Files
FlaxEngine/Content/Editor/MaterialTemplates/SurfaceForward.shader
Wojtek Figat 05790ab9a1 Fix code style
2020-12-30 22:56:17 +01:00

1012 lines
31 KiB
GLSL

// File generated by Flax Materials Editor
// Version: @0
#define MATERIAL 1
#define MAX_LOCAL_LIGHTS 4
@3
#include "./Flax/Common.hlsl"
#include "./Flax/MaterialCommon.hlsl"
#include "./Flax/GBufferCommon.hlsl"
#include "./Flax/LightingCommon.hlsl"
#if USE_REFLECTIONS
#include "./Flax/ReflectionsCommon.hlsl"
#endif
#include "./Flax/Lighting.hlsl"
#include "./Flax/ShadowsSampling.hlsl"
#include "./Flax/ExponentialHeightFog.hlsl"
@7
// Primary constant buffer (with additional material parameters)
META_CB_BEGIN(0, Data)
float4x4 ViewProjectionMatrix;
float4x4 WorldMatrix;
float4x4 ViewMatrix;
float4x4 PrevViewProjectionMatrix;
float4x4 PrevWorldMatrix;
float3 ViewPos;
float ViewFar;
float3 ViewDir;
float TimeParam;
float4 ViewInfo;
float4 ScreenSize;
float4 LightmapArea;
float3 WorldInvScale;
float WorldDeterminantSign;
float2 Dummy0;
float LODDitherFactor;
float PerInstanceRandom;
float3 GeometrySize;
float Dummy1;
@1META_CB_END
// Secondary constantant buffer (for lighting)
META_CB_BEGIN(1, LightingData)
LightData DirectionalLight;
LightShadowData DirectionalLightShadow;
LightData SkyLight;
ProbeData EnvironmentProbe;
ExponentialHeightFogData ExponentialHeightFog;
float3 Dummy2;
uint LocalLightsCount;
LightData LocalLights[MAX_LOCAL_LIGHTS];
META_CB_END
DECLARE_LIGHTSHADOWDATA_ACCESS(DirectionalLightShadow);
// Shader resources
TextureCube EnvProbe : register(t0);
TextureCube SkyLightTexture : register(t1);
Texture2DArray DirectionalLightShadowMap : register(t2);
@2
// Interpolants passed from the vertex shader
struct VertexOutput
{
float4 Position : SV_Position;
float3 WorldPosition : TEXCOORD0;
float2 TexCoord : TEXCOORD1;
float2 LightmapUV : TEXCOORD2;
#if USE_VERTEX_COLOR
half4 VertexColor : COLOR;
#endif
float3x3 TBN : TEXCOORD3;
#if USE_CUSTOM_VERTEX_INTERPOLATORS
float4 CustomVSToPS[CUSTOM_VERTEX_INTERPOLATORS_COUNT] : TEXCOORD9;
#endif
float3 InstanceOrigin : TEXCOORD6;
float2 InstanceParams : TEXCOORD7; // x-PerInstanceRandom, y-LODDitherFactor
#if USE_TESSELLATION
float TessellationMultiplier : TESS;
#endif
};
// Interpolants passed to the pixel shader
struct PixelInput
{
float4 Position : SV_Position;
float3 WorldPosition : TEXCOORD0;
float2 TexCoord : TEXCOORD1;
float2 LightmapUV : TEXCOORD2;
#if USE_VERTEX_COLOR
half4 VertexColor : COLOR;
#endif
float3x3 TBN : TEXCOORD3;
#if USE_CUSTOM_VERTEX_INTERPOLATORS
float4 CustomVSToPS[CUSTOM_VERTEX_INTERPOLATORS_COUNT] : TEXCOORD9;
#endif
float3 InstanceOrigin : TEXCOORD6;
float2 InstanceParams : TEXCOORD7; // x-PerInstanceRandom, y-LODDitherFactor
bool IsFrontFace : SV_IsFrontFace;
};
// Material properties generation input
struct MaterialInput
{
float3 WorldPosition;
float TwoSidedSign;
float2 TexCoord;
#if USE_LIGHTMAP
float2 LightmapUV;
#endif
#if USE_VERTEX_COLOR
half4 VertexColor;
#endif
float3x3 TBN;
float4 SvPosition;
float3 PreSkinnedPosition;
float3 PreSkinnedNormal;
float3 InstanceOrigin;
float2 InstanceParams;
#if USE_INSTANCING
float3 InstanceTransform1;
float3 InstanceTransform2;
float3 InstanceTransform3;
#endif
#if USE_CUSTOM_VERTEX_INTERPOLATORS
float4 CustomVSToPS[CUSTOM_VERTEX_INTERPOLATORS_COUNT];
#endif
};
MaterialInput GetMaterialInput(ModelInput input, VertexOutput output, float3 localNormal)
{
MaterialInput result = (MaterialInput)0;
result.WorldPosition = output.WorldPosition;
result.TexCoord = output.TexCoord;
#if USE_LIGHTMAP
result.LightmapUV = output.LightmapUV;
#endif
#if USE_VERTEX_COLOR
result.VertexColor = output.VertexColor;
#endif
result.TBN = output.TBN;
result.TwoSidedSign = WorldDeterminantSign;
result.SvPosition = output.Position;
result.PreSkinnedPosition = input.Position.xyz;
result.PreSkinnedNormal = localNormal;
#if USE_INSTANCING
result.InstanceOrigin = input.InstanceOrigin.xyz;
