Files
FlaxEngine/Source/Engine/Foliage/Foliage.cpp
2024-04-20 15:51:20 +02:00

1519 lines
51 KiB
C++

// Copyright (c) 2012-2024 Wojciech Figat. All rights reserved.
#include "Foliage.h"
#include "FoliageType.h"
#include "FoliageCluster.h"
#include "Engine/Core/Log.h"
#include "Engine/Core/Random.h"
#include "Engine/Engine/Engine.h"
#include "Engine/Graphics/RenderTask.h"
#if !FOLIAGE_USE_SINGLE_QUAD_TREE
#include "Engine/Threading/JobSystem.h"
#if FOLIAGE_USE_DRAW_CALLS_BATCHING
#include "Engine/Graphics/RenderTools.h"
#include "Engine/Graphics/GPUDevice.h"
#include "Engine/Renderer/RenderList.h"
#endif
#endif
#include "Engine/Level/SceneQuery.h"
#include "Engine/Profiler/ProfilerCPU.h"
#include "Engine/Renderer/GlobalSignDistanceFieldPass.h"
#include "Engine/Renderer/GI/GlobalSurfaceAtlasPass.h"
#include "Engine/Serialization/Serialization.h"
#include "Engine/Utilities/Encryption.h"
#define FOLIAGE_GET_DRAW_MODES(renderContext, type) (type.DrawModes & renderContext.View.Pass & renderContext.View.GetShadowsDrawPassMask(type.ShadowsMode))
#define FOLIAGE_CAN_DRAW(renderContext, type) (type.IsReady() && FOLIAGE_GET_DRAW_MODES(renderContext, type) != DrawPass::None && type.Model->CanBeRendered())
Foliage::Foliage(const SpawnParams& params)
: Actor(params)
{
_disableFoliageTypeEvents = false;
// When using separate quad-tree for each foliage type we can run async job to draw them in separate, otherwise just draw whole foliage in async as one
#if FOLIAGE_USE_SINGLE_QUAD_TREE
_drawCategory = SceneRendering::SceneDrawAsync;
#else
_drawCategory = SceneRendering::SceneDraw;
#endif
}
void Foliage::AddToCluster(ChunkedArray<FoliageCluster, FOLIAGE_CLUSTER_CHUNKS_SIZE>& clusters, FoliageCluster* cluster, FoliageInstance& instance)
{
ASSERT(instance.Bounds.Radius > ZeroTolerance);
ASSERT(cluster->Bounds.Intersects(instance.Bounds));
// Find target cluster
while (cluster->Children[0])
{
#define CHECK_CHILD(idx) \
if (cluster->Children[idx]->Bounds.Intersects(instance.Bounds)) \
{ \
cluster = cluster->Children[idx]; \
continue; \
}
CHECK_CHILD(0);
CHECK_CHILD(1);
CHECK_CHILD(2);
CHECK_CHILD(3);
#undef CHECK_CHILD
}
// Check if it's not full
if (cluster->Instances.Count() != FOLIAGE_CLUSTER_CAPACITY)
{
// Insert into cluster
cluster->Instances.Add(&instance);
}
else
{
// Subdivide cluster
const int32 count = clusters.Count();
clusters.Resize(count + 4);
cluster->Children[0] = &clusters[count + 0];
cluster->Children[1] = &clusters[count + 1];
cluster->Children[2] = &clusters[count + 2];
cluster->Children[3] = &clusters[count + 3];
// Setup children
const Vector3 min = cluster->Bounds.Minimum;
const Vector3 max = cluster->Bounds.Maximum;
const Vector3 size = cluster->Bounds.GetSize();
cluster->Children[0]->Init(BoundingBox(min, min + size * Vector3(0.5f, 1.0f, 0.5f)));
cluster->Children[1]->Init(BoundingBox(min + size * Vector3(0.5f, 0.0f, 0.5f), max));
cluster->Children[2]->Init(BoundingBox(min + size * Vector3(0.5f, 0.0f, 0.0f), min + size * Vector3(1.0f, 1.0f, 0.5f)));
cluster->Children[3]->Init(BoundingBox(min + size * Vector3(0.0f, 0.0f, 0.5f), min + size * Vector3(0.5f, 1.0f, 1.0f)));
// Move instances to a proper cells
for (int32 i = 0; i < cluster->Instances.Count(); i++)
{
AddToCluster(clusters, cluster, *cluster->Instances[i]);
}
cluster->Instances.Clear();
AddToCluster(clusters, cluster, instance);
}
}
#if !FOLIAGE_USE_SINGLE_QUAD_TREE && FOLIAGE_USE_DRAW_CALLS_BATCHING
void Foliage::DrawInstance(RenderContext& renderContext, FoliageInstance& instance, const FoliageType& type, Model* model, int32 lod, float lodDitherFactor, DrawCallsList* drawCallsLists, BatchedDrawCalls& result) const
{
const auto& meshes = model->LODs.Get()[lod].Meshes;
for (int32 meshIndex = 0; meshIndex < meshes.Count(); meshIndex++)
{
auto& drawCall = drawCallsLists[lod][meshIndex];
if (!drawCall.DrawCall.Material)
continue;
DrawKey key;
key.Mat = drawCall.DrawCall.Material;
key.Geo = &meshes.Get()[meshIndex];
key.Lightmap = instance.Lightmap.TextureIndex;
auto* e = result.TryGet(key);
if (!e)
{
e = &result[key];
ASSERT_LOW_LAYER(key.Mat);
e->DrawCall.Material = key.Mat;
e->DrawCall.Surface.Lightmap = EnumHasAnyFlags(_staticFlags, StaticFlags::Lightmap) && _scene ? _scene->LightmapsData.GetReadyLightmap(key.Lightmap) : nullptr;
}
// Add instance to the draw batch
auto& instanceData = e->Instances.AddOne();
Matrix world;
const Transform transform = _transform.LocalToWorld(instance.Transform);
const Float3 translation = transform.Translation - renderContext.View.Origin;
Matrix::Transformation(transform.Scale, transform.Orientation, translation, world);
instanceData.InstanceOrigin = Float3(world.M41, world.M42, world.M43);
instanceData.PerInstanceRandom = instance.Random;
instanceData.InstanceTransform1 = Float3(world.M11, world.M12, world.M13);
instanceData.LODDitherFactor = lodDitherFactor;
instanceData.InstanceTransform2 = Float3(world.M21, world.M22, world.M23);
instanceData.InstanceTransform3 = Float3(world.M31, world.M32, world.M33);
instanceData.InstanceLightmapArea = Half4(instance.Lightmap.UVsArea);
}
}
void Foliage::DrawCluster(RenderContext& renderContext, FoliageCluster* cluster, const FoliageType& type, DrawCallsList* drawCallsLists, BatchedDrawCalls& result) const
{
