Files
FlaxEngine/Source/Engine/Navigation/Navigation.cpp
2021-01-05 14:14:34 +01:00

357 lines
9.4 KiB
C++

// Copyright (c) 2012-2021 Wojciech Figat. All rights reserved.
#include "Navigation.h"
#include "NavigationSettings.h"
#include "NavMeshRuntime.h"
#include "NavMeshBuilder.h"
#include "Engine/Core/Config/GameSettings.h"
#include "Engine/Content/Content.h"
#include "Engine/Content/JsonAsset.h"
#include "Engine/Threading/Threading.h"
#include "Engine/Level/Scene/Scene.h"
#include "Engine/Engine/EngineService.h"
#include "Engine/Profiler/ProfilerCPU.h"
#include <ThirdParty/recastnavigation/RecastAlloc.h>
#include <ThirdParty/recastnavigation/DetourNavMesh.h>
#include <ThirdParty/recastnavigation/DetourNavMeshQuery.h>
#define DEFAULT_NAV_QUERY_EXTENT_HORIZONTAL 50.0f
#define DEFAULT_NAV_QUERY_EXTENT_VERTICAL 250.0f
namespace
{
NavMeshRuntime* _navMesh;
}
NavMeshRuntime* NavMeshRuntime::Get()
{
return ::_navMesh;
}
class NavigationService : public EngineService
{
public:
NavigationService()
: EngineService(TEXT("Navigation"), 60)
{
#if COMPILE_WITH_NAV_MESH_BUILDER
NavMeshBuilder::Init();
#endif
}
bool Init() override;
#if COMPILE_WITH_NAV_MESH_BUILDER
void Update() override;
#endif
void Dispose() override;
};
NavigationService NavigationServiceInstance;
void* dtAllocDefault(size_t size, dtAllocHint)
{
return Allocator::Allocate(size);
}
void* rcAllocDefault(size_t size, rcAllocHint)
{
return Allocator::Allocate(size);
}
IMPLEMENT_SETTINGS_GETTER(NavigationSettings, Navigation);
bool NavigationService::Init()
{
// Link memory allocation calls to use engine default allocator
dtAllocSetCustom(dtAllocDefault, Allocator::Free);
rcAllocSetCustom(rcAllocDefault, Allocator::Free);
// Create global nav mesh
_navMesh = New<NavMeshRuntime>();
return false;
}
#if COMPILE_WITH_NAV_MESH_BUILDER
void NavigationService::Update()
{
NavMeshBuilder::Update();
}
#endif
void NavigationService::Dispose()
{
if (_navMesh)
{
_navMesh->Dispose();
Delete(_navMesh);
_navMesh = nullptr;
}
}
bool Navigation::FindDistanceToWall(const Vector3& startPosition, NavMeshHit& hitInfo, float maxDistance)
{
ScopeLock lock(_navMesh->Locker);
const auto query = _navMesh->GetNavMeshQuery();
if (!query)
{
return false;
}
dtQueryFilter filter;
Vector3 extent(DEFAULT_NAV_QUERY_EXTENT_HORIZONTAL, DEFAULT_NAV_QUERY_EXTENT_VERTICAL, DEFAULT_NAV_QUERY_EXTENT_HORIZONTAL);
dtPolyRef startPoly = 0;
query->findNearestPoly(&startPosition.X, &extent.X, &filter, &startPoly, nullptr);
if (!startPoly)
{
return false;
}
return dtStatusSucceed(_navMesh->GetNavMeshQuery()->findDistanceToWall(startPoly, &startPosition.X, maxDistance, &filter, &hitInfo.Distance, &hitInfo.Position.X, &hitInfo.Normal.X));
}
bool Navigation::FindPath(const Vector3& startPosition, const Vector3& endPosition, Array<Vector3, HeapAllocation>& resultPath)