result.InstanceParams = float2(input.InstanceOrigin.w, input.InstanceTransform1.w);
result.InstanceTransform1 = input.InstanceTransform1.xyz;
result.InstanceTransform2 = input.InstanceTransform2.xyz;
result.InstanceTransform3 = input.InstanceTransform3.xyz;
#else
result.InstanceOrigin = WorldMatrix[3].xyz;
result.InstanceParams = float2(PerInstanceRandom, LODDitherFactor);
#endif
return result;
}
MaterialInput GetMaterialInput(VertexOutput output, float3 localPosition, float3 localNormal)
{
MaterialInput result = (MaterialInput)0;
result.WorldPosition = output.WorldPosition;
result.TexCoord = output.TexCoord;
#if USE_LIGHTMAP
result.LightmapUV = output.LightmapUV;
#endif
#if USE_VERTEX_COLOR
result.VertexColor = output.VertexColor;
#endif
result.TBN = output.TBN;
result.TwoSidedSign = WorldDeterminantSign;
result.InstanceOrigin = WorldMatrix[3].xyz;
result.InstanceParams = float2(PerInstanceRandom, LODDitherFactor);
result.SvPosition = output.Position;
result.PreSkinnedPosition = localPosition;
result.PreSkinnedNormal = localNormal;
return result;
}
MaterialInput GetMaterialInput(PixelInput input)
{
MaterialInput result = (MaterialInput)0;
result.WorldPosition = input.WorldPosition;
result.TexCoord = input.TexCoord;
#if USE_LIGHTMAP
result.LightmapUV = input.LightmapUV;
#endif
#if USE_VERTEX_COLOR
result.VertexColor = input.VertexColor;
#endif
result.TBN = input.TBN;
result.TwoSidedSign = WorldDeterminantSign * (input.IsFrontFace ? 1.0 : -1.0);
result.InstanceOrigin = input.InstanceOrigin;
result.InstanceParams = input.InstanceParams;
result.SvPosition = input.Position;
#if USE_CUSTOM_VERTEX_INTERPOLATORS
result.CustomVSToPS = input.CustomVSToPS;
#endif
return result;
}
#if USE_INSTANCING
#define INSTANCE_TRANS_WORLD float4x4(float4(input.InstanceTransform1.xyz, 0.0f), float4(input.InstanceTransform2.xyz, 0.0f), float4(input.InstanceTransform3.xyz, 0.0f), float4(input.InstanceOrigin.xyz, 1.0f))
#else
#define INSTANCE_TRANS_WORLD WorldMatrix
#endif
// Gets the local to world transform matrix (supports instancing)
float4x4 GetInstanceTransform(ModelInput input)
{
return INSTANCE_TRANS_WORLD;
}
float4x4 GetInstanceTransform(ModelInput_Skinned input)
{
return INSTANCE_TRANS_WORLD;
}
float4x4 GetInstanceTransform(MaterialInput input)
{
return INSTANCE_TRANS_WORLD;
}
// Removes the scale vector from the local to world transformation matrix (supports instancing)
float3x3 RemoveScaleFromLocalToWorld(float3x3 localToWorld)
{
#if USE_INSTANCING
// Extract per axis scales from localToWorld transform
float scaleX = length(localToWorld[0]);
float scaleY = length(localToWorld[1]);
float scaleZ = length(localToWorld[2]);
float3 invScale = float3(
scaleX > 0.00001f ? 1.0f / scaleX : 0.0f,
scaleY > 0.00001f ? 1.0f / scaleY : 0.0f,
scaleZ > 0.00001f ? 1.0f / scaleZ : 0.0f);
#else
float3 invScale = WorldInvScale;
#endif
localToWorld[0] *= invScale.x;
localToWorld[1] *= invScale.y;
localToWorld[2] *= invScale.z;
return localToWorld;
}
// Transforms a vector from tangent space to world space
float3 TransformTangentVectorToWorld(MaterialInput input, float3 tangentVector)
{
return mul(tangentVector, input.TBN);
}
// Transforms a vector from world space to tangent space
float3 TransformWorldVectorToTangent(MaterialInput input, float3 worldVector)
{
return mul(input.TBN, worldVector);
}
// Transforms a vector from world space to view space
float3 TransformWorldVectorToView(MaterialInput input, float3 worldVector)
{
return mul(worldVector, (float3x3)ViewMatrix);
}
// Transforms a vector from view space to world space
float3 TransformViewVectorToWorld(MaterialInput input, float3 viewVector)
{
return mul((float3x3)ViewMatrix, viewVector);
}
// Transforms a vector from local space to world space
float3 TransformLocalVectorToWorld(MaterialInput input, float3 localVector)
{
float3x3 localToWorld = (float3x3)GetInstanceTransform(input);
//localToWorld = RemoveScaleFromLocalToWorld(localToWorld);