// Skip clusters that around too far from view
const Vector3 viewOrigin = renderContext.View.Origin;
if (Float3::Distance(renderContext.View.Position, cluster->TotalBoundsSphere.Center - viewOrigin) - (float)cluster->TotalBoundsSphere.Radius > cluster->MaxCullDistance)
return;
//DebugDraw::DrawBox(cluster->Bounds, Color::Red);
// Draw visible children
if (cluster->Children[0])
{
// Don't store instances in non-leaf nodes
ASSERT_LOW_LAYER(cluster->Instances.IsEmpty());
BoundingBox box;
#define DRAW_CLUSTER(idx) \
box = cluster->Children[idx]->TotalBounds; \
box.Minimum -= viewOrigin; \
box.Maximum -= viewOrigin; \
if (renderContext.View.CullingFrustum.Intersects(box)) \
DrawCluster(renderContext, cluster->Children[idx], type, drawCallsLists, result)
DRAW_CLUSTER(0);
DRAW_CLUSTER(1);
DRAW_CLUSTER(2);
DRAW_CLUSTER(3);
#undef DRAW_CLUSTER
}
else
{
// Draw visible instances
const auto frame = Engine::FrameCount;
const auto model = type.Model.Get();
for (int32 i = 0; i < cluster->Instances.Count(); i++)
{
auto& instance = *cluster->Instances.Get()[i];
BoundingSphere sphere = instance.Bounds;
sphere.Center -= viewOrigin;
if (Float3::Distance(renderContext.View.Position, sphere.Center) - (float)sphere.Radius < instance.CullDistance &&
renderContext.View.CullingFrustum.Intersects(sphere))
{
const auto modelFrame = instance.DrawState.PrevFrame + 1;
// Select a proper LOD index (model may be culled)
int32 lodIndex = RenderTools::ComputeModelLOD(model, sphere.Center, (float)sphere.Radius, renderContext);
if (lodIndex == -1)
{
// Handling model fade-out transition
if (modelFrame == frame && instance.DrawState.PrevLOD != -1)
{
// Check if start transition
if (instance.DrawState.LODTransition == 255)
{
instance.DrawState.LODTransition = 0;
}
RenderTools::UpdateModelLODTransition(instance.DrawState.LODTransition);
// Check if end transition
if (instance.DrawState.LODTransition == 255)
{
instance.DrawState.PrevLOD = lodIndex;
}
else
{
const auto prevLOD = model->ClampLODIndex(instance.DrawState.PrevLOD);
const float normalizedProgress = static_cast<float>(instance.DrawState.LODTransition) * (1.0f / 255.0f);
DrawInstance(renderContext, instance, type, model, prevLOD, normalizedProgress, drawCallsLists, result);
}
}
instance.DrawState.PrevFrame = frame;
continue;
}
lodIndex += renderContext.View.ModelLODBias;
lodIndex = model->ClampLODIndex(lodIndex);
// Check if it's the new frame and could update the drawing state (note: model instance could be rendered many times per frame to different viewports)
if (modelFrame == frame)
{
// Check if start transition
if (instance.DrawState.PrevLOD != lodIndex && instance.DrawState.LODTransition == 255)
{
instance.DrawState.LODTransition = 0;
}
RenderTools::UpdateModelLODTransition(instance.DrawState.LODTransition);
// Check if end transition
if (instance.DrawState.LODTransition == 255)
{
instance.DrawState.PrevLOD = lodIndex;
}
}
// Check if there was a gap between frames in drawing this model instance
else if (modelFrame < frame || instance.DrawState.PrevLOD == -1)
{
// Reset state
instance.DrawState.PrevLOD = lodIndex;
instance.DrawState.LODTransition = 255;
}
// Draw
if (instance.DrawState.PrevLOD == lodIndex)
{
DrawInstance(renderContext, instance, type, model, lodIndex, 0.0f, drawCallsLists, result);
}
else if (instance.DrawState.PrevLOD == -1)
{
const float normalizedProgress = static_cast<float>(instance.DrawState.LODTransition) * (1.0f / 255.0f);
DrawInstance(renderContext, instance, type, model, lodIndex, 1.0f - normalizedProgress, drawCallsLists, result);
}
else
{
const auto prevLOD = model->ClampLODIndex(instance.DrawState.PrevLOD);
const float normalizedProgress = static_cast<float>(instance.DrawState.LODTransition) * (1.0f / 255.0f);
DrawInstance(renderContext, instance, type, model, prevLOD, normalizedProgress, drawCallsLists, result);
DrawInstance(renderContext, instance, type, model, lodIndex, normalizedProgress - 1.0f, drawCallsLists, result);
}
//DebugDraw::DrawSphere(instance.Bounds, Color::YellowGreen);
instance.DrawState.PrevFrame = frame;
}
}
}
}
#else
void Foliage::DrawCluster(RenderContext& renderContext, FoliageCluster* cluster, Mesh::DrawInfo& draw)
{
// Skip clusters that around too far from view
const Vector3 viewOrigin = renderContext.View.Origin;
if (Float3::Distance(renderContext.View.Position, cluster->TotalBoundsSphere.Center - viewOrigin) - (float)cluster->TotalBoundsSphere.Radius > cluster->MaxCullDistance)
return;
//DebugDraw::DrawBox(cluster->Bounds, Color::Red);
// Draw visible children
if (cluster->Children[0])
{
// Don't store instances in non-leaf nodes
ASSERT_LOW_LAYER(cluster->Instances.IsEmpty());
BoundingBox box;
#define DRAW_CLUSTER(idx) \
box = cluster->Children[idx]->TotalBounds; \
box.Minimum -= viewOrigin; \
box.Maximum -= viewOrigin; \
if (renderContext.View.CullingFrustum.Intersects(box)) \
DrawCluster(renderContext, cluster->Children[idx], draw)
DRAW_CLUSTER(0);
DRAW_CLUSTER(1);
DRAW_CLUSTER(2);
DRAW_CLUSTER(3);
#undef DRAW_CLUSTER
}
else
{
// Draw visible instances
const auto frame = Engine::FrameCount;
for (int32 i = 0; i < cluster->Instances.Count(); i++)
{
auto& instance = *cluster->Instances[i];
auto& type = FoliageTypes[instance.Type];
BoundingSphere sphere = instance.Bounds;