{
resultPath.Clear();
ScopeLock lock(_navMesh->Locker);
const auto query = _navMesh->GetNavMeshQuery();
if (!query)
{
return false;
}
dtQueryFilter filter;
Vector3 extent(DEFAULT_NAV_QUERY_EXTENT_HORIZONTAL, DEFAULT_NAV_QUERY_EXTENT_VERTICAL, DEFAULT_NAV_QUERY_EXTENT_HORIZONTAL);
dtPolyRef startPoly = 0;
query->findNearestPoly(&startPosition.X, &extent.X, &filter, &startPoly, nullptr);
if (!startPoly)
{
return false;
}
dtPolyRef endPoly = 0;
query->findNearestPoly(&endPosition.X, &extent.X, &filter, &endPoly, nullptr);
if (!endPoly)
{
return false;
}
dtPolyRef path[NAV_MESH_PATH_MAX_SIZE];
int32 pathSize;
const auto findPathStatus = _navMesh->GetNavMeshQuery()->findPath(startPoly, endPoly, &startPosition.X, &endPosition.X, &filter, path, &pathSize, NAV_MESH_PATH_MAX_SIZE);
if (dtStatusFailed(findPathStatus))
{
return false;
}
// Check for special case, where path has not been found, and starting polygon was the one closest to the target
if (pathSize == 1 && dtStatusDetail(findPathStatus, DT_PARTIAL_RESULT))
{
// In this case we find a point on starting polygon, that's closest to destination and store it as path end
resultPath.Resize(2);
resultPath[0] = startPosition;
resultPath[1] = startPosition;
_navMesh->GetNavMeshQuery()->closestPointOnPolyBoundary(startPoly, &endPosition.X, &resultPath[1].X);
}
else
{
int straightPathCount = 0;
resultPath.EnsureCapacity(NAV_MESH_PATH_MAX_SIZE);
const auto findStraightPathStatus = _navMesh->GetNavMeshQuery()->findStraightPath(&startPosition.X, &endPosition.X, path, pathSize, (float*)resultPath.Get(), nullptr, nullptr, &straightPathCount, resultPath.Capacity(), DT_STRAIGHTPATH_AREA_CROSSINGS);
if (dtStatusFailed(findStraightPathStatus))
{
return false;
}
resultPath.Resize(straightPathCount);
}
return true;
}
bool Navigation::ProjectPoint(const Vector3& point, Vector3& result)
{
ScopeLock lock(_navMesh->Locker);
const auto query = _navMesh->GetNavMeshQuery();
if (!query)
{
return false;
}
dtQueryFilter filter;
Vector3 extent(DEFAULT_NAV_QUERY_EXTENT_HORIZONTAL, DEFAULT_NAV_QUERY_EXTENT_VERTICAL, DEFAULT_NAV_QUERY_EXTENT_HORIZONTAL);
dtPolyRef startPoly = 0;
query->findNearestPoly(&point.X, &extent.X, &filter, &startPoly, &result.X);
if (!startPoly)
{
return false;
}
return true;
}
bool Navigation::RayCast(const Vector3& startPosition, const Vector3& endPosition, NavMeshHit& hitInfo)
{
ScopeLock lock(_navMesh->Locker);
const auto query = _navMesh->GetNavMeshQuery();
if (!query)
{
return false;
}
dtQueryFilter filter;
Vector3 extent(DEFAULT_NAV_QUERY_EXTENT_HORIZONTAL, DEFAULT_NAV_QUERY_EXTENT_VERTICAL, DEFAULT_NAV_QUERY_EXTENT_HORIZONTAL);
dtPolyRef startPoly = 0;
query->findNearestPoly(&startPosition.X, &extent.X, &filter, &startPoly, nullptr);
if (!startPoly)
{
return false;
}
dtRaycastHit hit;
hit.path = nullptr;
