position, 0, 0, 0, PixelFormat::R32G32B32_Float },
});
}
GPUVertexLayout* VB1ElementType18::GetLayout()
{
return GPUVertexLayout::Get({
{ VertexElement::Types::TexCoord, 1, 0, 0, PixelFormat::R16G16_Float },
{ VertexElement::Types::Normal, 1, 0, 0, PixelFormat::R10G10B10A2_UNorm },
{ VertexElement::Types::Tangent, 1, 0, 0, PixelFormat::R10G10B10A2_UNorm },
{ VertexElement::Types::TexCoord1, 1, 0, 0, PixelFormat::R16G16_Float },
});
}
GPUVertexLayout* VB2ElementType18::GetLayout()
{
return GPUVertexLayout::Get({
{ VertexElement::Types::Color, 2, 0, 0, PixelFormat::R8G8B8A8_UNorm },
});
}
PRAGMA_ENABLE_DEPRECATION_WARNINGS
namespace
{
bool UpdateMesh(MeshBase* mesh, uint32 vertexCount, uint32 triangleCount, PixelFormat indexFormat, const Float3* vertices, const void* triangles, const Float3* normals, const Float3* tangents, const Float2* uvs, const Color32* colors)
{
auto model = mesh->GetModelBase();
CHECK_RETURN(model && model->IsVirtual(), true);
CHECK_RETURN(triangles && vertices, true);
MeshAccessor accessor;
// Index Buffer
{
if (accessor.AllocateBuffer(MeshBufferType::Index, triangleCount, indexFormat))
return true;
auto indexStream = accessor.Index();
ASSERT(indexStream.IsLinear(indexFormat));
indexStream.SetLinear(triangles);
}
// Vertex Buffer 0 (position-only)
{
GPUVertexLayout* vb0layout = GPUVertexLayout::Get({ { VertexElement::Types::Position, 0, 0, 0, PixelFormat::R32G32B32_Float } });
if (accessor.AllocateBuffer(MeshBufferType::Vertex0, vertexCount, vb0layout))
return true;
auto positionStream = accessor.Position();
ASSERT(positionStream.IsLinear(PixelFormat::R32G32B32_Float));
positionStream.SetLinear(vertices);
}
// Vertex Buffer 1 (general purpose components)
GPUVertexLayout::Elements vb1elements;
if (normals)
{
vb1elements.Add({ VertexElement::Types::Normal, 1, 0, 0, PixelFormat::R10G10B10A2_UNorm });
if (tangents)
vb1elements.Add({ VertexElement::Types::Tangent, 1, 0, 0, PixelFormat::R10G10B10A2_UNorm });
}
if (uvs)
vb1elements.Add({ VertexElement::Types::TexCoord, 1, 0, 0, PixelFormat::R16G16_Float });
if (vb1elements.HasItems())
{
GPUVertexLayout* vb1layout = GPUVertexLayout::Get(vb1elements);
if (accessor.AllocateBuffer(MeshBufferType::Vertex1, vertexCount, vb1layout))
return true;
if (normals)
{
auto normalStream = accessor.Normal();
if (tangents)
{
auto tangentStream = accessor.Tangent();
for (uint32 i = 0; i < vertexCount; i++)
{
const Float3 normal = normals[i];
const Float3 tangent = tangents[i];
Float3 n;
Float4 t;
RenderTools::CalculateTangentFrame(n, t, normal, tangent);
normalStream.SetFloat3(i, n);
tangentStream.SetFloat4(i, t);
}
}
else
{
for (uint32 i = 0; i < vertexCount; i++)
{
const Float3 normal = normals[i];
Float3 n;
Float4 t;
RenderTools::CalculateTangentFrame(n, t, normal);
normalStream.SetFloat3(i, n);
}
}
}
if (uvs)
{
auto uvsStream = accessor.TexCoord();
for (uint32 i = 0; i < vertexCount; i++)
uvsStream.SetFloat2(i, uvs[i]);
}
}
// Vertex Buffer 2 (color-only)
if (colors)
{
GPUVertexLayout* vb2layout = GPUVertexLayout::Get({{ VertexElement::Types::Color, 2, 0, 0, PixelFormat::R8G8B8A8_UNorm }});
if (accessor.AllocateBuffer(MeshBufferType::Vertex2, vertexCount, vb2layout))
return true;
auto colorStream = accessor.Color();
ASSERT(colorStream.IsLinear(PixelFormat::R8G8B8A8_UNorm));
colorStream.SetLinear(colors);
}
return accessor.UpdateMesh(mesh);