sphere.Center -= viewOrigin;
// Check if can draw this instance
if (type._canDraw &&
Float3::Distance(renderContext.View.Position, sphere.Center) - (float)sphere.Radius < instance.CullDistance &&
renderContext.View.CullingFrustum.Intersects(sphere))
{
Matrix world;
const Transform transform = _transform.LocalToWorld(instance.Transform);
const Float3 translation = transform.Translation - renderContext.View.Origin;
Matrix::Transformation(transform.Scale, transform.Orientation, translation, world);
// Disable motion blur
instance.DrawState.PrevWorld = world;
// Draw model
draw.Lightmap = _scene->LightmapsData.GetReadyLightmap(instance.Lightmap.TextureIndex);
draw.LightmapUVs = &instance.Lightmap.UVsArea;
draw.Buffer = &type.Entries;
draw.World = &world;
draw.DrawState = &instance.DrawState;
draw.Bounds = sphere;
draw.PerInstanceRandom = instance.Random;
draw.DrawModes = type._drawModes;
type.Model->Draw(renderContext, draw);
//DebugDraw::DrawSphere(instance.Bounds, Color::YellowGreen);
instance.DrawState.PrevFrame = frame;
}
}
}
}
#endif
#if !FOLIAGE_USE_SINGLE_QUAD_TREE
void Foliage::DrawClusterGlobalSDF(class GlobalSignDistanceFieldPass* globalSDF, const BoundingBox& globalSDFBounds, FoliageCluster* cluster, const FoliageType& type)
{
if (cluster->Children[0])
{
// Draw children recursive
#define DRAW_CLUSTER(idx) \
if (globalSDFBounds.Intersects(cluster->Children[idx]->TotalBounds)) \
DrawClusterGlobalSDF(globalSDF, globalSDFBounds, cluster->Children[idx], type)
DRAW_CLUSTER(0);
DRAW_CLUSTER(1);
DRAW_CLUSTER(2);
DRAW_CLUSTER(3);
#undef DRAW_CLUSTER
}
else
{
// Draw visible instances
for (int32 i = 0; i < cluster->Instances.Count(); i++)
{
auto& instance = *cluster->Instances[i];
if (CollisionsHelper::BoxIntersectsSphere(globalSDFBounds, instance.Bounds))
{
const Transform transform = _transform.LocalToWorld(instance.Transform);
BoundingBox bounds;
BoundingBox::FromSphere(instance.Bounds, bounds);
globalSDF->RasterizeModelSDF(this, type.Model->SDF, transform, bounds);
}
}
}
}
void Foliage::DrawClusterGlobalSA(GlobalSurfaceAtlasPass* globalSA, const Vector4& cullingPosDistance, FoliageCluster* cluster, const FoliageType& type, const BoundingBox& localBounds)
{
if (cluster->Children[0])
{
// Draw children recursive
#define DRAW_CLUSTER(idx) \
if (CollisionsHelper::DistanceBoxPoint(cluster->Children[idx]->TotalBounds, Vector3(cullingPosDistance)) < cullingPosDistance.W) \
DrawClusterGlobalSA(globalSA, cullingPosDistance, cluster->Children[idx], type, localBounds)
DRAW_CLUSTER(0);
DRAW_CLUSTER(1);
DRAW_CLUSTER(2);
DRAW_CLUSTER(3);
#undef DRAW_CLUSTER
}
else
{
// Draw visible instances
for (int32 i = 0; i < cluster->Instances.Count(); i++)
{
auto& instance = *cluster->Instances[i];
if (CollisionsHelper::DistanceSpherePoint(instance.Bounds, Vector3(cullingPosDistance)) < cullingPosDistance.W)
{
const Transform transform = _transform.LocalToWorld(instance.Transform);
globalSA->RasterizeActor(this, &instance, instance.Bounds, transform, localBounds, MAX_uint32, true, 0.5f);
}
}
}
}
void Foliage::DrawFoliageJob(int32 i)
{
PROFILE_CPU();
const FoliageType& type = FoliageTypes[i];
if (type.IsReady() && type.Model->CanBeRendered())
{
DrawCallsList drawCallsLists[MODEL_MAX_LODS];
for (RenderContext& renderContext : _renderContextBatch->Contexts)
DrawType(renderContext, type, drawCallsLists);
}
}
#endif
void Foliage::DrawType(RenderContext& renderContext, const FoliageType& type, DrawCallsList* drawCallsLists)
{
if (!type.Root || !FOLIAGE_CAN_DRAW(renderContext, type))
return;
const DrawPass typeDrawModes = FOLIAGE_GET_DRAW_MODES(renderContext, type);
PROFILE_CPU_ASSET(type.Model);
#if FOLIAGE_USE_DRAW_CALLS_BATCHING
// Initialize draw calls for foliage type all LODs meshes
for (int32 lod = 0; lod < type.Model->LODs.Count(); lod++)
{
auto& modelLod = type.Model->LODs[lod];
DrawCallsList& drawCallsList = drawCallsLists[lod];
const auto& meshes = modelLod.Meshes;
drawCallsList.Resize(meshes.Count());
for (int32 meshIndex = 0; meshIndex < meshes.Count(); meshIndex++)
{
const auto& mesh = meshes.Get()[meshIndex];
auto& drawCall = drawCallsList.Get()[meshIndex];
drawCall.DrawCall.Material = nullptr;
// Check entry visibility
const auto& entry = type.Entries[mesh.GetMaterialSlotIndex()];
if (!entry.Visible || !mesh.IsInitialized())
continue;
const MaterialSlot& slot = type.Model->MaterialSlots[mesh.GetMaterialSlotIndex()];
// Select material
MaterialBase* material;
if (entry.Material && entry.Material->IsLoaded())
material = entry.Material;
else if (slot.Material && slot.Material->IsLoaded())
material = slot.Material;
else
material = GPUDevice::Instance->GetDefaultMaterial();
if (!material || !material->IsSurface())
continue;
// Select draw modes
const auto shadowsMode = entry.ShadowsMode & slot.ShadowsMode;
const auto drawModes = typeDrawModes & renderContext.View.GetShadowsDrawPassMask(shadowsMode) & material->GetDrawModes();
if (drawModes == DrawPass::None)
continue;
drawCall.DrawCall.Material = material;
}
}
// Draw instances of the foliage type
BatchedDrawCalls result;
DrawCluster(renderContext, type.Root, type, drawCallsLists, result);
// Submit draw calls with valid instances added
for (auto& e : result)
{
auto& batch = e.Value;
if (batch.Instances.IsEmpty())
continue;
