Files
FlaxEngine/Source/Engine/Core/Math/Vector3.h
intolerantape 9ee0773ab1 Moved the various Vector::Angle functions into their respective CPP files.
They didn't seem like prime candidates for inlining.
2021-09-30 13:30:55 -07:00

977 lines
29 KiB
C++

// Copyright (c) 2012-2021 Wojciech Figat. All rights reserved.
#pragma once
#include "Math.h"
#include "Engine/Core/Formatting.h"
#include "Engine/Core/Templates.h"
struct Double2;
struct Double3;
struct Double4;
struct Quaternion;
struct Matrix;
struct Vector2;
struct Vector4;
struct Color;
class String;
struct Int3;
struct Int4;
/// <summary>
/// Represents a three dimensional mathematical vector.
/// </summary>
API_STRUCT() struct FLAXENGINE_API Vector3
{
DECLARE_SCRIPTING_TYPE_MINIMAL(Vector3);
public:
union
{
struct
{
/// <summary>
/// The X component.
/// </summary>
API_FIELD() float X;
/// <summary>
/// The Y component.
/// </summary>
API_FIELD() float Y;
/// <summary>
/// The Z component.
/// </summary>
API_FIELD() float Z;
};
// Raw values
float Raw[3];
};
public:
// Vector with all components equal zero (0, 0, 0)
static const Vector3 Zero;
// Vector with all components equal one (1, 1, 1)
static const Vector3 One;
// Vector with all components equal half (0.5, 0.5, 0.5)
static const Vector3 Half;
// The X unit vector (1, 0, 0)
static const Vector3 UnitX;
// The Y unit vector (0, 1, 0)
static const Vector3 UnitY;
// The Z unit vector (0, 0, 1)
static const Vector3 UnitZ;
// A unit vector designating up (0, 1, 0)
static const Vector3 Up;
// A unit vector designating down (0, -1, 0)
static const Vector3 Down;
// A unit vector designating a (-1, 0, 0)
static const Vector3 Left;
// A unit vector designating b (1, 0, 0)
static const Vector3 Right;
// A unit vector designating forward in a a-handed coordinate system (0, 0, 1)
static const Vector3 Forward;
// A unit vector designating backward in a a-handed coordinate system (0, 0, -1)
static const Vector3 Backward;
// A minimum Vector3
static const Vector3 Minimum;
// A maximum Vector3
static const Vector3 Maximum;
public:
/// <summary>
/// Empty constructor.
/// </summary>
Vector3()
{
}
// Init
// @param xyz Value to assign to the all components
Vector3(float xyz)
: X(xyz)
, Y(xyz)
, Z(xyz)
{
}
// Init
// @param x X component value
// @param y Y component value
// @param z Z component value
Vector3(float x, float y, float z)
: X(x)
, Y(y)
, Z(z)
{
}
/// <summary>
/// Init
/// </summary>
/// <param name="v">X, Y and Z components in an array</param>
explicit Vector3(const float* xyz)
: X(xyz[0])
, Y(xyz[1])
, Z(xyz[2])
{
}
// Init
// @param xy Vector2 with X and Y components values
// @param z Z component value
explicit Vector3(const Vector2& xy, float z);
// Init
// @param xy Vector3 value
explicit Vector3(const Vector2& xy);
// Init
// @param xy Int22 with X and Y components values
// @param z Z component value
explicit Vector3(const Int2& xy, float z);
// Init
// @param xyz Int3 value
explicit Vector3(const Int3& xyz);
// Init
// @param xyzw Int4 value
explicit Vector3(const Int4& xyzw);
// Init
// @param xyz Vector4 value
explicit Vector3(const Vector4& xyz);
// Init
// @param xy Double2 with X and Y components values
// @param z Z component value
explicit Vector3(const Double2& xy, float z);
// Init
// @param xyz Double3 value
explicit Vector3(const Double3& xyz);
// Init
// @param xyzw Double4 value
explicit Vector3(const Double4& xyzw);
// Init
// @param color Color value
explicit Vector3(const Color& color);
public:
String ToString() const;
public:
// Gets a value indicting whether this instance is normalized
bool IsNormalized() const
{
return Math::IsOne(X * X + Y * Y + Z * Z);
}