}
#if !COMPILE_WITHOUT_CSHARP
template<typename IndexType>
bool UpdateMesh(Mesh* mesh, uint32 vertexCount, uint32 triangleCount, const MArray* verticesObj, const MArray* trianglesObj, const MArray* normalsObj, const MArray* tangentsObj, const MArray* uvObj, const MArray* colorsObj)
{
ASSERT((uint32)MCore::Array::GetLength(verticesObj) >= vertexCount);
ASSERT((uint32)MCore::Array::GetLength(trianglesObj) / 3 >= triangleCount);
auto vertices = MCore::Array::GetAddress<Float3>(verticesObj);
auto triangles = MCore::Array::GetAddress<IndexType>(trianglesObj);
const PixelFormat indexFormat = sizeof(IndexType) == 4 ? PixelFormat::R32_UInt : PixelFormat::R16_UInt;
const auto normals = normalsObj ? MCore::Array::GetAddress<Float3>(normalsObj) : nullptr;
const auto tangents = tangentsObj ? MCore::Array::GetAddress<Float3>(tangentsObj) : nullptr;
const auto uvs = uvObj ? MCore::Array::GetAddress<Float2>(uvObj) : nullptr;
const auto colors = colorsObj ? MCore::Array::GetAddress<Color32>(colorsObj) : nullptr;
return UpdateMesh(mesh, vertexCount, triangleCount, indexFormat, vertices, triangles, normals, tangents, uvs, colors);
}
#endif
}
bool Mesh::UpdateMesh(uint32 vertexCount, uint32 triangleCount, const VB0ElementType* vb0, const VB1ElementType* vb1, const VB2ElementType* vb2, const uint32* ib)
{
PRAGMA_DISABLE_DEPRECATION_WARNINGS
return UpdateMesh(vertexCount, triangleCount, vb0, vb1, vb2, ib, false);
PRAGMA_ENABLE_DEPRECATION_WARNINGS
}
bool Mesh::UpdateMesh(uint32 vertexCount, uint32 triangleCount, const VB0ElementType* vb0, const VB1ElementType* vb1, const VB2ElementType* vb2, const uint16* ib)
{
PRAGMA_DISABLE_DEPRECATION_WARNINGS
return UpdateMesh(vertexCount, triangleCount, vb0, vb1, vb2, ib, true);
PRAGMA_ENABLE_DEPRECATION_WARNINGS
}
bool Mesh::UpdateMesh(uint32 vertexCount, uint32 triangleCount, const VB0ElementType* vb0, const VB1ElementType* vb1, const VB2ElementType* vb2, const void* ib, bool use16BitIndices)
{
Release();
// Setup GPU resources
PRAGMA_DISABLE_DEPRECATION_WARNINGS
const bool failed = Load(vertexCount, triangleCount, vb0, vb1, vb2, ib, use16BitIndices);
PRAGMA_ENABLE_DEPRECATION_WARNINGS
if (!failed)
{
// Calculate mesh bounds
BoundingBox bounds;
BoundingBox::FromPoints((const Float3*)vb0, vertexCount, bounds);
SetBounds(bounds);
}
return failed;
}
bool Mesh::UpdateMesh(uint32 vertexCount, uint32 triangleCount, const Float3* vertices, const uint16* triangles, const Float3* normals, const Float3* tangents, const Float2* uvs, const Color32* colors)
{
return ::UpdateMesh(this, vertexCount, triangleCount, PixelFormat::R16_UInt, vertices, triangles, normals, tangents, uvs, colors);
}
bool Mesh::UpdateMesh(uint32 vertexCount, uint32 triangleCount, const Float3* vertices, const uint32* triangles, const Float3* normals, const Float3* tangents, const Float2* uvs, const Color32* colors)
{
return ::UpdateMesh(this, vertexCount, triangleCount, PixelFormat::R16_UInt, vertices, triangles, normals, tangents, uvs, colors);
}
bool Mesh::Load(uint32 vertices, uint32 triangles, const void* vb0, const void* vb1, const void* vb2, const void* ib, bool use16BitIndexBuffer)
{
Array<const void*, FixedAllocation<3>> vbData;
vbData.Add(vb0);
if (vb1)
vbData.Add(vb1);
if (vb2)
vbData.Add(vb2);
Array<GPUVertexLayout*, FixedAllocation<3>> vbLayout;
PRAGMA_DISABLE_DEPRECATION_WARNINGS