const auto& mesh = *e.Key.Geo;
const auto& entry = type.Entries[mesh.GetMaterialSlotIndex()];
const MaterialSlot& slot = type.Model->MaterialSlots[mesh.GetMaterialSlotIndex()];
const auto shadowsMode = entry.ShadowsMode & slot.ShadowsMode;
const auto drawModes = typeDrawModes & renderContext.View.GetShadowsDrawPassMask(shadowsMode) & batch.DrawCall.Material->GetDrawModes();
// Setup draw call
mesh.GetDrawCallGeometry(batch.DrawCall);
batch.DrawCall.InstanceCount = 1;
auto& firstInstance = batch.Instances[0];
batch.DrawCall.ObjectPosition = firstInstance.InstanceOrigin;
batch.DrawCall.PerInstanceRandom = firstInstance.PerInstanceRandom;
auto lightmapArea = firstInstance.InstanceLightmapArea.ToFloat4();
batch.DrawCall.Surface.LightmapUVsArea = *(Rectangle*)&lightmapArea;
batch.DrawCall.Surface.LODDitherFactor = firstInstance.LODDitherFactor;
batch.DrawCall.World.SetRow1(Float4(firstInstance.InstanceTransform1, 0.0f));
batch.DrawCall.World.SetRow2(Float4(firstInstance.InstanceTransform2, 0.0f));
batch.DrawCall.World.SetRow3(Float4(firstInstance.InstanceTransform3, 0.0f));
batch.DrawCall.World.SetRow4(Float4(firstInstance.InstanceOrigin, 1.0f));
batch.DrawCall.Surface.PrevWorld = batch.DrawCall.World;
batch.DrawCall.Surface.GeometrySize = mesh.GetBox().GetSize();
batch.DrawCall.Surface.Skinning = nullptr;
batch.DrawCall.WorldDeterminantSign = 1;
if (EnumHasAnyFlags(drawModes, DrawPass::Forward))
{
// Transparency requires sorting by depth so convert back the batched draw call into normal draw calls (RenderList impl will handle this)
DrawCall drawCall = batch.DrawCall;
for (int32 j = 0; j < batch.Instances.Count(); j++)
{
auto& instance = batch.Instances[j];
drawCall.ObjectPosition = instance.InstanceOrigin;
drawCall.PerInstanceRandom = instance.PerInstanceRandom;
lightmapArea = instance.InstanceLightmapArea.ToFloat4();
drawCall.Surface.LightmapUVsArea = *(Rectangle*)&lightmapArea;
drawCall.Surface.LODDitherFactor = instance.LODDitherFactor;
drawCall.World.SetRow1(Float4(instance.InstanceTransform1, 0.0f));
drawCall.World.SetRow2(Float4(instance.InstanceTransform2, 0.0f));
drawCall.World.SetRow3(Float4(instance.InstanceTransform3, 0.0f));
drawCall.World.SetRow4(Float4(instance.InstanceOrigin, 1.0f));
const int32 drawCallIndex = renderContext.List->DrawCalls.Add(drawCall);
renderContext.List->DrawCallsLists[(int32)DrawCallsListType::Forward].Indices.Add(drawCallIndex);
}
}
// Add draw call batch
const int32 batchIndex = renderContext.List->BatchedDrawCalls.Add(MoveTemp(batch));
// Add draw call to proper draw lists
if (EnumHasAnyFlags(drawModes, DrawPass::Depth))
{
renderContext.List->DrawCallsLists[(int32)DrawCallsListType::Depth].PreBatchedDrawCalls.Add(batchIndex);
}
if (EnumHasAnyFlags(drawModes, DrawPass::GBuffer))
{
if (entry.ReceiveDecals)
renderContext.List->DrawCallsLists[(int32)DrawCallsListType::GBuffer].PreBatchedDrawCalls.Add(batchIndex);
else
renderContext.List->DrawCallsLists[(int32)DrawCallsListType::GBufferNoDecals].PreBatchedDrawCalls.Add(batchIndex);
}
if (EnumHasAnyFlags(drawModes, DrawPass::Distortion))
{
renderContext.List->DrawCallsLists[(int32)DrawCallsListType::Distortion].PreBatchedDrawCalls.Add(batchIndex);
}
if (EnumHasAnyFlags(drawModes, DrawPass::MotionVectors) && (_staticFlags & StaticFlags::Transform) == StaticFlags::None)
{
renderContext.List->DrawCallsLists[(int32)DrawCallsListType::MotionVectors].PreBatchedDrawCalls.Add(batchIndex);
}
}
#else
DrawCluster(renderContext, type.Root, draw);
#endif
}
int32 Foliage::GetInstancesCount() const
{
return Instances.Count();
}
FoliageInstance Foliage::GetInstance(int32 index) const
{
return Instances[index];
}
int32 Foliage::GetFoliageTypesCount() const
{
return FoliageTypes.Count();
}
FoliageType* Foliage::GetFoliageType(int32 index)
{
CHECK_RETURN(index >= 0 && index < FoliageTypes.Count(), nullptr)
return &FoliageTypes[index];
}
void Foliage::AddFoliageType(Model* model)
{
PROFILE_CPU();
// Ensure to have unique model
CHECK(model);
for (int32 i = 0; i < FoliageTypes.Count(); i++)
{
if (FoliageTypes[i].Model == model)
{
LOG(Error, "The given model is already used by other foliage type.");
return;
}
}
// Add
_disableFoliageTypeEvents = true;
auto& item = FoliageTypes.AddOne();
_disableFoliageTypeEvents = false;
// Setup
item.Foliage = this;
item.Index = FoliageTypes.Count() - 1;
item.Model = model;
}
void Foliage::RemoveFoliageType(int32 index)
{
PROFILE_CPU();
// Remove instances using this foliage type
if (FoliageTypes.Count() != 1)
{
for (auto i = Instances.Begin(); i.IsNotEnd(); ++i)
{
if (i->Type == index)
{
Instances.Remove(i);
--i;
}
}
// Update all instances using foliage types with higher index to point into a valid type
for (auto i = Instances.Begin(); i.IsNotEnd(); ++i)
{
if (i->Type > index)
i->Type--;
}
}
else
{
Instances.Clear();
}
// Remove foliage instance type
for (int32 i = index + 1; i < FoliageTypes.Count(); i++)
{
FoliageTypes[i].Index--;
}
auto& item = FoliageTypes[index];
item.Model = nullptr;
item.Entries.Release();
FoliageTypes.RemoveAtKeepOrder(index);
RebuildClusters();
}
int32 Foliage::GetFoliageTypeInstancesCount(int32 index) const
{
PROFILE_CPU();
int32 result = 0;
for (auto i = Instances.Begin(); i.IsNotEnd(); ++i)
{
if (i->Type == index)
result++;
