Files
FlaxEngine/Content/Editor/MaterialTemplates/Deformable.shader

384 lines
12 KiB
GLSL

// File generated by Flax Materials Editor
// Version: @0
#define MATERIAL 1
#define USE_PER_VIEW_CONSTANTS 1
@3
#include "./Flax/Common.hlsl"
#include "./Flax/MaterialCommon.hlsl"
#include "./Flax/GBufferCommon.hlsl"
@7
// Primary constant buffer (with additional material parameters)
META_CB_BEGIN(0, Data)
float4x4 WorldMatrix;
float4x4 LocalMatrix;
float3 Dummy0;
float WorldDeterminantSign;
float MeshMinZ;
float Segment;
float ChunksPerSegment;
float PerInstanceRandom;
float3 GeometrySize;
float MeshMaxZ;
@1META_CB_END
// Shader resources
@2
// The spline deformation buffer (stored as 4x3, 3 float4 behind each other)
Buffer<float4> SplineDeformation : register(t0);
// Geometry data passed though the graphics rendering stages up to the pixel shader
struct GeometryData
{
float3 WorldPosition : TEXCOORD0;
float2 TexCoord : TEXCOORD1;
#if USE_VERTEX_COLOR
half4 VertexColor : COLOR;
#endif
float3 WorldNormal : TEXCOORD2;
float4 WorldTangent : TEXCOORD3;
};
// Interpolants passed from the vertex shader
struct VertexOutput
{
float4 Position : SV_Position;
GeometryData Geometry;
#if USE_CUSTOM_VERTEX_INTERPOLATORS
float4 CustomVSToPS[CUSTOM_VERTEX_INTERPOLATORS_COUNT] : TEXCOORD9;
#endif
#if USE_TESSELLATION
float TessellationMultiplier : TESS;
#endif
};
// Interpolants passed to the pixel shader
struct PixelInput
{
float4 Position : SV_Position;
GeometryData Geometry;
#if USE_CUSTOM_VERTEX_INTERPOLATORS
float4 CustomVSToPS[CUSTOM_VERTEX_INTERPOLATORS_COUNT] : TEXCOORD9;
#endif
bool IsFrontFace : SV_IsFrontFace;
};
// Material properties generation input
struct MaterialInput
{
float3 WorldPosition;
float TwoSidedSign;
float2 TexCoord;
#if USE_VERTEX_COLOR
half4 VertexColor;
#endif
float3x3 TBN;
float4 SvPosition;
float3 PreSkinnedPosition;
float3 PreSkinnedNormal;
#if USE_CUSTOM_VERTEX_INTERPOLATORS
float4 CustomVSToPS[CUSTOM_VERTEX_INTERPOLATORS_COUNT];
#endif
};
// Extracts geometry data to the material input
MaterialInput GetGeometryMaterialInput(GeometryData geometry)
{
MaterialInput output = (MaterialInput)0;
output.WorldPosition = geometry.WorldPosition;
output.TexCoord = geometry.TexCoord;
#if USE_VERTEX_COLOR
output.VertexColor = geometry.VertexColor;
#endif
output.TBN = CalcTangentBasis(geometry.WorldNormal, geometry.WorldTangent);
return output;
}
#if USE_TESSELLATION
// Interpolates the geometry positions data only (used by the tessallation when generating vertices)
#define InterpolateGeometryPositions(output, p0, w0, p1, w1, p2, w2, offset) output.WorldPosition = p0.WorldPosition * w0 + p1.WorldPosition * w1 + p2.WorldPosition * w2 + offset
// Offsets the geometry positions data only (used by the tessallation when generating vertices)
#define OffsetGeometryPositions(geometry, offset) geometry.WorldPosition += offset
// Applies the Phong tessallation to the geometry positions (used by the tessallation when doing Phong tess)
#define ApplyGeometryPositionsPhongTess(geometry, p0, p1, p2, U, V, W) \
float3 posProjectedU = TessalationProjectOntoPlane(p0.WorldNormal, p0.WorldPosition, geometry.WorldPosition); \
float3 posProjectedV = TessalationProjectOntoPlane(p1.WorldNormal, p1.WorldPosition, geometry.WorldPosition); \
float3 posProjectedW = TessalationProjectOntoPlane(p2.WorldNormal, p2.WorldPosition, geometry.WorldPosition); \
geometry.WorldPosition = U * posProjectedU + V * posProjectedV + W * posProjectedW
// Interpolates the geometry data except positions (used by the tessallation when generating vertices)
GeometryData InterpolateGeometry(GeometryData p0, float w0, GeometryData p1, float w1, GeometryData p2, float w2)
{
GeometryData output = (GeometryData)0;
output.TexCoord = p0.TexCoord * w0 + p1.TexCoord * w1 + p2.TexCoord * w2;
#if USE_VERTEX_COLOR
output.VertexColor = p0.VertexColor * w0 + p1.VertexColor * w1 + p2.VertexColor * w2;
#endif
output.WorldNormal = p0.WorldNormal * w0 + p1.WorldNormal * w1 + p2.WorldNormal * w2;