// Gets a value indicting whether this vector is zero
bool IsZero() const
{
return Math::IsZero(X) && Math::IsZero(Y) && Math::IsZero(Z);
}
// Gets a value indicting whether any vector component is zero
bool IsAnyZero() const
{
return Math::IsZero(X) || Math::IsZero(Y) || Math::IsZero(Z);
}
// Gets a value indicting whether this vector is one
bool IsOne() const
{
return Math::IsOne(X) && Math::IsOne(Y) && Math::IsOne(Z);
}
// Calculates length of the vector
// @returns Length of the vector
float Length() const
{
return Math::Sqrt(X * X + Y * Y + Z * Z);
}
// Calculates the squared length of the vector
// @returns The squared length of the vector
float LengthSquared() const
{
return X * X + Y * Y + Z * Z;
}
// Calculates inverted length of the vector (1 / Length())
float InvLength() const
{
return 1.0f / Length();
}
/// <summary>
/// Calculates a vector with values being absolute values of that vector
/// </summary>
/// <returns>Absolute vector</returns>
Vector3 GetAbsolute() const
{
return Vector3(Math::Abs(X), Math::Abs(Y), Math::Abs(Z));
}
/// <summary>
/// Calculates a vector with values being opposite to values of that vector
/// </summary>
/// <returns>Negative vector</returns>
Vector3 GetNegative() const
{
return Vector3(-X, -Y, -Z);
}
/// <summary>
/// Calculates a normalized vector that has length equal to 1.
/// </summary>
/// <returns>The normalized vector.</returns>
Vector3 GetNormalized() const
{
const float rcp = 1.0f / Length();
return Vector3(X * rcp, Y * rcp, Z * rcp);
}
/// <summary>
/// Returns average arithmetic of all the components
/// </summary>
/// <returns>Average arithmetic of all the components</returns>
float AverageArithmetic() const
{
return (X + Y + Z) * 0.333333334f;
}
/// <summary>
/// Gets sum of all vector components values
/// </summary>
/// <returns>Sum of X,Y and Z</returns>
float SumValues() const
{
return X + Y + Z;
}
/// <summary>
/// Returns minimum value of all the components
/// </summary>
/// <returns>Minimum value</returns>
float MinValue() const
{
return Math::Min(X, Y, Z);
}
/// <summary>
/// Returns maximum value of all the components
/// </summary>
/// <returns>Maximum value</returns>
float MaxValue() const
{
return Math::Max(X, Y, Z);
}
/// <summary>
/// Returns true if vector has one or more components is not a number (NaN)
/// </summary>
/// <returns>True if one or more components is not a number (NaN)</returns>
bool IsNaN() const
{
return isnan(X) || isnan(Y) || isnan(Z);
}
/// <summary>
/// Returns true if vector has one or more components equal to +/- infinity
/// </summary>
/// <returns>True if one or more components equal to +/- infinity</returns>
bool IsInfinity() const
{
return isinf(X) || isinf(Y) || isinf(Z);
}
/// <summary>
/// Returns true if vector has one or more components equal to +/- infinity or NaN
/// </summary>
/// <returns>True if one or more components equal to +/- infinity or NaN</returns>
bool IsNanOrInfinity() const
{
return IsInfinity() || IsNaN();
}
public:
/// <summary>
/// Performs vector normalization (scales vector up to unit length)
/// </summary>
void Normalize()
{
const float length = Length();
if (!Math::IsZero(length))
{
const float inv = 1.0f / length;
X *= inv;
Y *= inv;
Z *= inv;
}
}
/// <summary>
/// Performs fast vector normalization (scales vector up to unit length)
/// </summary>
void NormalizeFast()
{
const float inv = 1.0f / Length();
X *= inv;
Y *= inv;
Z *= inv;
}
/// <summary>
/// Sets all vector components to the absolute values
/// </summary>
void Absolute()
{
X = Math::Abs(X);
Y = Math::Abs(Y);
Z = Math::Abs(Z);
}
/// <summary>
/// Negates all components of that vector
/// </summary>
void Negate()