}
return result;
}
void Foliage::AddInstance(const FoliageInstance& instance)
{
ASSERT(instance.Type >= 0 && instance.Type < FoliageTypes.Count());
auto type = &FoliageTypes[instance.Type];
// Add instance
auto data = Instances.Add(instance);
data->Bounds = BoundingSphere::Empty;
data->Random = Random::Rand();
data->CullDistance = type->CullDistance + type->CullDistanceRandomRange * data->Random;
// Validate foliage type model
if (!type->IsReady())
return;
// Update bounds
Vector3 corners[8];
auto& meshes = type->Model->LODs[0].Meshes;
const Transform transform = _transform.LocalToWorld(data->Transform);
for (int32 j = 0; j < meshes.Count(); j++)
{
meshes[j].GetBox().GetCorners(corners);
for (int32 k = 0; k < 8; k++)
{
Vector3::Transform(corners[k], transform, corners[k]);
}
BoundingSphere meshBounds;
BoundingSphere::FromPoints(corners, 8, meshBounds);
ASSERT(meshBounds.Radius > ZeroTolerance);
BoundingSphere::Merge(data->Bounds, meshBounds, data->Bounds);
}
data->Bounds.Radius += ZeroTolerance;
}
void Foliage::RemoveInstance(ChunkedArray<FoliageInstance, FOLIAGE_INSTANCE_CHUNKS_SIZE>::Iterator i)
{
Instances.Remove(i);
}
void Foliage::SetInstanceTransform(int32 index, const Transform& value)
{
auto& instance = Instances[index];
auto type = &FoliageTypes[instance.Type];
// Change transform
instance.Transform = value;
// Update bounds
instance.Bounds = BoundingSphere::Empty;
if (!type->IsReady())
return;
Vector3 corners[8];
auto& meshes = type->Model->LODs[0].Meshes;
const Transform transform = _transform.LocalToWorld(instance.Transform);
for (int32 j = 0; j < meshes.Count(); j++)
{
meshes[j].GetBox().GetCorners(corners);
for (int32 k = 0; k < 8; k++)
{
Vector3::Transform(corners[k], transform, corners[k]);
}
BoundingSphere meshBounds;
BoundingSphere::FromPoints(corners, 8, meshBounds);
ASSERT(meshBounds.Radius > ZeroTolerance);
BoundingSphere::Merge(instance.Bounds, meshBounds, instance.Bounds);
}
instance.Bounds.Radius += ZeroTolerance;
}
void Foliage::OnFoliageTypeModelLoaded(int32 index)
{
if (_disableFoliageTypeEvents)
return;
PROFILE_CPU();
auto& type = FoliageTypes[index];
ASSERT(type.IsReady());
// Update bounds for instances using this type
bool hasAnyInstance = false;
#if !FOLIAGE_USE_SINGLE_QUAD_TREE
BoundingBox totalBoundsType, box;
#endif
{
PROFILE_CPU_NAMED("Update Bounds");
Vector3 corners[8];
auto& meshes = type.Model->LODs[0].Meshes;
for (auto i = Instances.Begin(); i.IsNotEnd(); ++i)
{
auto& instance = *i;
if (instance.Type != index)
continue;
instance.Bounds = BoundingSphere::Empty;
const Transform transform = _transform.LocalToWorld(instance.Transform);
// Include all meshes
for (int32 j = 0; j < meshes.Count(); j++)
{
// TODO: cache bounds for all model meshes and reuse later
meshes[j].GetBox().GetCorners(corners);
// TODO: use SIMD
for (int32 k = 0; k < 8; k++)
{
Vector3::Transform(corners[k], transform, corners[k]);
}
BoundingSphere meshBounds;
BoundingSphere::FromPoints(corners, 8, meshBounds);
BoundingSphere::Merge(instance.Bounds, meshBounds, instance.Bounds);
}
#if !FOLIAGE_USE_SINGLE_QUAD_TREE
// TODO: use SIMD
BoundingBox::FromSphere(instance.Bounds, box);
if (hasAnyInstance)
BoundingBox::Merge(totalBoundsType, box, totalBoundsType);
else
totalBoundsType = box;
#endif
hasAnyInstance = true;
}
}
if (!hasAnyInstance)
return;
// Refresh quad-tree
#if FOLIAGE_USE_SINGLE_QUAD_TREE
RebuildClusters();
#else
{
PROFILE_CPU_NAMED("Setup");
// Setup first and topmost cluster
type.Clusters.Resize(1);
type.Root = &type.Clusters[0];
type.Root->Init(totalBoundsType);
// Update bounds of the foliage
_box = totalBoundsType;
for (auto& e : FoliageTypes)
{
if (e.Index != index && e.Root)
BoundingBox::Merge(_box, e.Root->Bounds, _box);
}
BoundingSphere::FromBox(_box, _sphere);
if (_sceneRenderingKey != -1)
GetSceneRendering()->UpdateActor(this, _sceneRenderingKey);
}
{
PROFILE_CPU_NAMED("Create Clusters");
// Create clusters for foliage type quad tree
const float globalDensityScale = GetGlobalDensityScale();
for (auto i = Instances.Begin(); i.IsNotEnd(); ++i)
{
auto& instance = *i;
const float densityScale = type.UseDensityScaling ? globalDensityScale * type.DensityScalingScale : 1.0f;
if (instance.Type == index && instance.Random < densityScale)
{
AddToCluster(type.Clusters, type.Root, instance);
}
}
}
{
PROFILE_CPU_NAMED("Update Cache");
type.Root->UpdateTotalBoundsAndCullDistance();
}
#endif
}
void Foliage::RebuildClusters()
{
PROFILE_CPU();
// Faster path if foliage is empty or no types is ready
bool anyTypeReady = false;
for (auto& type : FoliageTypes)
anyTypeReady |= type.IsReady();
if (!anyTypeReady || Instances.IsEmpty())
{
#if FOLIAGE_USE_SINGLE_QUAD_TREE
Root = nullptr;
Clusters.Clear();
#else
for (auto& type : FoliageTypes)
{
type.Root = nullptr;
type.Clusters.Clear();
}
#endif
_box = BoundingBox(_transform.Translation, _transform.Translation);
_sphere = BoundingSphere(_transform.Translation, 0.0f);
if (_sceneRenderingKey != -1)
GetSceneRendering()->UpdateActor(this, _sceneRenderingKey);
return;
}
// Clear clusters and initialize root
{
PROFILE_CPU_NAMED("Init Root");
BoundingBox totalBounds, box;
#if FOLIAGE_USE_SINGLE_QUAD_TREE
{
// Calculate total bounds of all instances
auto i = Instances.Begin();
for (; i.IsNotEnd(); ++i)
{