return mul(localVector, localToWorld);
}
// Transforms a vector from local space to world space
float3 TransformWorldVectorToLocal(MaterialInput input, float3 worldVector)
{
float3x3 localToWorld = (float3x3)GetInstanceTransform(input);
//localToWorld = RemoveScaleFromLocalToWorld(localToWorld);
return mul(localToWorld, worldVector);
}
// Gets the current object position (supports instancing)
float3 GetObjectPosition(MaterialInput input)
{
return input.InstanceOrigin.xyz;
}
// Gets the current object size (supports instancing)
float3 GetObjectSize(MaterialInput input)
{
float4x4 world = GetInstanceTransform(input);
return GeometrySize * float3(world._m00, world._m11, world._m22);
}
// Get the current object random value (supports instancing)
float GetPerInstanceRandom(MaterialInput input)
{
return input.InstanceParams.x;
}
// Get the current object LOD transition dither factor (supports instancing)
float GetLODDitherFactor(MaterialInput input)
{
#if USE_DITHERED_LOD_TRANSITION
return input.InstanceParams.y;
#else
return 0;
#endif
}
// Gets the interpolated vertex color (in linear space)
float4 GetVertexColor(MaterialInput input)
{
#if USE_VERTEX_COLOR
return input.VertexColor;
#else
return 1;
#endif
}
// Get material properties function (for vertex shader)
Material GetMaterialVS(MaterialInput input)
{
@5
}
// Get material properties function (for domain shader)
Material GetMaterialDS(MaterialInput input)
{
@6
}
// Get material properties function (for pixel shader)
Material GetMaterialPS(MaterialInput input)
{
@4
}
// Fix line for errors/warnings for shader code from template
#line 1000
// Calculates the transform matrix from mesh tangent space to local space
half3x3 CalcTangentToLocal(ModelInput input)
{
float bitangentSign = input.Tangent.w ? -1.0f : +1.0f;
float3 normal = input.Normal.xyz * 2.0 - 1.0;
float3 tangent = input.Tangent.xyz * 2.0 - 1.0;
float3 bitangent = cross(normal, tangent) * bitangentSign;
return float3x3(tangent, bitangent, normal);
}
half3x3 CalcTangentToWorld(in float4x4 world, in half3x3 tangentToLocal)
{
half3x3 localToWorld = RemoveScaleFromLocalToWorld((float3x3)world);
return mul(tangentToLocal, localToWorld);
}
// Vertex Shader function for Forward/Depth Pass
META_VS(IS_SURFACE, FEATURE_LEVEL_ES2)
META_PERMUTATION_1(USE_INSTANCING=0)
META_PERMUTATION_1(USE_INSTANCING=1)
META_VS_IN_ELEMENT(POSITION, 0, R32G32B32_FLOAT, 0, 0, PER_VERTEX, 0, true)
META_VS_IN_ELEMENT(TEXCOORD, 0, R16G16_FLOAT, 1, 0, PER_VERTEX, 0, true)
META_VS_IN_ELEMENT(NORMAL, 0, R10G10B10A2_UNORM, 1, ALIGN, PER_VERTEX, 0, true)
META_VS_IN_ELEMENT(TANGENT, 0, R10G10B10A2_UNORM, 1, ALIGN, PER_VERTEX, 0, true)
META_VS_IN_ELEMENT(TEXCOORD, 1, R16G16_FLOAT, 1, ALIGN, PER_VERTEX, 0, true)
META_VS_IN_ELEMENT(COLOR, 0, R8G8B8A8_UNORM, 2, 0, PER_VERTEX, 0, USE_VERTEX_COLOR)
META_VS_IN_ELEMENT(ATTRIBUTE,0, R32G32B32A32_FLOAT,3, 0, PER_INSTANCE, 1, USE_INSTANCING)
META_VS_IN_ELEMENT(ATTRIBUTE,1, R32G32B32A32_FLOAT,3, ALIGN, PER_INSTANCE, 1, USE_INSTANCING)
META_VS_IN_ELEMENT(ATTRIBUTE,2, R32G32B32_FLOAT, 3, ALIGN, PER_INSTANCE, 1, USE_INSTANCING)
META_VS_IN_ELEMENT(ATTRIBUTE,3, R32G32B32_FLOAT, 3, ALIGN, PER_INSTANCE, 1, USE_INSTANCING)
META_VS_IN_ELEMENT(ATTRIBUTE,4, R16G16B16A16_FLOAT,3, ALIGN, PER_INSTANCE, 1, USE_INSTANCING)
VertexOutput VS(ModelInput input)
{
VertexOutput output;
// Compute world space vertex position
float4x4 world = GetInstanceTransform(input);
output.WorldPosition = mul(float4(input.Position.xyz, 1), world).xyz;
// Compute clip space position
output.Position = mul(float4(output.WorldPosition.xyz, 1), ViewProjectionMatrix);
// Pass vertex attributes
output.TexCoord = input.TexCoord;
#if USE_VERTEX_COLOR
output.VertexColor = input.Color;
#endif
#if USE_INSTANCING
output.LightmapUV = input.LightmapUV * input.InstanceLightmapArea.zw + input.InstanceLightmapArea.xy;
output.InstanceOrigin = world[3].xyz;