hit.maxPath = 0;
const bool result = dtStatusSucceed(_navMesh->GetNavMeshQuery()->raycast(startPoly, &startPosition.X, &endPosition.X, &filter, 0, &hit));
if (hit.t >= MAX_float)
{
hitInfo.Position = endPosition;
hitInfo.Distance = 0;
}
else
{
hitInfo.Position = startPosition + (endPosition - startPosition) * hit.t;
hitInfo.Distance = hit.t;
}
hitInfo.Normal = *(Vector3*)&hit.hitNormal;
return result;
}
#if COMPILE_WITH_NAV_MESH_BUILDER
bool Navigation::IsBuildingNavMesh()
{
return NavMeshBuilder::IsBuildingNavMesh();
}
float Navigation::GetNavMeshBuildingProgress()
{
return NavMeshBuilder::GetNavMeshBuildingProgress();
}
void Navigation::BuildNavMesh(Scene* scene, float timeoutMs)
{
NavMeshBuilder::Build(scene, timeoutMs);
}
void Navigation::BuildNavMesh(Scene* scene, const BoundingBox& dirtyBounds, float timeoutMs)
{
NavMeshBuilder::Build(scene, dirtyBounds, timeoutMs);
}
#endif
#if USE_EDITOR
#include "Engine/Debug/DebugDraw.h"
void DrawPoly(const dtMeshTile& tile, const dtPoly& poly)
{
const unsigned int ip = (unsigned int)(&poly - tile.polys);
const dtPolyDetail& pd = tile.detailMeshes[ip];
const float DrawOffsetY = 20.0f;
for (int i = 0; i < pd.triCount; i++)
{
Vector3 v[3];
const unsigned char* t = &tile.detailTris[(pd.triBase + i) * 4];
for (int k = 0; k < 3; k++)
{
if (t[k] < poly.vertCount)
{
v[k] = *(Vector3*)&tile.verts[poly.verts[t[k]] * 3];
}
else
{
v[k] = *(Vector3*)&tile.detailVerts[(pd.vertBase + t[k] - poly.vertCount) * 3];
}
}
v[0].Y += DrawOffsetY;
v[1].Y += DrawOffsetY;
v[2].Y += DrawOffsetY;
DEBUG_DRAW_TRIANGLE(v[0], v[1], v[2], Color::Green * 0.5f, 0, true);
}
for (int k = 0; k < pd.triCount; k++)
{
const unsigned char* t = &tile.detailTris[(pd.triBase + k) * 4];
Vector3 v[3];
for (int m = 0; m < 3; m++)
{
if (t[m] < poly.vertCount)
v[m] = *(Vector3*)&tile.verts[poly.verts[t[m]] * 3];
else
v[m] = *(Vector3*)&tile.detailVerts[(pd.vertBase + (t[m] - poly.vertCount)) * 3];
}
v[0].Y += DrawOffsetY;
v[1].Y += DrawOffsetY;
v[2].Y += DrawOffsetY;
for (int m = 0, n = 2; m < 3; n = m++)
{
// Skip inner detail edges
if (((t[3] >> (n * 2)) & 0x3) == 0)
continue;
DEBUG_DRAW_LINE(v[n], v[m], Color::YellowGreen, 0, true);
}
}
}
void Navigation::DrawNavMesh()
{
if (!_navMesh)
return;
ScopeLock lock(_navMesh->Locker);
const dtNavMesh* dtNavMesh = _navMesh->GetNavMesh();
const int tilesCount = dtNavMesh ? dtNavMesh->getMaxTiles() : 0;
if (tilesCount == 0)
return;
for (int tileIndex = 0; tileIndex < tilesCount; tileIndex++)
{
const dtMeshTile* tile = dtNavMesh->getTile(tileIndex);
if (!tile->header)
continue;
//DebugDraw::DrawWireBox(*(BoundingBox*)&tile->header->bmin[0], Color::CadetBlue);
for (int i = 0; i < tile->header->polyCount; i++)
{
const dtPoly* poly = &tile->polys[i];
if (poly->getType() != DT_POLYTYPE_GROUND)
continue;
DrawPoly(*tile, *poly);
}
}
}
#endif