if (!FoliageTypes[i->Type].IsReady())
continue;
BoundingBox::FromSphere(i->Bounds, box);
totalBounds = box;
break;
}
++i;
// TODO: inline code and use SIMD
for (; i.IsNotEnd(); ++i)
{
if (!FoliageTypes[i->Type].IsReady())
continue;
BoundingBox::FromSphere(i->Bounds, box);
BoundingBox::Merge(totalBounds, box, totalBounds);
}
}
// Setup first and topmost cluster
Clusters.Resize(1);
Root = &Clusters[0];
Root->Init(totalBounds);
#else
bool hasTotalBounds = false;
for (auto& type : FoliageTypes)
{
if (!type.IsReady())
{
type.Root = nullptr;
type.Clusters.Clear();
continue;
}
// Calculate total bounds of all instances of this type
BoundingBox totalBoundsType;
auto i = Instances.Begin();
for (; i.IsNotEnd(); ++i)
{
if (i->Type == type.Index)
{
BoundingBox::FromSphere(i->Bounds, box);
totalBoundsType = box;
break;
}
}
++i;
// TODO: inline code and use SIMD
for (; i.IsNotEnd(); ++i)
{
if (i->Type == type.Index)
{
BoundingBox::FromSphere(i->Bounds, box);
BoundingBox::Merge(totalBoundsType, box, totalBoundsType);
}
}
// Setup first and topmost cluster
type.Clusters.Resize(1);
type.Root = &type.Clusters[0];
type.Root->Init(totalBoundsType);
if (hasTotalBounds)
{
BoundingBox::Merge(totalBounds, totalBoundsType, totalBounds);
}
else
{
totalBounds = totalBoundsType;
hasTotalBounds = true;
}
}
ASSERT(hasTotalBounds);
#endif
ASSERT(!totalBounds.Minimum.IsNanOrInfinity() && !totalBounds.Maximum.IsNanOrInfinity());
_box = totalBounds;
BoundingSphere::FromBox(_box, _sphere);
if (_sceneRenderingKey != -1)
GetSceneRendering()->UpdateActor(this, _sceneRenderingKey);
}
// Insert all instances to the clusters
{
PROFILE_CPU_NAMED("Create Clusters");
const float globalDensityScale = GetGlobalDensityScale();
for (auto i = Instances.Begin(); i.IsNotEnd(); ++i)
{
auto& instance = *i;
auto& type = FoliageTypes[instance.Type];
const float densityScale = type.UseDensityScaling ? globalDensityScale * type.DensityScalingScale : 1.0f;
if (type.IsReady() && instance.Random < densityScale)
{
#if FOLIAGE_USE_SINGLE_QUAD_TREE
AddToCluster(Clusters, Root, instance);
#else
AddToCluster(type.Clusters, type.Root, instance);
#endif
}
}
}
#if FOLIAGE_USE_SINGLE_QUAD_TREE
if (Root)
{
PROFILE_CPU_NAMED("Update Cache");
Root->UpdateTotalBoundsAndCullDistance();
}
#else
for (auto& type : FoliageTypes)
{
if (type.Root)
{
PROFILE_CPU_NAMED("Update Cache");
type.Root->UpdateTotalBoundsAndCullDistance();
}
}
#endif
}
void Foliage::UpdateCullDistance()
{
PROFILE_CPU();
{
PROFILE_CPU_NAMED("Instances");
for (auto i = Instances.Begin(); i.IsNotEnd(); ++i)
{
auto& instance = *i;
auto& type = FoliageTypes[instance.Type];
instance.CullDistance = type.CullDistance + type.CullDistanceRandomRange * instance.Random;
}
}
#if FOLIAGE_USE_SINGLE_QUAD_TREE
if (Root)
{
PROFILE_CPU_NAMED("Clusters");
Root->UpdateCullDistance();
}
#else
for (auto& type : FoliageTypes)
{
if (type.Root)
{
PROFILE_CPU_NAMED("Clusters");
type.Root->UpdateCullDistance();
}
}
#endif
}
static float GlobalDensityScale = 1.0f;
float Foliage::GetGlobalDensityScale()
{
return GlobalDensityScale;
}
bool UpdateFoliageDensityScaling(Actor* actor)
{
if (auto* foliage = dynamic_cast<Foliage*>(actor))
{
foliage->RebuildClusters();
}
return true;
}
void Foliage::SetGlobalDensityScale(float value)
{
value = Math::Saturate(value);
if (Math::NearEqual(value, GlobalDensityScale))
return;
PROFILE_CPU();
GlobalDensityScale = value;
Function<bool(Actor*)> f(UpdateFoliageDensityScaling);
SceneQuery::TreeExecute(f);
}
bool Foliage::Intersects(const Ray& ray, Real& distance, Vector3& normal, int32& instanceIndex)
{
PROFILE_CPU();
instanceIndex = -1;
normal = Vector3::Up;
distance = MAX_Real;
FoliageInstance* instance = nullptr;
#if FOLIAGE_USE_SINGLE_QUAD_TREE
if (Root)
Root->Intersects(this, ray, distance, normal, instance);
#else
Real tmpDistance;
Vector3 tmpNormal;
FoliageInstance* tmpInstance;
for (const auto& type : FoliageTypes)
{
if (type.Root && type.Root->Intersects(this, ray, tmpDistance, tmpNormal, tmpInstance) && tmpDistance < distance)
{
distance = tmpDistance;
normal = tmpNormal;
instance = tmpInstance;
}
}
#endif
if (instance != nullptr)
{
int32 j = 0;
for (auto i = Instances.Begin(); i.IsNotEnd(); ++i)
{
if (&*i == instance)
{
instanceIndex = j;
return true;
}
j++;
}
}
return false;
}
void Foliage::Draw(RenderContext& renderContext)
{
if (Instances.IsEmpty())
return;
PROFILE_CPU();
const RenderView& view = renderContext.View;
// Cache data per foliage instance type
for (auto& type : FoliageTypes)
{
for (int32 j = 0; j < type.Entries.Count(); j++)
{
auto& e = type.Entries[j];
e.ReceiveDecals = type.ReceiveDecals != 0;
e.ShadowsMode = type.ShadowsMode;
}
}
if (renderContext.View.Pass == DrawPass::GlobalSDF)
{
auto globalSDF = GlobalSignDistanceFieldPass::Instance();
BoundingBox globalSDFBounds;
globalSDF->GetCullingData(globalSDFBounds);
#if FOLIAGE_USE_SINGLE_QUAD_TREE
for (auto i = Instances.Begin(); i.IsNotEnd(); ++i)
{
auto& instance = *i;
auto& type = FoliageTypes[instance.Type];
if (type._canDraw && CollisionsHelper::BoxIntersectsSphere(globalSDFBounds, instance.Bounds))
{
const Transform transform = _transform.LocalToWorld(instance.Transform);
BoundingBox bounds;
BoundingBox::FromSphere(instance.Bounds, bounds);