output.InstanceParams = float2(input.InstanceOrigin.w, input.InstanceTransform1.w);
#else
output.LightmapUV = input.LightmapUV * LightmapArea.zw + LightmapArea.xy;
output.InstanceOrigin = WorldMatrix[3].xyz;
output.InstanceParams = float2(PerInstanceRandom, LODDitherFactor);
#endif
// Calculate tanget space to world space transformation matrix for unit vectors
half3x3 tangentToLocal = CalcTangentToLocal(input);
half3x3 tangentToWorld = CalcTangentToWorld(world, tangentToLocal);
output.TBN = tangentToWorld;
// Get material input params if need to evaluate any material property
#if USE_POSITION_OFFSET || USE_TESSELLATION || USE_CUSTOM_VERTEX_INTERPOLATORS
MaterialInput materialInput = GetMaterialInput(input, output, tangentToLocal[2].xyz);
Material material = GetMaterialVS(materialInput);
#endif
// Apply world position offset per-vertex
#if USE_POSITION_OFFSET
output.WorldPosition += material.PositionOffset;
output.Position = mul(float4(output.WorldPosition.xyz, 1), ViewProjectionMatrix);
#endif
// Get tessalation multiplier (per vertex)
#if USE_TESSELLATION
output.TessellationMultiplier = material.TessellationMultiplier;
#endif
// Copy interpolants for other shader stages
#if USE_CUSTOM_VERTEX_INTERPOLATORS
output.CustomVSToPS = material.CustomVSToPS;
#endif
return output;
}
#if USE_SKINNING
// The skeletal bones matrix buffer (stored as 4x3, 3 float4 behind each other)
Buffer<float4> BoneMatrices : register(t0);
#if PER_BONE_MOTION_BLUR
// The skeletal bones matrix buffer from the previous frame
Buffer<float4> PrevBoneMatrices : register(t1);
float3x4 GetPrevBoneMatrix(int index)
{
float4 a = PrevBoneMatrices[index * 3];
float4 b = PrevBoneMatrices[index * 3 + 1];
float4 c = PrevBoneMatrices[index * 3 + 2];
return float3x4(a, b, c);
}
float3 SkinPrevPosition(ModelInput_Skinned input)
{
float4 position = float4(input.Position.xyz, 1);
float3x4 boneMatrix = input.BlendWeights.x * GetPrevBoneMatrix(input.BlendIndices.x);
boneMatrix += input.BlendWeights.y * GetPrevBoneMatrix(input.BlendIndices.y);
boneMatrix += input.BlendWeights.z * GetPrevBoneMatrix(input.BlendIndices.z);
boneMatrix += input.BlendWeights.w * GetPrevBoneMatrix(input.BlendIndices.w);
return mul(boneMatrix, position);
}
#endif
// Cached skinning data to avoid multiple calculation
struct SkinningData
{
float3x4 BlendMatrix;
};
// Calculates the transposed transform matrix for the given bone index
float3x4 GetBoneMatrix(int index)
{
float4 a = BoneMatrices[index * 3];
float4 b = BoneMatrices[index * 3 + 1];
float4 c = BoneMatrices[index * 3 + 2];
return float3x4(a, b, c);
}
// Calculates the transposed transform matrix for the given vertex (uses blending)
float3x4 GetBoneMatrix(ModelInput_Skinned input)
{
float3x4 boneMatrix = input.BlendWeights.x * GetBoneMatrix(input.BlendIndices.x);
boneMatrix += input.BlendWeights.y * GetBoneMatrix(input.BlendIndices.y);
boneMatrix += input.BlendWeights.z * GetBoneMatrix(input.BlendIndices.z);
boneMatrix += input.BlendWeights.w * GetBoneMatrix(input.BlendIndices.w);
return boneMatrix;
}
// Transforms the vertex position by weighted sum of the skinning matrices
float3 SkinPosition(ModelInput_Skinned input, SkinningData data)
{
float4 position = float4(input.Position.xyz, 1);
return mul(data.BlendMatrix, position);
}
// Transforms the vertex position by weighted sum of the skinning matrices
half3x3 SkinTangents(ModelInput_Skinned input, SkinningData data)
{
// Unpack vertex tangent frame
float bitangentSign = input.Tangent.w ? -1.0f : +1.0f;
float3 normal = input.Normal.xyz * 2.0 - 1.0;
float3 tangent = input.Tangent.xyz * 2.0 - 1.0;
// Apply skinning
tangent = mul(data.BlendMatrix, float4(tangent, 0));
normal = mul(data.BlendMatrix, float4(normal, 0));
float3 bitangent = cross(normal, tangent) * bitangentSign;
return half3x3(tangent, bitangent, normal);
}
// Vertex Shader function for Forward/Depth Pass (skinned mesh rendering)
META_VS(IS_SURFACE, FEATURE_LEVEL_ES2)