{
X = -X;
Y = -Y;
Z = -Z;
}
/// <summary>
/// When this vector contains Euler angles (degrees), ensure that angles are between +/-180
/// </summary>
void UnwindEuler();
public:
// Arithmetic operators with Vector3
Vector3 operator+(const Vector3& b) const
{
return Add(*this, b);
}
Vector3 operator-(const Vector3& b) const
{
return Subtract(*this, b);
}
Vector3 operator*(const Vector3& b) const
{
return Multiply(*this, b);
}
Vector3 operator/(const Vector3& b) const
{
return Divide(*this, b);
}
Vector3 operator-() const
{
return Vector3(-X, -Y, -Z);
}
Vector3 operator^(const Vector3& b) const
{
return Cross(*this, b);
}
float operator|(const Vector3& b) const
{
return Dot(*this, b);
}
// op= operators with Vector3
Vector3& operator+=(const Vector3& b)
{
*this = Add(*this, b);
return *this;
}
Vector3& operator-=(const Vector3& b)
{
*this = Subtract(*this, b);
return *this;
}
Vector3& operator*=(const Vector3& b)
{
*this = Multiply(*this, b);
return *this;
}
Vector3& operator/=(const Vector3& b)
{
*this = Divide(*this, b);
return *this;
}
// Arithmetic operators with float
Vector3 operator+(float b) const
{
return Add(*this, b);
}
Vector3 operator-(float b) const
{
return Subtract(*this, b);
}
Vector3 operator*(float b) const
{
return Multiply(*this, b);
}
Vector3 operator/(float b) const
{
return Divide(*this, b);
}
// op= operators with float
Vector3& operator+=(float b)
{
*this = Add(*this, b);
return *this;
}
Vector3& operator-=(float b)
{
*this = Subtract(*this, b);
return *this;
}
Vector3& operator*=(float b)
{
*this = Multiply(*this, b);
return *this;
}
Vector3& operator/=(float b)
{
*this = Divide(*this, b);
return *this;
}
// Comparison operators
bool operator==(const Vector3& b) const
{
return X == b.X && Y == b.Y && Z == b.Z;
}
bool operator!=(const Vector3& b) const
{
return X != b.X || Y != b.Y || Z != b.Z;
}
bool operator>(const Vector3& b) const
{
return X > b.X && Y > b.Y && Z > b.Z;
}
bool operator>=(const Vector3& b) const
{
return X >= b.X && Y >= b.Y && Z >= b.Z;
}
bool operator<(const Vector3& b) const
{
return X < b.X && Y < b.Y && Z < b.Z;
}
bool operator<=(const Vector3& b) const
{
return X <= b.X && Y <= b.Y && Z <= b.Z;
}
public:
static bool NearEqual(const Vector3& a, const Vector3& b)
{
return Math::NearEqual(a.X, b.X) && Math::NearEqual(a.Y, b.Y) && Math::NearEqual(a.Z, b.Z);
}
static bool NearEqual(const Vector3& a, const Vector3& b, float epsilon)
{
return Math::NearEqual(a.X, b.X, epsilon) && Math::NearEqual(a.Y, b.Y, epsilon) && Math::NearEqual(a.Z, b.Z, epsilon);
}
public:
static void Add(const Vector3& a, const Vector3& b, Vector3& result)
{
result.X = a.X + b.X;
result.Y = a.Y + b.Y;
result.Z = a.Z + b.Z;
}
static Vector3 Add(const Vector3& a, const Vector3& b)
{
Vector3 result;
Add(a, b, result);
return result;
}
static void Subtract(const Vector3& a, const Vector3& b, Vector3& result)
{
result.X = a.X - b.X;
result.Y = a.Y - b.Y;
result.Z = a.Z - b.Z;
}
static Vector3 Subtract(const Vector3& a, const Vector3& b)
{
Vector3 result;
Subtract(a, b, result);
return result;
}
static Vector3 Multiply(const Vector3& a, const Vector3& b)
{
return Vector3(a.X * b.X, a.Y * b.Y, a.Z * b.Z);
}
static void Multiply(const Vector3& a, const Vector3& b, Vector3& result)
{
result = Vector3(a.X * b.X, a.Y * b.Y, a.Z * b.Z);
}
static Vector3 Multiply(const Vector3& a, float b)
{
return Vector3(a.X * b, a.Y * b, a.Z * b);
}
static Vector3 Divide(const Vector3& a, const Vector3& b)
{
return Vector3(a.X / b.X, a.Y / b.Y, a.Z / b.Z);
}
static void Divide(const Vector3& a, const Vector3& b, Vector3& result)
{
result = Vector3(a.X / b.X, a.Y / b.Y, a.Z / b.Z);
}