globalSDF->RasterizeModelSDF(this, type.Model->SDF, transform, bounds);
}
}
#else
for (auto& type : FoliageTypes)
{
if (type.Root && FOLIAGE_CAN_DRAW(renderContext, type))
DrawClusterGlobalSDF(globalSDF, globalSDFBounds, type.Root, type);
}
#endif
return;
}
if (renderContext.View.Pass == DrawPass::GlobalSurfaceAtlas)
{
// Draw foliage instances into Global Surface Atlas
auto globalSA = GlobalSurfaceAtlasPass::Instance();
Vector4 cullingPosDistance;
globalSA->GetCullingData(cullingPosDistance);
#if FOLIAGE_USE_SINGLE_QUAD_TREE
for (auto i = Instances.Begin(); i.IsNotEnd(); ++i)
{
auto& instance = *i;
auto& type = FoliageTypes[instance.Type];
if (type._canDraw && CollisionsHelper::DistanceSpherePoint(instance.Bounds, Vector3(cullingPosDistance)) < cullingPosDistance.W)
{
const Transform transform = _transform.LocalToWorld(instance.Transform);
BoundingBox localBounds = type.Model->LODs.Last().GetBox();
globalSA->RasterizeActor(this, &instance, instance.Bounds, transform, localBounds, MAX_uint32, true, 0.5f);
}
}
#else
for (auto& type : FoliageTypes)
{
if (type.Root && FOLIAGE_CAN_DRAW(renderContext, type))
{
BoundingBox localBounds = type.Model->LODs.Last().GetBox();
DrawClusterGlobalSA(globalSA, cullingPosDistance, type.Root, type, localBounds);
}
}
#endif
return;
}
if (EnumHasAnyFlags(renderContext.View.Pass, DrawPass::GlobalSurfaceAtlas))
{
// Draw single foliage instance projection into Global Surface Atlas
auto& instance = *(FoliageInstance*)GlobalSurfaceAtlasPass::Instance()->GetCurrentActorObject();
auto& type = FoliageTypes[instance.Type];
for (int32 i = 0; i < type.Entries.Count(); i++)
{
auto& e = type.Entries[i];
e.ReceiveDecals = type.ReceiveDecals != 0;
e.ShadowsMode = type.ShadowsMode;
}
Matrix world;
const Transform transform = _transform.LocalToWorld(instance.Transform);
renderContext.View.GetWorldMatrix(transform, world);
Mesh::DrawInfo draw;
draw.Flags = GetStaticFlags();
draw.LODBias = 0;
draw.ForcedLOD = -1;
draw.SortOrder = 0;
draw.VertexColors = nullptr;
draw.Lightmap = _scene ? _scene->LightmapsData.GetReadyLightmap(instance.Lightmap.TextureIndex) : nullptr;
draw.LightmapUVs = &instance.Lightmap.UVsArea;
draw.Buffer = &type.Entries;
draw.World = &world;
draw.DrawState = &instance.DrawState;
draw.Deformation = nullptr;
draw.Bounds = instance.Bounds;
draw.PerInstanceRandom = instance.Random;
draw.DrawModes = type.DrawModes & view.Pass & view.GetShadowsDrawPassMask(type.ShadowsMode);
type.Model->Draw(renderContext, draw);
return;
}
// Draw visible clusters
#if FOLIAGE_USE_SINGLE_QUAD_TREE || !FOLIAGE_USE_DRAW_CALLS_BATCHING
Mesh::DrawInfo draw;
draw.Flags = GetStaticFlags();
draw.DrawModes = (DrawPass)(DrawPass::Default & view.Pass);
draw.LODBias = 0;
draw.ForcedLOD = -1;
draw.VertexColors = nullptr;
#else
DrawCallsList drawCallsLists[MODEL_MAX_LODS];
#endif
#if FOLIAGE_USE_SINGLE_QUAD_TREE
if (Root)
DrawCluster(renderContext, Root, draw);
#else
for (auto& type : FoliageTypes)
{
DrawType(renderContext, type, drawCallsLists);
}
#endif
}
void Foliage::Draw(RenderContextBatch& renderContextBatch)
{
if (Instances.IsEmpty())
return;
#if !FOLIAGE_USE_SINGLE_QUAD_TREE
// Run async job for each foliage type
const RenderView& view = renderContextBatch.GetMainContext().View;
if (EnumHasAnyFlags(view.Pass, DrawPass::GBuffer) && !(view.Pass & (DrawPass::GlobalSDF | DrawPass::GlobalSurfaceAtlas)) && renderContextBatch.EnableAsync)
{
// Cache data per foliage instance type
for (FoliageType& type : FoliageTypes)
{
for (int32 j = 0; j < type.Entries.Count(); j++)
{
auto& e = type.Entries[j];
e.ReceiveDecals = type.ReceiveDecals != 0;
e.ShadowsMode = type.ShadowsMode;
}
}
// Run async job for each foliage type
_renderContextBatch = &renderContextBatch;
Function<void(int32)> func;
func.Bind<Foliage, &Foliage::DrawFoliageJob>(this);
const uint64 waitLabel = JobSystem::Dispatch(func, FoliageTypes.Count());
renderContextBatch.WaitLabels.Add(waitLabel);
return;
}
#endif
// Fallback to default rendering
Actor::Draw(renderContextBatch);
}
bool Foliage::IntersectsItself(const Ray& ray, Real& distance, Vector3& normal)
{
int32 instanceIndex;
return Intersects(ray, distance, normal, instanceIndex);
}
// Layout for encoded instance data (serialized as Base64 string)
static constexpr int32 GetInstanceBase64Size(int32 size)
{
// 4 * (n / 3) -> align up to 4
return (size * 4 / 3 + 3) & ~3;
}
// [Deprecated on 30.11.2019, expires on 30.11.2021]
struct InstanceEncoded1
{
int32 Type;
float Random;
Float3 Translation;
Quaternion Orientation;
Float3 Scale;
static constexpr int32 Size = 48;
static constexpr int32 Base64Size = GetInstanceBase64Size(Size);
};
struct InstanceEncoded2
{
int32 Type;
float Random;
Float3 Translation;
Quaternion Orientation;
Float3 Scale;
LightmapEntry Lightmap;
static const int32 Size = 68;
static const int32 Base64Size = GetInstanceBase64Size(Size);
};
typedef InstanceEncoded2 InstanceEncoded;
static_assert(InstanceEncoded::Size == sizeof(InstanceEncoded), "Please update base64 buffer size to match the encoded instance buffer.");
static_assert(InstanceEncoded::Base64Size == GetInstanceBase64Size(sizeof(InstanceEncoded)), "Please update base64 buffer size to match the encoded instance buffer.");
void Foliage::Serialize(SerializeStream& stream, const void* otherObj)
{
// Base