META_PERMUTATION_1(USE_SKINNING=1)
META_VS_IN_ELEMENT(POSITION, 0, R32G32B32_FLOAT, 0, 0, PER_VERTEX, 0, true)
META_VS_IN_ELEMENT(TEXCOORD, 0, R16G16_FLOAT, 0, ALIGN, PER_VERTEX, 0, true)
META_VS_IN_ELEMENT(NORMAL, 0, R10G10B10A2_UNORM, 0, ALIGN, PER_VERTEX, 0, true)
META_VS_IN_ELEMENT(TANGENT, 0, R10G10B10A2_UNORM, 0, ALIGN, PER_VERTEX, 0, true)
META_VS_IN_ELEMENT(BLENDINDICES, 0, R8G8B8A8_UINT, 0, ALIGN, PER_VERTEX, 0, true)
META_VS_IN_ELEMENT(BLENDWEIGHT, 0, R16G16B16A16_FLOAT,0, ALIGN, PER_VERTEX, 0, true)
VertexOutput VS_Skinned(ModelInput_Skinned input)
{
VertexOutput output;
// Perform skinning
SkinningData data;
data.BlendMatrix = GetBoneMatrix(input);
float3 position = SkinPosition(input, data);
half3x3 tangentToLocal = SkinTangents(input, data);
// Compute world space vertex position
float4x4 world = GetInstanceTransform(input);
output.WorldPosition = mul(float4(position, 1), world).xyz;
// Compute clip space position
output.Position = mul(float4(output.WorldPosition.xyz, 1), ViewProjectionMatrix);
// Pass vertex attributes
output.TexCoord = input.TexCoord;
#if USE_VERTEX_COLOR
output.VertexColor = float4(0, 0, 0, 1);
#endif
output.LightmapUV = float2(0, 0);
#if USE_INSTANCING
output.InstanceOrigin = world[3].xyz;
output.InstanceParams = float2(input.InstanceOrigin.w, input.InstanceTransform1.w);
#else
output.InstanceOrigin = WorldMatrix[3].xyz;
output.InstanceParams = float2(PerInstanceRandom, LODDitherFactor);
#endif
// Calculate tanget space to world space transformation matrix for unit vectors
half3x3 tangentToWorld = CalcTangentToWorld(world, tangentToLocal);
output.TBN = tangentToWorld;
// Get material input params if need to evaluate any material property
#if USE_POSITION_OFFSET || USE_TESSELLATION || USE_CUSTOM_VERTEX_INTERPOLATORS
MaterialInput materialInput = GetMaterialInput(output, input.Position.xyz, tangentToLocal[2].xyz);
Material material = GetMaterialVS(materialInput);
#endif
// Apply world position offset per-vertex
#if USE_POSITION_OFFSET
output.WorldPosition += material.PositionOffset;
output.Position = mul(float4(output.WorldPosition.xyz, 1), ViewProjectionMatrix);
#endif
// Get tessalation multiplier (per vertex)
#if USE_TESSELLATION
output.TessellationMultiplier = material.TessellationMultiplier;
#endif
// Copy interpolants for other shader stages
#if USE_CUSTOM_VERTEX_INTERPOLATORS
output.CustomVSToPS = material.CustomVSToPS;
#endif
return output;
}
#endif
#if USE_TESSELLATION
// Interpolants passed from the hull shader to the domain shader
struct TessalationHSToDS
{
float4 Position : SV_Position;
float3 WorldPosition : TEXCOORD0;
float2 TexCoord : TEXCOORD1;
float2 LightmapUV : TEXCOORD2;
#if USE_VERTEX_COLOR
half4 VertexColor : COLOR;
#endif
float3x3 TBN : TEXCOORD3;
#if USE_CUSTOM_VERTEX_INTERPOLATORS
float4 CustomVSToPS[CUSTOM_VERTEX_INTERPOLATORS_COUNT] : TEXCOORD9;
#endif
float3 InstanceOrigin : TEXCOORD6;
float2 InstanceParams : TEXCOORD7;
float TessellationMultiplier : TESS;
};
// Interpolants passed from the domain shader and to the pixel shader
struct TessalationDSToPS
{
float4 Position : SV_Position;
float3 WorldPosition : TEXCOORD0;
float2 TexCoord : TEXCOORD1;
float2 LightmapUV : TEXCOORD2;
#if USE_VERTEX_COLOR
half4 VertexColor : COLOR;
#endif
float3x3 TBN : TEXCOORD3;
#if USE_CUSTOM_VERTEX_INTERPOLATORS
float4 CustomVSToPS[CUSTOM_VERTEX_INTERPOLATORS_COUNT] : TEXCOORD9;
#endif
float3 InstanceOrigin : TEXCOORD6;
float2 InstanceParams : TEXCOORD7;
};
MaterialInput GetMaterialInput(TessalationDSToPS input)
{
MaterialInput result = (MaterialInput)0;
result.WorldPosition = input.WorldPosition;
result.TexCoord = input.TexCoord;
#if USE_LIGHTMAP
result.LightmapUV = input.LightmapUV;
#endif
#if USE_VERTEX_COLOR
result.VertexColor = input.VertexColor;
#endif
result.TBN = input.TBN;
result.TwoSidedSign = WorldDeterminantSign;
result.InstanceOrigin = input.InstanceOrigin;
result.InstanceParams = input.InstanceParams;