output.WorldNormal = normalize(output.WorldNormal);
output.WorldTangent = p0.WorldTangent * w0 + p1.WorldTangent * w1 + p2.WorldTangent * w2;
output.WorldTangent.xyz = normalize(output.WorldTangent.xyz);
return output;
}
#endif
MaterialInput GetMaterialInput(PixelInput input)
{
MaterialInput output = GetGeometryMaterialInput(input.Geometry);
output.TwoSidedSign = WorldDeterminantSign * (input.IsFrontFace ? 1.0 : -1.0);
output.SvPosition = input.Position;
#if USE_CUSTOM_VERTEX_INTERPOLATORS
output.CustomVSToPS = input.CustomVSToPS;
#endif
return output;
}
// Removes the scale vector from the local to world transformation matrix
float3x3 RemoveScaleFromLocalToWorld(float3x3 localToWorld)
{
// Extract per axis scales from localToWorld transform
float scaleX = length(localToWorld[0]);
float scaleY = length(localToWorld[1]);
float scaleZ = length(localToWorld[2]);
float3 invScale = float3(
scaleX > 0.00001f ? 1.0f / scaleX : 0.0f,
scaleY > 0.00001f ? 1.0f / scaleY : 0.0f,
scaleZ > 0.00001f ? 1.0f / scaleZ : 0.0f);
localToWorld[0] *= invScale.x;
localToWorld[1] *= invScale.y;
localToWorld[2] *= invScale.z;
return localToWorld;
}
// Transforms a vector from tangent space to world space
float3 TransformTangentVectorToWorld(MaterialInput input, float3 tangentVector)
{
return mul(tangentVector, input.TBN);
}
// Transforms a vector from world space to tangent space
float3 TransformWorldVectorToTangent(MaterialInput input, float3 worldVector)
{
return mul(input.TBN, worldVector);
}
// Transforms a vector from world space to view space
float3 TransformWorldVectorToView(MaterialInput input, float3 worldVector)
{
return mul(worldVector, (float3x3)ViewMatrix);
}
// Transforms a vector from view space to world space
float3 TransformViewVectorToWorld(MaterialInput input, float3 viewVector)
{
return mul((float3x3)ViewMatrix, viewVector);
}
// Transforms a vector from local space to world space
float3 TransformLocalVectorToWorld(MaterialInput input, float3 localVector)
{
float3x3 localToWorld = (float3x3)WorldMatrix;
//localToWorld = RemoveScaleFromLocalToWorld(localToWorld);
return mul(localVector, localToWorld);
}
// Transforms a vector from local space to world space
float3 TransformWorldVectorToLocal(MaterialInput input, float3 worldVector)
{
float3x3 localToWorld = (float3x3)WorldMatrix;
//localToWorld = RemoveScaleFromLocalToWorld(localToWorld);
return mul(localToWorld, worldVector);
}
// Gets the current object position
float3 GetObjectPosition(MaterialInput input)
{
return WorldMatrix[3].xyz;
}
// Gets the current object size
float3 GetObjectSize(MaterialInput input)
{
float4x4 world = WorldMatrix;
return GeometrySize * float3(world._m00, world._m11, world._m22);
}
// Get the current object random value
float GetPerInstanceRandom(MaterialInput input)
{
return PerInstanceRandom;
}
// Get the current object LOD transition dither factor
float GetLODDitherFactor(MaterialInput input)
{
return 0;
}
// Gets the interpolated vertex color (in linear space)
float4 GetVertexColor(MaterialInput input)
{
#if USE_VERTEX_COLOR
return input.VertexColor;
#else
return 1;
#endif
}
float3 SampleLightmap(Material material, MaterialInput materialInput)
{
return 0;
}
@8
// Get material properties function (for vertex shader)
Material GetMaterialVS(MaterialInput input)
{
@5
}
// Get material properties function (for domain shader)
Material GetMaterialDS(MaterialInput input)
{
@6
}
// Get material properties function (for pixel shader)
Material GetMaterialPS(MaterialInput input)
{
@4
}
// Calculates the transform matrix from mesh tangent space to local space
float3x3 CalcTangentToLocal(ModelInput input)
{
float bitangentSign = input.Tangent.w ? -1.0f : +1.0f;
float3 normal = input.Normal.xyz * 2.0 - 1.0;
float3 tangent = input.Tangent.xyz * 2.0 - 1.0;
float3 bitangent = cross(normal, tangent) * bitangentSign;
return float3x3(tangent, bitangent, normal);
}
// Vertex Shader function for GBuffer Pass and Depth Pass (with full vertex data)
META_VS(true, FEATURE_LEVEL_ES2)