static Vector3 Divide(const Vector3& a, float b)
{
return Vector3(a.X / b, a.Y / b, a.Z / b);
}
static Vector3 Floor(const Vector3& v);
static Vector3 Frac(const Vector3& v);
static float ScalarProduct(const Vector3& a, const Vector3& b)
{
return a.X * b.X + a.Y * b.Y + a.Z * b.Z;
}
public:
// Restricts a value to be within a specified range
// @param value The value to clamp
// @param min The minimum value,
// @param max The maximum value
// @returns Clamped value
static Vector3 Clamp(const Vector3& value, const Vector3& min, const Vector3& max);
// Restricts a value to be within a specified range
// @param value The value to clamp
// @param min The minimum value,
// @param max The maximum value
// @param result When the method completes, contains the clamped value
static void Clamp(const Vector3& value, const Vector3& min, const Vector3& max, Vector3& result);
// Calculates the distance between two vectors
// @param value1 The first vector
// @param value2 The second vector
// @returns The distance between the two vectors
static float Distance(const Vector3& value1, const Vector3& value2);
// Calculates the squared distance between two vectors
// @param value1 The first vector
// @param value2 The second vector
// @returns The squared distance between the two vectors
static float DistanceSquared(const Vector3& value1, const Vector3& value2);
// Performs vector normalization (scales vector up to unit length)
// @param inout Input vector to normalize
// @returns Output vector that is normalized (has unit length)
static Vector3 Normalize(const Vector3& input);
// Performs vector normalization (scales vector up to unit length). This is a faster version that does not performs check for length equal 0 (it assumes that input vector is not empty).
// @param inout Input vector to normalize (cannot be zero).
// @returns Output vector that is normalized (has unit length)
static Vector3 NormalizeFast(const Vector3& input)
{
const float inv = 1.0f / input.Length();
return Vector3(input.X * inv, input.Y * inv, input.Z * inv);
}
// Performs vector normalization (scales vector up to unit length)
// @param inout Input vector to normalize
// @param output Output vector that is normalized (has unit length)
static void Normalize(const Vector3& input, Vector3& result);
// dot product with another vector
static float Dot(const Vector3& a, const Vector3& b)
{
return a.X * b.X + a.Y * b.Y + a.Z * b.Z;
}
// Calculates the cross product of two vectors
// @param a First source vector
// @param b Second source vector
// @param result When the method completes, contains the cross product of the two vectors
static void Cross(const Vector3& a, const Vector3& b, Vector3& result)
{
result = Vector3(
a.Y * b.Z - a.Z * b.Y,
a.Z * b.X - a.X * b.Z,
a.X * b.Y - a.Y * b.X);
}
// Calculates the cross product of two vectors
// @param a First source vector
// @param b Second source vector
// @returns Cross product of the two vectors
static Vector3 Cross(const Vector3& a, const Vector3& b)
{
return Vector3(
a.Y * b.Z - a.Z * b.Y,
a.Z * b.X - a.X * b.Z,
a.X * b.Y - a.Y * b.X);
}
// Performs a linear interpolation between two vectors
// @param start Start vector
// @param end End vector
// @param amount Value between 0 and 1 indicating the weight of end
// @param result When the method completes, contains the linear interpolation of the two vectors
static void Lerp(const Vector3& start, const Vector3& end, float amount, Vector3& result)
{
result.X = Math::Lerp(start.X, end.X, amount);
result.Y = Math::Lerp(start.Y, end.Y, amount);
result.Z = Math::Lerp(start.Z, end.Z, amount);
}
// <summary>
// Performs a linear interpolation between two vectors.