vbLayout.Add(VB0ElementType::GetLayout());
vbLayout.Add(VB1ElementType::GetLayout());
vbLayout.Add(VB2ElementType::GetLayout());
PRAGMA_ENABLE_DEPRECATION_WARNINGS
return Init(vertices, triangles, vbData, ib, use16BitIndexBuffer, vbLayout);
}
void Mesh::Draw(const RenderContext& renderContext, MaterialBase* material, const Matrix& world, StaticFlags flags, bool receiveDecals, DrawPass drawModes, float perInstanceRandom, int8 sortOrder) const
{
if (!material || !material->IsSurface() || !IsInitialized())
return;
drawModes &= material->GetDrawModes();
if (drawModes == DrawPass::None)
return;
// Setup draw call
DrawCall drawCall;
drawCall.Geometry.IndexBuffer = _indexBuffer;
drawCall.Geometry.VertexBuffers[0] = _vertexBuffers[0];
drawCall.Geometry.VertexBuffers[1] = _vertexBuffers[1];
drawCall.Geometry.VertexBuffers[2] = _vertexBuffers[2];
drawCall.Draw.IndicesCount = _triangles * 3;
drawCall.InstanceCount = 1;
drawCall.Material = material;
drawCall.World = world;
drawCall.ObjectPosition = drawCall.World.GetTranslation();
drawCall.ObjectRadius = (float)_sphere.Radius * drawCall.World.GetScaleVector().GetAbsolute().MaxValue();
drawCall.Surface.GeometrySize = _box.GetSize();
drawCall.Surface.PrevWorld = world;
drawCall.WorldDeterminantSign = RenderTools::GetWorldDeterminantSign(drawCall.World);
drawCall.PerInstanceRandom = perInstanceRandom;
#if USE_EDITOR
const ViewMode viewMode = renderContext.View.Mode;
if (viewMode == ViewMode::LightmapUVsDensity || viewMode == ViewMode::LODPreview)
GBufferPass::AddIndexBufferToModelLOD(_indexBuffer, &((Model*)_model)->LODs[_lodIndex]);
#endif
// Push draw call to the render list
renderContext.List->AddDrawCall(renderContext, drawModes, flags, drawCall, receiveDecals, sortOrder);
}
void Mesh::Draw(const RenderContext& renderContext, const DrawInfo& info, float lodDitherFactor) const
{
const auto& entry = info.Buffer->At(_materialSlotIndex);
if (!entry.Visible || !IsInitialized())
return;
const MaterialSlot& slot = _model->MaterialSlots[_materialSlotIndex];
// Select material
MaterialBase* material;
if (entry.Material && entry.Material->IsLoaded())
material = entry.Material;
else if (slot.Material && slot.Material->IsLoaded())
material = slot.Material;
else
material = GPUDevice::Instance->GetDefaultMaterial();
if (!material || !material->IsSurface())
return;
// Check if skip rendering
const auto shadowsMode = entry.ShadowsMode & slot.ShadowsMode;
const auto drawModes = info.DrawModes & renderContext.View.Pass & renderContext.View.GetShadowsDrawPassMask(shadowsMode) & material->GetDrawModes();
if (drawModes == DrawPass::None)
return;
// Setup draw call
DrawCall drawCall;
drawCall.Geometry.IndexBuffer = _indexBuffer;
drawCall.Geometry.VertexBuffers[0] = _vertexBuffers[0];
drawCall.Geometry.VertexBuffers[1] = _vertexBuffers[1];
drawCall.Geometry.VertexBuffers[2] = _vertexBuffers[2];
if (info.Deformation)
{
info.Deformation->RunDeformers(this, MeshBufferType::Vertex0, drawCall.Geometry.VertexBuffers[0]);
info.Deformation->RunDeformers(this, MeshBufferType::Vertex1, drawCall.Geometry.VertexBuffers[1]);
}
if (info.VertexColors && info.VertexColors[_lodIndex])
{
// TODO: cache vertexOffset within the model LOD per-mesh
uint32 vertexOffset = 0;
for (int32 meshIndex = 0; meshIndex < _index; meshIndex++)