META_VS_IN_ELEMENT(POSITION, 0, R32G32B32_FLOAT, 0, 0, PER_VERTEX, 0, true)
META_VS_IN_ELEMENT(TEXCOORD, 0, R16G16_FLOAT, 1, 0, PER_VERTEX, 0, true)
META_VS_IN_ELEMENT(NORMAL, 0, R10G10B10A2_UNORM, 1, ALIGN, PER_VERTEX, 0, true)
META_VS_IN_ELEMENT(TANGENT, 0, R10G10B10A2_UNORM, 1, ALIGN, PER_VERTEX, 0, true)
META_VS_IN_ELEMENT(TEXCOORD, 1, R16G16_FLOAT, 1, ALIGN, PER_VERTEX, 0, true)
META_VS_IN_ELEMENT(COLOR, 0, R8G8B8A8_UNORM, 2, 0, PER_VERTEX, 0, USE_VERTEX_COLOR)
VertexOutput VS_SplineModel(ModelInput input)
{
VertexOutput output;
// Apply local transformation of the geometry before deformation
float3 position = mul(float4(input.Position, 1), LocalMatrix).xyz;
float4x4 world = LocalMatrix;
// Apply spline curve deformation
float splineAlpha = saturate((position.z - MeshMinZ) / (MeshMaxZ - MeshMinZ));
int splineIndex = (int)((Segment + splineAlpha) * ChunksPerSegment);
position.z = splineAlpha;
float3x4 splineMatrix = float3x4(SplineDeformation[splineIndex * 3], SplineDeformation[splineIndex * 3 + 1], SplineDeformation[splineIndex * 3 + 2]);
position = mul(splineMatrix, float4(position, 1));
float4x3 splineMatrixT = transpose(splineMatrix);
world = mul(world, float4x4(float4(splineMatrixT[0], 0), float4(splineMatrixT[1], 0), float4(splineMatrixT[2], 0), float4(splineMatrixT[3], 1)));
// Compute world space vertex position
output.Geometry.WorldPosition = mul(float4(position, 1), WorldMatrix).xyz;
world = mul(world, WorldMatrix);
// Compute clip space position
output.Position = mul(float4(output.Geometry.WorldPosition, 1), ViewProjectionMatrix);
// Pass vertex attributes
output.Geometry.TexCoord = input.TexCoord;
#if USE_VERTEX_COLOR
output.Geometry.VertexColor = input.Color;
#endif
// Calculate tanget space to world space transformation matrix for unit vectors
float3x3 tangentToLocal = CalcTangentToLocal(input);
float3x3 localToWorld = RemoveScaleFromLocalToWorld((float3x3)world);
float3x3 tangentToWorld = mul(tangentToLocal, localToWorld);
output.Geometry.WorldNormal = tangentToWorld[2];
output.Geometry.WorldTangent.xyz = tangentToWorld[0];
output.Geometry.WorldTangent.w = input.Tangent.w ? -1.0f : +1.0f;
// Get material input params if need to evaluate any material property
#if USE_POSITION_OFFSET || USE_TESSELLATION || USE_CUSTOM_VERTEX_INTERPOLATORS
MaterialInput materialInput = GetGeometryMaterialInput(output.Geometry);
materialInput.TwoSidedSign = WorldDeterminantSign;
materialInput.SvPosition = output.Position;
materialInput.PreSkinnedPosition = input.Position.xyz;
materialInput.PreSkinnedNormal = tangentToLocal[2].xyz;
Material material = GetMaterialVS(materialInput);
#endif
// Apply world position offset per-vertex
#if USE_POSITION_OFFSET
output.Geometry.WorldPosition += material.PositionOffset;
output.Position = mul(float4(output.Geometry.WorldPosition, 1), ViewProjectionMatrix);
#endif
// Get tessalation multiplier (per vertex)
#if USE_TESSELLATION
output.TessellationMultiplier = material.TessellationMultiplier;
#endif
// Copy interpolants for other shader stages
#if USE_CUSTOM_VERTEX_INTERPOLATORS
output.CustomVSToPS = material.CustomVSToPS;
#endif
return output;
}
#if USE_DITHERED_LOD_TRANSITION
void ClipLODTransition(PixelInput input)
{
}
#endif
// Pixel Shader function for Depth Pass
META_PS(true, FEATURE_LEVEL_ES2)
void PS_Depth(PixelInput input)
{
#if MATERIAL_MASKED || MATERIAL_BLEND != MATERIAL_BLEND_OPAQUE
// Get material parameters
MaterialInput materialInput = GetMaterialInput(input);
Material material = GetMaterialPS(materialInput);
// Perform per pixel clipping
#if MATERIAL_MASKED
clip(material.Mask - MATERIAL_MASK_THRESHOLD);
#endif
#if MATERIAL_BLEND != MATERIAL_BLEND_OPAQUE
clip(material.Opacity - MATERIAL_OPACITY_THRESHOLD);
#endif
#endif
}
#if _PS_QuadOverdraw
#include "./Flax/Editor/QuadOverdraw.hlsl"
// Pixel Shader function for Quad Overdraw Pass (editor-only)
[earlydepthstencil]
META_PS(USE_EDITOR, FEATURE_LEVEL_SM5)
void PS_QuadOverdraw(float4 svPos : SV_Position, uint primId : SV_PrimitiveID)
{
DoQuadOverdraw(svPos, primId);
}
#endif
@9