Actor::Serialize(stream, otherObj);
SERIALIZE_GET_OTHER_OBJ(Foliage);
if (FoliageTypes.IsEmpty())
return;
PROFILE_CPU();
stream.JKEY("Foliage");
stream.StartArray();
for (auto& type : FoliageTypes)
{
stream.StartObject();
type.Serialize(stream, nullptr);
stream.EndObject();
}
stream.EndArray();
stream.JKEY("Instances");
stream.StartArray();
InstanceEncoded enc;
char base64[InstanceEncoded::Base64Size + 2];
base64[0] = '\"';
base64[InstanceEncoded::Base64Size + 1] = '\"';
for (auto i = Instances.Begin(); i.IsNotEnd(); ++i)
{
auto& instance = *i;
enc.Type = instance.Type;
enc.Random = instance.Random;
enc.Translation = instance.Transform.Translation;
enc.Orientation = instance.Transform.Orientation;
enc.Scale = instance.Transform.Scale;
enc.Lightmap = instance.Lightmap;
Encryption::Base64Encode((const byte*)&enc, sizeof(enc), base64 + 1);
stream.RawValue(base64, InstanceEncoded::Base64Size + 2);
}
stream.EndArray();
}
void Foliage::Deserialize(DeserializeStream& stream, ISerializeModifier* modifier)
{
// Base
Actor::Deserialize(stream, modifier);
PROFILE_CPU();
// Clear
#if FOLIAGE_USE_SINGLE_QUAD_TREE
Root = nullptr;
Clusters.Release();
#endif
Instances.Release();
FoliageTypes.Resize(0, false);
// Deserialize foliage types
int32 foliageTypesCount = 0;
const auto& foliageTypesMember = stream.FindMember("Foliage");
if (foliageTypesMember != stream.MemberEnd() && foliageTypesMember->value.IsArray())
{
foliageTypesCount = foliageTypesMember->value.Size();
}
if (foliageTypesCount)
{
const DeserializeStream& items = foliageTypesMember->value;;
FoliageTypes.Resize(foliageTypesCount, false);
for (int32 i = 0; i < foliageTypesCount; i++)
{
FoliageTypes[i].Foliage = this;
FoliageTypes[i].Index = i;
FoliageTypes[i].Deserialize((DeserializeStream&)items[i], modifier);
}
}
// Skip if no foliage
if (FoliageTypes.IsEmpty())
return;
// Deserialize foliage instances
int32 foliageInstancesCount = 0;
const auto& foliageInstancesMember = stream.FindMember("Instances");
if (foliageInstancesMember != stream.MemberEnd() && foliageInstancesMember->value.IsArray())
{
foliageInstancesCount = foliageInstancesMember->value.Size();
}
if (foliageInstancesCount)
{
const DeserializeStream& items = foliageInstancesMember->value;
Instances.Resize(foliageInstancesCount);
if (modifier->EngineBuild <= 6189)
{
// [Deprecated on 30.11.2019, expires on 30.11.2021]
InstanceEncoded1 enc;
for (int32 i = 0; i < foliageInstancesCount; i++)
{
auto& instance = Instances[i];
auto& item = items[i];
const int32 length = item.GetStringLength();
if (length != InstanceEncoded1::Base64Size)
{
LOG(Warning, "Invalid foliage instance data size.");
continue;
}
Encryption::Base64Decode(item.GetString(), length, (byte*)&enc);
instance.Type = enc.Type;
instance.Random = enc.Random;
instance.Transform.Translation = enc.Translation;
instance.Transform.Orientation = enc.Orientation;
instance.Transform.Scale = enc.Scale;
instance.Lightmap = LightmapEntry();
}
}
else
{
InstanceEncoded enc;
for (int32 i = 0; i < foliageInstancesCount; i++)
{
auto& instance = Instances[i];
auto& item = items[i];
const int32 length = item.GetStringLength();
if (length != InstanceEncoded::Base64Size)
{
LOG(Warning, "Invalid foliage instance data size.");
continue;
}
Encryption::Base64Decode(item.GetString(), length, (byte*)&enc);
instance.Type = enc.Type;
instance.Random = enc.Random;
instance.Transform.Translation = enc.Translation;
instance.Transform.Orientation = enc.Orientation;
instance.Transform.Scale = enc.Scale;
instance.Lightmap = enc.Lightmap;
}
}
#if BUILD_DEBUG
// Remove invalid instances
for (auto i = Instances.Begin(); i.IsNotEnd(); ++i)
{
if (i->Type < 0 || i->Type >= FoliageTypes.Count())
{
LOG(Warning, "Removing invalid foliage instance.");
Instances.Remove(i);
--i;
}
}
#endif
// Update cull distance
for (auto i = Instances.Begin(); i.IsNotEnd(); ++i)
{
auto& instance = *i;
auto& type = FoliageTypes[instance.Type];
instance.CullDistance = type.CullDistance + type.CullDistanceRandomRange * instance.Random;
}
}
}
void Foliage::OnLayerChanged()
{
if (_sceneRenderingKey != -1)
GetSceneRendering()->UpdateActor(this, _sceneRenderingKey);
}
void Foliage::OnEnable()
{
GetSceneRendering()->AddActor(this, _sceneRenderingKey);
// Base
Actor::OnEnable();
}
void Foliage::OnDisable()
{
GetSceneRendering()->RemoveActor(this, _sceneRenderingKey);
// Base
Actor::OnDisable();
}
void Foliage::OnTransformChanged()
{
// Base
Actor::OnTransformChanged();
PROFILE_CPU();
// Update instances matrices and cached world bounds
Vector3 corners[8];
Matrix world;
GetLocalToWorldMatrix(world);
for (auto i = Instances.Begin(); i.IsNotEnd(); ++i)
{
auto& instance = *i;
auto type = &FoliageTypes[instance.Type];
// Update bounds
instance.Bounds = BoundingSphere::Empty;
if (!type->IsReady())
continue;
auto& meshes = type->Model->LODs[0].Meshes;
const Transform transform = _transform.LocalToWorld(instance.Transform);
for (int32 j = 0; j < meshes.Count(); j++)
{
meshes[j].GetBox().GetCorners(corners);
for (int32 k = 0; k < 8; k++)
{
Vector3::Transform(corners[k], transform, corners[k]);
}
BoundingSphere meshBounds;
BoundingSphere::FromPoints(corners, 8, meshBounds);
BoundingSphere::Merge(instance.Bounds, meshBounds, instance.Bounds);
}
}
RebuildClusters();
}