// </summary>
// @param start Start vector,
// @param end End vector,
// @param amount Value between 0 and 1 indicating the weight of @paramref end"/>,
// @returns The linear interpolation of the two vectors
static Vector3 Lerp(const Vector3& start, const Vector3& end, float amount)
{
Vector3 result;
Lerp(start, end, amount, result);
return result;
}
// Performs a cubic interpolation between two vectors
// @param start Start vector
// @param end End vector
// @param amount Value between 0 and 1 indicating the weight of end
// @param result When the method completes, contains the cubic interpolation of the two vectors
static void SmoothStep(const Vector3& start, const Vector3& end, float amount, Vector3& result)
{
amount = Math::SmoothStep(amount);
Lerp(start, end, amount, result);
}
// Performs a Hermite spline interpolation.
// @param value1 First source position vector
// @param tangent1 First source tangent vector
// @param value2 Second source position vector
// @param tangent2 Second source tangent vector
// @param amount Weighting factor,
// @param result When the method completes, contains the result of the Hermite spline interpolation,
static void Hermite(const Vector3& value1, const Vector3& tangent1, const Vector3& value2, const Vector3& tangent2, float amount, Vector3& result);
// Returns the reflection of a vector off a surface that has the specified normal
// @param vector The source vector
// @param normal Normal of the surface
// @param result When the method completes, contains the reflected vector
static void Reflect(const Vector3& vector, const Vector3& normal, Vector3& result);
// Transforms a 3D vector by the given Quaternion rotation
// @param vector The vector to rotate
// @param rotation The Quaternion rotation to apply
// @param result When the method completes, contains the transformed Vector4
static void Transform(const Vector3& vector, const Quaternion& rotation, Vector3& result);
// Transforms a 3D vector by the given Quaternion rotation
// @param vector The vector to rotate
// @param rotation The Quaternion rotation to apply
// @returns The transformed Vector4
static Vector3 Transform(const Vector3& vector, const Quaternion& rotation);
// Transforms a 3D vector by the given matrix
// @param vector The source vector
// @param transform The transformation matrix
// @param result When the method completes, contains the transformed Vector3
static void Transform(const Vector3& vector, const Matrix& transform, Vector3& result);
// Transforms a 3D vectors by the given matrix
// @param vectors The source vectors
// @param transform The transformation matrix
// @param results When the method completes, contains the transformed Vector3s
// @param vectorsCount Amount of vectors to transform
static void Transform(const Vector3* vectors, const Matrix& transform, Vector3* results, int32 vectorsCount);
// Transforms a 3D vector by the given matrix
// @param vector The source vector
// @param transform The transformation matrix
// @returns Transformed Vector3
static Vector3 Transform(const Vector3& vector, const Matrix& transform);
// Transforms a 3D vector by the given matrix
// @param vector The source vector
// @param transform The transformation matrix
// @param result When the method completes, contains the transformed Vector4
static void Transform(const Vector3& vector, const Matrix& transform, Vector4& result);
// Performs a coordinate transformation using the given matrix
// @param coordinate The coordinate vector to transform
// @param transform The transformation matrix
// @param result When the method completes, contains the transformed coordinates
static void TransformCoordinate(const Vector3& coordinate, const Matrix& transform, Vector3& result);
// Performs a normal transformation using the given matrix
// @param normal The normal vector to transform
// @param transform The transformation matrix