result.SvPosition = input.Position;
#if USE_CUSTOM_VERTEX_INTERPOLATORS
result.CustomVSToPS = input.CustomVSToPS;
#endif
return result;
}
struct TessalationPatch
{
float EdgeTessFactor[3] : SV_TessFactor;
float InsideTessFactor : SV_InsideTessFactor;
#if MATERIAL_TESSELLATION == MATERIAL_TESSELLATION_PN
float3 B210 : POSITION4;
float3 B120 : POSITION5;
float3 B021 : POSITION6;
float3 B012 : POSITION7;
float3 B102 : POSITION8;
float3 B201 : POSITION9;
float3 B111 : CENTER;
#endif
};
TessalationPatch HS_PatchConstant(InputPatch<VertexOutput, 3> input)
{
TessalationPatch output;
// Average tess factors along edges, and pick an edge tess factor for the interior tessellation
float4 tessellationMultipliers;
tessellationMultipliers.x = 0.5f * (input[1].TessellationMultiplier + input[2].TessellationMultiplier);
tessellationMultipliers.y = 0.5f * (input[2].TessellationMultiplier + input[0].TessellationMultiplier);
tessellationMultipliers.z = 0.5f * (input[0].TessellationMultiplier + input[1].TessellationMultiplier);
tessellationMultipliers.w = 0.333f * (input[0].TessellationMultiplier + input[1].TessellationMultiplier + input[2].TessellationMultiplier);
tessellationMultipliers = clamp(tessellationMultipliers, 1, MAX_TESSELLATION_FACTOR);
output.EdgeTessFactor[0] = tessellationMultipliers.x; // 1->2 edge
output.EdgeTessFactor[1] = tessellationMultipliers.y; // 2->0 edge
output.EdgeTessFactor[2] = tessellationMultipliers.z; // 0->1 edge
output.InsideTessFactor = tessellationMultipliers.w;
#if MATERIAL_TESSELLATION == MATERIAL_TESSELLATION_PN
// Calculate PN-Triangle coefficients
// Refer to Vlachos 2001 for the original formula
float3 p1 = input[0].WorldPosition;
float3 p2 = input[1].WorldPosition;
float3 p3 = input[2].WorldPosition;
float3 n1 = input[0].TBN[2];
float3 n2 = input[1].TBN[2];
float3 n3 = input[2].TBN[2];
// Calculate control points
output.B210 = (2.0f * p1 + p2 - dot((p2 - p1), n1) * n1) / 3.0f;
output.B120 = (2.0f * p2 + p1 - dot((p1 - p2), n2) * n2) / 3.0f;
output.B021 = (2.0f * p2 + p3 - dot((p3 - p2), n2) * n2) / 3.0f;
output.B012 = (2.0f * p3 + p2 - dot((p2 - p3), n3) * n3) / 3.0f;
output.B102 = (2.0f * p3 + p1 - dot((p1 - p3), n3) * n3) / 3.0f;
output.B201 = (2.0f * p1 + p3 - dot((p3 - p1), n1) * n1) / 3.0f;
float3 e = (output.B210 + output.B120 + output.B021 +
output.B012 + output.B102 + output.B201) / 6.0f;
float3 v = (p1 + p2 + p3) / 3.0f;
output.B111 = e + ((e - v) / 2.0f);
#endif
return output;
}
META_HS(USE_TESSELLATION, FEATURE_LEVEL_SM5)
META_HS_PATCH(TESSELLATION_IN_CONTROL_POINTS)
[domain("tri")]
[partitioning("fractional_odd")]
[outputtopology("triangle_cw")]
[maxtessfactor(MAX_TESSELLATION_FACTOR)]
[outputcontrolpoints(3)]
[patchconstantfunc("HS_PatchConstant")]
TessalationHSToDS HS(InputPatch<VertexOutput, TESSELLATION_IN_CONTROL_POINTS> input, uint ControlPointID : SV_OutputControlPointID)
{
TessalationHSToDS output;
// Pass through shader
#define COPY(thing) output.thing = input[ControlPointID].thing;
COPY(Position);
COPY(WorldPosition);
COPY(TexCoord);
COPY(LightmapUV);
#if USE_VERTEX_COLOR
COPY(VertexColor);
#endif
COPY(TBN);
COPY(InstanceOrigin);
COPY(InstanceParams);
COPY(TessellationMultiplier);
#if USE_CUSTOM_VERTEX_INTERPOLATORS
COPY(CustomVSToPS);
#endif
#undef COPY
return output;
}
#if MATERIAL_TESSELLATION == MATERIAL_TESSELLATION_PHONG
// Orthogonal projection on to plane
float3 ProjectOntoPlane(float3 planeNormal, float3 planePoint, float3 pointToProject)
{
return pointToProject - dot(pointToProject-planePoint, planeNormal) * planeNormal;
}
#endif
META_DS(USE_TESSELLATION, FEATURE_LEVEL_SM5)
[domain("tri")]
TessalationDSToPS DS(TessalationPatch constantData, float3 barycentricCoords : SV_DomainLocation, const OutputPatch<TessalationHSToDS, 3> input)
{
TessalationDSToPS output;
// Get the barycentric coords
float U = barycentricCoords.x;
float V = barycentricCoords.y;
float W = barycentricCoords.z;