vertexOffset += ((Model*)_model)->LODs[_lodIndex].Meshes[meshIndex].GetVertexCount();
drawCall.Geometry.VertexBuffers[2] = info.VertexColors[_lodIndex];
drawCall.Geometry.VertexBuffersOffsets[2] = vertexOffset * sizeof(Color32);
}
drawCall.Draw.IndicesCount = _triangles * 3;
drawCall.InstanceCount = 1;
drawCall.Material = material;
drawCall.World = *info.World;
drawCall.ObjectPosition = drawCall.World.GetTranslation();
drawCall.ObjectRadius = (float)info.Bounds.Radius; // TODO: should it be kept in sync with ObjectPosition?
drawCall.Surface.GeometrySize = _box.GetSize();
drawCall.Surface.PrevWorld = info.DrawState->PrevWorld;
drawCall.Surface.Lightmap = (info.Flags & StaticFlags::Lightmap) != StaticFlags::None ? info.Lightmap : nullptr;
drawCall.Surface.LightmapUVsArea = info.LightmapUVs ? *info.LightmapUVs : Rectangle::Empty;
drawCall.Surface.LODDitherFactor = lodDitherFactor;
drawCall.WorldDeterminantSign = RenderTools::GetWorldDeterminantSign(drawCall.World);
drawCall.PerInstanceRandom = info.PerInstanceRandom;
#if USE_EDITOR
const ViewMode viewMode = renderContext.View.Mode;
if (viewMode == ViewMode::LightmapUVsDensity || viewMode == ViewMode::LODPreview)
GBufferPass::AddIndexBufferToModelLOD(_indexBuffer, &((Model*)_model)->LODs[_lodIndex]);
if (viewMode == ViewMode::LightmapUVsDensity)
drawCall.Surface.LODDitherFactor = info.LightmapScale; // See LightmapUVsDensityMaterialShader
#endif
// Push draw call to the render list
renderContext.List->AddDrawCall(renderContext, drawModes, info.Flags, drawCall, entry.ReceiveDecals, info.SortOrder);
}
void Mesh::Draw(const RenderContextBatch& renderContextBatch, const DrawInfo& info, float lodDitherFactor) const
{
const auto& entry = info.Buffer->At(_materialSlotIndex);
if (!entry.Visible || !IsInitialized())
return;
const MaterialSlot& slot = _model->MaterialSlots[_materialSlotIndex];
// Select material
MaterialBase* material;
if (entry.Material && entry.Material->IsLoaded())
material = entry.Material;
else if (slot.Material && slot.Material->IsLoaded())
material = slot.Material;
else
material = GPUDevice::Instance->GetDefaultMaterial();
if (!material || !material->IsSurface())
return;
// Setup draw call
DrawCall drawCall;
drawCall.Geometry.IndexBuffer = _indexBuffer;
drawCall.Geometry.VertexBuffers[0] = _vertexBuffers[0];
drawCall.Geometry.VertexBuffers[1] = _vertexBuffers[1];
drawCall.Geometry.VertexBuffers[2] = _vertexBuffers[2];
if (info.Deformation)
{
info.Deformation->RunDeformers(this, MeshBufferType::Vertex0, drawCall.Geometry.VertexBuffers[0]);
info.Deformation->RunDeformers(this, MeshBufferType::Vertex1, drawCall.Geometry.VertexBuffers[1]);
}
if (info.VertexColors && info.VertexColors[_lodIndex])
{
// TODO: cache vertexOffset within the model LOD per-mesh
uint32 vertexOffset = 0;
for (int32 meshIndex = 0; meshIndex < _index; meshIndex++)
vertexOffset += ((Model*)_model)->LODs[_lodIndex].Meshes[meshIndex].GetVertexCount();
drawCall.Geometry.VertexBuffers[2] = info.VertexColors[_lodIndex];
drawCall.Geometry.VertexBuffersOffsets[2] = vertexOffset * sizeof(Color32);
}
drawCall.Draw.IndicesCount = _triangles * 3;
drawCall.InstanceCount = 1;
drawCall.Material = material;
drawCall.World = *info.World;
drawCall.ObjectPosition = drawCall.World.GetTranslation();
drawCall.ObjectRadius = (float)info.Bounds.Radius; // TODO: should it be kept in sync with ObjectPosition?