// @param result When the method completes, contains the transformed normal
static void TransformNormal(const Vector3& normal, const Matrix& transform, Vector3& result);
// Returns a vector containing the largest components of the specified vectors
// @param a The first source vector
// @param b The second source vector
// @param result When the method completes, contains an new vector composed of the largest components of the source vectors
static Vector3 Max(const Vector3& a, const Vector3& b)
{
return Vector3(a.X > b.X ? a.X : b.X, a.Y > b.Y ? a.Y : b.Y, a.Z > b.Z ? a.Z : b.Z);
}
// Returns a vector containing the smallest components of the specified vectors
// @param a The first source vector
// @param b The second source vector
// @param result When the method completes, contains an new vector composed of the smallest components of the source vectors
static Vector3 Min(const Vector3& a, const Vector3& b)
{
return Vector3(a.X < b.X ? a.X : b.X, a.Y < b.Y ? a.Y : b.Y, a.Z < b.Z ? a.Z : b.Z);
}
// Returns a vector containing the largest components of the specified vectors
// @param a The first source vector
// @param b The second source vector
// @param result When the method completes, contains an new vector composed of the largest components of the source vectors
static void Max(const Vector3& a, const Vector3& b, Vector3& result)
{
result = Vector3(a.X > b.X ? a.X : b.X, a.Y > b.Y ? a.Y : b.Y, a.Z > b.Z ? a.Z : b.Z);
}
// Returns a vector containing the smallest components of the specified vectors
// @param a The first source vector
// @param b The second source vector
// @param result When the method completes, contains an new vector composed of the smallest components of the source vectors
static void Min(const Vector3& a, const Vector3& b, Vector3& result)
{
result = Vector3(a.X < b.X ? a.X : b.X, a.Y < b.Y ? a.Y : b.Y, a.Z < b.Z ? a.Z : b.Z);
}
/// <summary>
/// Projects a vector onto another vector.
/// </summary>
/// <param name="vector">The vector to project.</param>
/// <param name="onNormal">The projection normal vector.</param>
/// <returns>The projected vector.</returns>
static Vector3 Project(const Vector3& vector, const Vector3& onNormal);
/// <summary>
/// Projects a vector onto a plane defined by a normal orthogonal to the plane.
/// </summary>
/// <param name="vector">The vector to project.</param>
/// <param name="planeNormal">The plane normal vector.</param>
/// <returns>The projected vector.</returns>
static Vector3 ProjectOnPlane(const Vector3& vector, const Vector3& planeNormal)
{
return vector - Project(vector, planeNormal);
}
// Projects a 3D vector from object space into screen space
// @param vector The vector to project
// @param x The X position of the viewport
// @param y The Y position of the viewport
// @param width The width of the viewport
// @param height The height of the viewport
// @param minZ The minimum depth of the viewport
// @param maxZ The maximum depth of the viewport
// @param worldViewProjection The combined world-view-projection matrix
// @param result When the method completes, contains the vector in screen space
static void Project(const Vector3& vector, float x, float y, float width, float height, float minZ, float maxZ, const Matrix& worldViewProjection, Vector3& result);
// Projects a 3D vector from object space into screen space
// @param vector The vector to project
// @param x The X position of the viewport
// @param y The Y position of the viewport
// @param width The width of the viewport
// @param height The height of the viewport
// @param minZ The minimum depth of the viewport
// @param maxZ The maximum depth of the viewport
// @param worldViewProjection The combined world-view-projection matrix
// @returns The vector in screen space
static Vector3 Project(const Vector3& vector, float x, float y, float width, float height, float minZ, float maxZ, const Matrix& worldViewProjection)