// Interpolate patch attributes to generated vertices
#define INTERPOLATE(thing) output.thing = U * input[0].thing + V * input[1].thing + W * input[2].thing
#define COPY(thing) output.thing = input[0].thing
INTERPOLATE(Position);
#if MATERIAL_TESSELLATION == MATERIAL_TESSELLATION_PN
float UU = U * U;
float VV = V * V;
float WW = W * W;
float UU3 = UU * 3.0f;
float VV3 = VV * 3.0f;
float WW3 = WW * 3.0f;
// Interpolate using barycentric coordinates and PN Triangle control points
output.WorldPosition =
input[0].WorldPosition * UU * U +
input[1].WorldPosition * VV * V +
input[2].WorldPosition * WW * W +
constantData.B210 * UU3 * V +
constantData.B120 * VV3 * U +
constantData.B021 * VV3 * W +
constantData.B012 * WW3 * V +
constantData.B102 * WW3 * U +
constantData.B201 * UU3 * W +
constantData.B111 * 6.0f * W * U * V;
#else
INTERPOLATE(WorldPosition);
#endif
INTERPOLATE(TexCoord);
INTERPOLATE(LightmapUV);
#if USE_VERTEX_COLOR
INTERPOLATE(VertexColor);
#endif
INTERPOLATE(TBN[0]);
INTERPOLATE(TBN[1]);
INTERPOLATE(TBN[2]);
COPY(InstanceOrigin);
COPY(InstanceParams);
#if USE_CUSTOM_VERTEX_INTERPOLATORS
UNROLL
for (int i = 0; i < CUSTOM_VERTEX_INTERPOLATORS_COUNT; i++)
{
INTERPOLATE(CustomVSToPS[i]);
}
#endif
#undef INTERPOLATE
#undef COPY
// Interpolating normal can unnormalize it, so normalize it
output.TBN[0] = normalize(output.TBN[0]);
output.TBN[1] = normalize(output.TBN[1]);
output.TBN[2] = normalize(output.TBN[2]);
#if MATERIAL_TESSELLATION == MATERIAL_TESSELLATION_PHONG
// Orthogonal projection in the tangent planes
float3 posProjectedU = ProjectOntoPlane(input[0].TBN[2], input[0].WorldPosition, output.WorldPosition);
float3 posProjectedV = ProjectOntoPlane(input[1].TBN[2], input[1].WorldPosition, output.WorldPosition);
float3 posProjectedW = ProjectOntoPlane(input[2].TBN[2], input[2].WorldPosition, output.WorldPosition);
// Interpolate the projected points
output.WorldPosition = U * posProjectedU + V * posProjectedV + W * posProjectedW;
#endif
// Perform displacement mapping
#if USE_DISPLACEMENT
MaterialInput materialInput = GetMaterialInput(output);
Material material = GetMaterialDS(materialInput);
output.WorldPosition += material.WorldDisplacement;
#endif
// Recalculate the clip space position
output.Position = mul(float4(output.WorldPosition, 1), ViewProjectionMatrix);
return output;
}
#endif
#if USE_DITHERED_LOD_TRANSITION
void ClipLODTransition(PixelInput input)
{
float ditherFactor = input.InstanceParams.y;
if (abs(ditherFactor) > 0.001)
{
float randGrid = cos(dot(floor(input.Position.xy), float2(347.83452793, 3343.28371863)));
float randGridFrac = frac(randGrid * 1000.0);
half mask = (ditherFactor < 0.0) ? (ditherFactor + 1.0 > randGridFrac) : (ditherFactor < randGridFrac);
clip(mask - 0.001);
}
}
#else
void ClipLODTransition(PixelInput input)
{
}
#endif
// Pixel Shader function for Forward Pass
META_PS(USE_FORWARD, FEATURE_LEVEL_ES2)
float4 PS_Forward(PixelInput input) : SV_Target0
{
float4 output = 0;
// LOD masking
ClipLODTransition(input);
// TODO: make model LOD transition smoother for transparent materials by using opacity to reduce aliasing
// Get material parameters
MaterialInput materialInput = GetMaterialInput(input);
Material material = GetMaterialPS(materialInput);
// Masking
#if MATERIAL_MASKED
clip(material.Mask - MATERIAL_MASK_THRESHOLD);
#endif
// Add emissive light
output = float4(material.Emissive, material.Opacity);
#if MATERIAL_SHADING_MODEL != SHADING_MODEL_UNLIT
// Setup GBuffer data as proxy for lighting
GBufferSample gBuffer;
gBuffer.Normal = material.WorldNormal;
gBuffer.Roughness = material.Roughness;
gBuffer.Metalness = material.Metalness;
gBuffer.Color = material.Color;
gBuffer.Specular = material.Specular;
gBuffer.AO = material.AO;
gBuffer.ViewPos = mul(float4(materialInput.WorldPosition, 1), ViewMatrix).xyz;
#if MATERIAL_SHADING_MODEL == SHADING_MODEL_SUBSURFACE
gBuffer.CustomData = float4(material.SubsurfaceColor, material.Opacity);