drawCall.Surface.GeometrySize = _box.GetSize();
drawCall.Surface.PrevWorld = info.DrawState->PrevWorld;
drawCall.Surface.Lightmap = (info.Flags & StaticFlags::Lightmap) != StaticFlags::None ? info.Lightmap : nullptr;
drawCall.Surface.LightmapUVsArea = info.LightmapUVs ? *info.LightmapUVs : Rectangle::Empty;
drawCall.Surface.LODDitherFactor = lodDitherFactor;
drawCall.WorldDeterminantSign = RenderTools::GetWorldDeterminantSign(drawCall.World);
drawCall.PerInstanceRandom = info.PerInstanceRandom;
#if USE_EDITOR
const ViewMode viewMode = renderContextBatch.GetMainContext().View.Mode;
if (viewMode == ViewMode::LightmapUVsDensity || viewMode == ViewMode::LODPreview)
GBufferPass::AddIndexBufferToModelLOD(_indexBuffer, &((Model*)_model)->LODs[_lodIndex]);
if (viewMode == ViewMode::LightmapUVsDensity)
drawCall.Surface.LODDitherFactor = info.LightmapScale; // See LightmapUVsDensityMaterialShader
#endif
// Push draw call to the render lists
const auto shadowsMode = entry.ShadowsMode & slot.ShadowsMode;
const auto drawModes = info.DrawModes & material->GetDrawModes();
if (drawModes != DrawPass::None)
renderContextBatch.GetMainContext().List->AddDrawCall(renderContextBatch, drawModes, info.Flags, shadowsMode, info.Bounds, drawCall, entry.ReceiveDecals, info.SortOrder);
}
bool Mesh::Init(uint32 vertices, uint32 triangles, const Array<const void*, FixedAllocation<3>>& vbData, const void* ibData, bool use16BitIndexBuffer, Array<GPUVertexLayout*, FixedAllocation<3>> vbLayout)
{
// Inject lightmap uv coordinate index into the vertex layout of one of the buffers
if (LightmapUVsIndex != -1)
{
const auto vertexElementType = (VertexElement::Types)((int32)VertexElement::Types::TexCoord0 + LightmapUVsIndex);
for (int32 vbIndex = 0; vbIndex < vbLayout.Count(); vbIndex++)
{
// Check if layout contains lightmap uvs texcoords channel
GPUVertexLayout* layout = vbLayout[vbIndex];
VertexElement element = layout->FindElement(vertexElementType);
if (element.Type == vertexElementType)
{
// Ensure element doesn't exist in this layout
if (layout->FindElement(VertexElement::Types::Lightmap).Format == PixelFormat::Unknown)
{
GPUVertexLayout::Elements elements = layout->GetElements();
element.Type = VertexElement::Types::Lightmap;
elements.Add(element);
layout = GPUVertexLayout::Get(elements, true);
vbLayout[vbIndex] = layout;
}
break;
}
}
}
if (MeshBase::Init(vertices, triangles, vbData, ibData, use16BitIndexBuffer, vbLayout))
return true;
auto model = (Model*)_model;
if (model)
model->LODs[_lodIndex]._verticesCount += _vertices;
return false;
}
void Mesh::Release()
{
auto model = (Model*)_model;
if (model)
model->LODs[_lodIndex]._verticesCount -= _vertices;
MeshBase::Release();
}
#if !COMPILE_WITHOUT_CSHARP