{
Vector3 result;
Project(vector, x, y, width, height, minZ, maxZ, worldViewProjection, result);
return result;
}
// Projects a 3D vector from screen space into object space
// @param vector The vector to project
// @param x The X position of the viewport
// @param y The Y position of the viewport
// @param width The width of the viewport
// @param height The height of the viewport
// @param minZ The minimum depth of the viewport
// @param maxZ The maximum depth of the viewport
// @param worldViewProjection The combined world-view-projection matrix
// @param result When the method completes, contains the vector in object space
static void Unproject(const Vector3& vector, float x, float y, float width, float height, float minZ, float maxZ, const Matrix& worldViewProjection, Vector3& result);
// Projects a 3D vector from screen space into object space
// @param vector The vector to project
// @param x The X position of the viewport
// @param y The Y position of the viewport
// @param width The width of the viewport
// @param height The height of the viewport
// @param minZ The minimum depth of the viewport
// @param maxZ The maximum depth of the viewport
// @param worldViewProjection The combined world-view-projection matrix
// @returns The vector in object space
static Vector3 Unproject(const Vector3& vector, float x, float y, float width, float height, float minZ, float maxZ, const Matrix& worldViewProjection)
{
Vector3 result;
Unproject(vector, x, y, width, height, minZ, maxZ, worldViewProjection, result);
return result;
}
/// <summary>
/// Creates an orthonormal basis from a basis with at least two orthogonal vectors.
/// </summary>
/// <param name="xAxis">The X axis.</param>
/// <param name="yAxis">The y axis.</param>
/// <param name="zAxis">The z axis.</param>
static void CreateOrthonormalBasis(Vector3& xAxis, Vector3& yAxis, Vector3& zAxis);
/// <summary>
/// Finds the best arbitrary axis vectors to represent U and V axes of a plane, by using this vector as the normal of the plane.
/// </summary>
/// <param name="firstAxis">The reference to first axis.</param>
/// <param name="secondAxis">The reference to second axis.</param>
void FindBestAxisVectors(Vector3& firstAxis, Vector3& secondAxis) const;
static Vector3 Round(const Vector3& v)
{
return Vector3(
Math::Round(v.X),
Math::Round(v.Y),
Math::Round(v.Z)
);
}
static Vector3 Ceil(const Vector3& v)
{
return Vector3(
Math::Ceil(v.X),
Math::Ceil(v.Y),
Math::Ceil(v.Z)
);
}
static Vector3 Abs(const Vector3& v)
{
return Vector3(Math::Abs(v.X), Math::Abs(v.Y), Math::Abs(v.Z));
}
/// <summary>
/// Calculates the area of the triangle.
/// </summary>
/// <param name="v0">The first triangle vertex.</param>
/// <param name="v1">The second triangle vertex.</param>
/// <param name="v2">The third triangle vertex.</param>
/// <returns>The triangle area.</returns>
static float TriangleArea(const Vector3& v0, const Vector3& v1, const Vector3& v2);
/// <summary>
/// Calculates the angle (in radians) between from and to. This is always the smallest value.
/// </summary>
/// <param name="from">The first vector.</param>
/// <param name="to">The second vector.</param>
/// <returns>The angle (in radians).</returns>
static float Angle(const Vector3& from, const Vector3& to);
};
inline Vector3 operator+(float a, const Vector3& b)
{
return b + a;
}
inline Vector3 operator-(float a, const Vector3& b)
{
return Vector3(a) - b;
}
inline Vector3 operator*(float a, const Vector3& b)
{
return b * a;
}
inline Vector3 operator/(float a, const Vector3& b)
{
return Vector3(a) / b;
}
namespace Math
{
FORCE_INLINE static bool NearEqual(const Vector3& a, const Vector3& b)
{
return Vector3::NearEqual(a, b);
}
}
template<>
struct TIsPODType<Vector3>
{
enum { Value = true };
};
DEFINE_DEFAULT_FORMATTING(Vector3, "X:{0} Y:{1} Z:{2}", v.X, v.Y, v.Z);