#elif MATERIAL_SHADING_MODEL == SHADING_MODEL_FOLIAGE
gBuffer.CustomData = float4(material.SubsurfaceColor, material.Opacity);
#else
gBuffer.CustomData = float4(0, 0, 0, 0);
#endif
gBuffer.WorldPos = materialInput.WorldPosition;
gBuffer.ShadingModel = MATERIAL_SHADING_MODEL;
// Calculate lighting from a single directional light
float4 shadowMask = 1.0f;
if (DirectionalLight.CastShadows > 0)
{
LightShadowData directionalLightShadowData = GetDirectionalLightShadowData();
shadowMask.r = SampleShadow(DirectionalLight, directionalLightShadowData, DirectionalLightShadowMap, gBuffer, shadowMask.g);
}
float4 light = GetLighting(ViewPos, DirectionalLight, gBuffer, shadowMask, false, false);
// Calculate lighting from sky light
light += GetSkyLightLighting(SkyLight, gBuffer, SkyLightTexture);
// Calculate lighting from local lights
LOOP
for (uint localLightIndex = 0; localLightIndex < LocalLightsCount; localLightIndex++)
{
const LightData localLight = LocalLights[localLightIndex];
bool isSpotLight = localLight.SpotAngles.x > -2.0f;
shadowMask = 1.0f;
light += GetLighting(ViewPos, localLight, gBuffer, shadowMask, true, isSpotLight);
}
#if USE_REFLECTIONS
// Calculate reflections
light.rgb += GetEnvProbeLighting(ViewPos, EnvProbe, EnvironmentProbe, gBuffer) * light.a;
#endif
// Add lighting (apply ambient occlusion)
output.rgb += light.rgb * gBuffer.AO;
#if USE_FOG
// Calculate exponential height fog
float4 fog = GetExponentialHeightFog(ExponentialHeightFog, materialInput.WorldPosition, ViewPos, 0);
// Apply fog to the output color
#if MATERIAL_BLEND == MATERIAL_BLEND_OPAQUE
output = float4(output.rgb * fog.a + fog.rgb, output.a);
#elif MATERIAL_BLEND == MATERIAL_BLEND_TRANSPARENT
output = float4(output.rgb * fog.a + fog.rgb, output.a);
#elif MATERIAL_BLEND == MATERIAL_BLEND_ADDITIVE
output = float4(output.rgb * fog.a + fog.rgb, output.a * fog.a);
#elif MATERIAL_BLEND == MATERIAL_BLEND_MULTIPLY
output = float4(lerp(float3(1, 1, 1), output.rgb, fog.aaa * fog.aaa), output.a);
#endif
#endif
#endif
return output;
}
#if USE_DISTORTION
// Pixel Shader function for Distortion Pass
META_PS(USE_DISTORTION, FEATURE_LEVEL_ES2)
float4 PS_Distortion(PixelInput input) : SV_Target0
{
// LOD masking
ClipLODTransition(input);
// Get material parameters
MaterialInput materialInput = GetMaterialInput(input);
Material material = GetMaterialPS(materialInput);
// Masking
#if MATERIAL_MASKED
clip(material.Mask - MATERIAL_MASK_THRESHOLD);
#endif
float3 viewNormal = normalize(TransformWorldVectorToView(materialInput, material.WorldNormal));
float airIOR = 1.0f;
#if USE_PIXEL_NORMAL_OFFSET_REFRACTION
float3 viewVertexNormal = TransformWorldVectorToView(materialInput, TransformTangentVectorToWorld(materialInput, float3(0, 0, 1)));
float2 distortion = (viewVertexNormal.xy - viewNormal.xy) * (material.Refraction - airIOR);
#else
float2 distortion = viewNormal.xy * (material.Refraction - airIOR);
#endif
// Clip if the distortion distance (squared) is too small to be noticed
clip(dot(distortion, distortion) - 0.00001);
// Scale up for better precision in low/subtle refractions at the expense of artefacts at higher refraction
distortion *= 4.0f;
// Use separate storage for positive and negative offsets
float2 addOffset = max(distortion, 0);
float2 subOffset = abs(min(distortion, 0));
return float4(addOffset.x, addOffset.y, subOffset.x, subOffset.y);
}
#endif
// Pixel Shader function for Depth Pass
META_PS(true, FEATURE_LEVEL_ES2)
void PS_Depth(PixelInput input
#if GLSL
, out float4 OutColor : SV_Target0
#endif
)
{
// LOD masking
ClipLODTransition(input);
// Get material parameters
MaterialInput materialInput = GetMaterialInput(input);
Material material = GetMaterialPS(materialInput);
// Perform per pixel clipping
#if MATERIAL_MASKED
clip(material.Mask - MATERIAL_MASK_THRESHOLD);
#endif
clip(material.Opacity - MATERIAL_OPACITY_THRESHOLD);
#if GLSL
OutColor = 0;
#endif
}