bool Mesh::UpdateMeshUInt(int32 vertexCount, int32 triangleCount, const MArray* verticesObj, const MArray* trianglesObj, const MArray* normalsObj, const MArray* tangentsObj, const MArray* uvObj, const MArray* colorsObj)
{
return ::UpdateMesh<uint32>(this, (uint32)vertexCount, (uint32)triangleCount, verticesObj, trianglesObj, normalsObj, tangentsObj, uvObj, colorsObj);
}
bool Mesh::UpdateMeshUShort(int32 vertexCount, int32 triangleCount, const MArray* verticesObj, const MArray* trianglesObj, const MArray* normalsObj, const MArray* tangentsObj, const MArray* uvObj, const MArray* colorsObj)
{
return ::UpdateMesh<uint16>(this, (uint32)vertexCount, (uint32)triangleCount, verticesObj, trianglesObj, normalsObj, tangentsObj, uvObj, colorsObj);
}
// [Deprecated in v1.10]
enum class InternalBufferType
{
VB0 = 0,
VB1 = 1,
VB2 = 2,
};
MArray* Mesh::DownloadBuffer(bool forceGpu, MTypeObject* resultType, int32 typeI)
{
// [Deprecated in v1.10]
ScopeLock lock(GetModelBase()->Locker);
// Get vertex buffers data from the mesh (CPU or GPU)
MeshAccessor accessor;
MeshBufferType bufferTypes[1] = { MeshBufferType::Vertex0 };
switch ((InternalBufferType)typeI)
{
case InternalBufferType::VB1:
bufferTypes[0] = MeshBufferType::Vertex1;
break;
case InternalBufferType::VB2:
bufferTypes[0] = MeshBufferType::Vertex2;
break;
}
if (accessor.LoadMesh(this, forceGpu, ToSpan(bufferTypes, 1)))
return nullptr;
auto positionStream = accessor.Position();
auto texCoordStream = accessor.TexCoord();
auto lightmapUVsStream = accessor.TexCoord(1);
auto normalStream = accessor.Normal();
auto tangentStream = accessor.Tangent();
auto colorStream = accessor.Color();
auto count = GetVertexCount();
// Convert into managed array
MArray* result = MCore::Array::New(MCore::Type::GetClass(INTERNAL_TYPE_OBJECT_GET(resultType)), count);
void* managedArrayPtr = MCore::Array::GetAddress(result);
switch ((InternalBufferType)typeI)
{
PRAGMA_DISABLE_DEPRECATION_WARNINGS
case InternalBufferType::VB0:
CHECK_RETURN(positionStream.IsValid(), nullptr);
for (int32 i = 0; i < count; i++)
{
auto& dst = ((VB0ElementType*)managedArrayPtr)[i];
dst.Position = positionStream.GetFloat3(i);
}
break;
case InternalBufferType::VB1:
for (int32 i = 0; i < count; i++)
{
auto& dst = ((VB1ElementType*)managedArrayPtr)[i];
if (texCoordStream.IsValid())
dst.TexCoord = texCoordStream.GetFloat2(i);
if (normalStream.IsValid())
dst.Normal = normalStream.GetFloat3(i);
if (tangentStream.IsValid())
dst.Tangent = tangentStream.GetFloat4(i);
if (lightmapUVsStream.IsValid())
dst.LightmapUVs = lightmapUVsStream.GetFloat2(i);
}
break;
case InternalBufferType::VB2:
if (colorStream.IsValid())
{
for (int32 i = 0; i < count; i++)
{
auto& dst = ((VB2ElementType*)managedArrayPtr)[i];
dst.Color = Color32(colorStream.GetFloat4(i));
}
}
break;
PRAGMA_ENABLE_DEPRECATION_WARNINGS
}
return result;
}
#endif