Files
FlaxEngine/Source/Engine/Graphics/Models/ModelData.cpp
2024-04-22 13:18:52 +02:00

979 lines
29 KiB
C++

// Copyright (c) 2012-2024 Wojciech Figat. All rights reserved.
#include "ModelData.h"
#include "Engine/Core/Log.h"
#include "Engine/Core/Math/BoundingBox.h"
#include "Engine/Core/Math/BoundingSphere.h"
#include "Engine/Animations/CurveSerialization.h"
#include "Engine/Serialization/WriteStream.h"
#include "Engine/Debug/Exceptions/ArgumentNullException.h"
#include "Engine/Debug/Exceptions/ArgumentOutOfRangeException.h"
#include "Engine/Debug/Exceptions/InvalidOperationException.h"
void MeshData::Clear()
{
MaterialSlotIndex = 0;
NodeIndex = 0;
Positions.Clear();
Indices.Clear();
UVs.Clear();
Normals.Clear();
Tangents.Clear();
BitangentSigns.Clear();
LightmapUVs.Clear();
Colors.Clear();
BlendIndices.Clear();
BlendWeights.Clear();
BlendShapes.Clear();
}
void MeshData::EnsureCapacity(int32 vertices, int32 indices, bool preserveContents, bool withColors, bool withSkin)
{
Positions.EnsureCapacity(vertices, preserveContents);
Indices.EnsureCapacity(indices, preserveContents);
UVs.EnsureCapacity(vertices, preserveContents);
Normals.EnsureCapacity(vertices, preserveContents);
Tangents.EnsureCapacity(vertices, preserveContents);
LightmapUVs.EnsureCapacity(vertices, preserveContents);
Colors.EnsureCapacity(withColors ? vertices : 0, preserveContents);
BlendIndices.EnsureCapacity(withSkin ? vertices : 0, preserveContents);
BlendWeights.EnsureCapacity(withSkin ? vertices : 0, preserveContents);
}
void MeshData::SwapBuffers(MeshData& other)
{
Positions.Swap(other.Positions);
Indices.Swap(other.Indices);
UVs.Swap(other.UVs);
Normals.Swap(other.Normals);
Tangents.Swap(other.Tangents);
BitangentSigns.Swap(other.BitangentSigns);
LightmapUVs.Swap(other.LightmapUVs);
Colors.Swap(other.Colors);
BlendIndices.Swap(other.BlendIndices);
BlendWeights.Swap(other.BlendWeights);
BlendShapes.Swap(other.BlendShapes);
}
void MeshData::Release()
{
MaterialSlotIndex = 0;
Positions.Resize(0);
Indices.Resize(0);
UVs.Resize(0);
Normals.Resize(0);
Tangents.Resize(0);
BitangentSigns.Resize(0);
LightmapUVs.Resize(0);
Colors.Resize(0);
BlendIndices.Resize(0);
BlendWeights.Resize(0);
BlendShapes.Resize(0);
}
void MeshData::InitFromModelVertices(ModelVertex19* vertices, uint32 verticesCount)
{
Positions.Resize(verticesCount, false);
UVs.Resize(verticesCount, false);
Normals.Resize(verticesCount, false);
Tangents.Resize(verticesCount, false);
BitangentSigns.Resize(0);
LightmapUVs.Resize(verticesCount, false);
Colors.Resize(0);
BlendIndices.Resize(0);
BlendWeights.Resize(0);
BlendShapes.Resize(0);
for (uint32 i = 0; i < verticesCount; i++)
{
Positions[i] = vertices->Position;
UVs[i] = vertices->TexCoord.ToFloat2();
Normals[i] = vertices->Normal.ToFloat3() * 2.0f - 1.0f;
Tangents[i] = vertices->Tangent.ToFloat3() * 2.0f - 1.0f;
LightmapUVs[i] = vertices->LightmapUVs.ToFloat2();
Colors[i] = Color(vertices->Color);
vertices++;
}
}
void MeshData::InitFromModelVertices(ModelVertex18* vertices, uint32 verticesCount)
{
Positions.Resize(verticesCount, false);
UVs.Resize(verticesCount, false);
Normals.Resize(verticesCount, false);
Tangents.Resize(verticesCount, false);
BitangentSigns.Resize(0);
LightmapUVs.Resize(verticesCount, false);
Colors.Resize(0);
BlendIndices.Resize(0);
BlendWeights.Resize(0);
BlendShapes.Resize(0);
for (uint32 i = 0; i < verticesCount; i++)
{
Positions[i] = vertices->Position;
UVs[i] = vertices->TexCoord.ToFloat2();
Normals[i] = vertices->Normal.ToFloat3() * 2.0f - 1.0f;
Tangents[i] = vertices->Tangent.ToFloat3() * 2.0f - 1.0f;
LightmapUVs[i] = vertices->LightmapUVs.ToFloat2();
vertices++;
}
}
void MeshData::InitFromModelVertices(ModelVertex15* vertices, uint32 verticesCount)
{
Positions.Resize(verticesCount, false);
UVs.Resize(verticesCount, false);
Normals.Resize(verticesCount, false);
Tangents.Resize(verticesCount, false);
BitangentSigns.Resize(0);
LightmapUVs.Resize(0);
Colors.Resize(0);
BlendIndices.Resize(0);
BlendWeights.Resize(0);
BlendShapes.Resize(0);
for (uint32 i = 0; i < verticesCount; i++)
{
Positions[i] = vertices->Position;
UVs[i] = vertices->TexCoord.ToFloat2();
Normals[i] = vertices->Normal.ToFloat3() * 2.0f - 1.0f;
Tangents[i] = vertices->Tangent.ToFloat3() * 2.0f - 1.0f;
vertices++;
}
}
void MeshData::InitFromModelVertices(VB0ElementType18* vb0, VB1ElementType18* vb1, uint32 verticesCount)
{
Positions.Resize(verticesCount, false);
UVs.Resize(verticesCount, false);
Normals.Resize(verticesCount, false);
Tangents.Resize(verticesCount, false);
BitangentSigns.Resize(0);
LightmapUVs.Resize(verticesCount, false);
Colors.Resize(0);
BlendIndices.Resize(0);
BlendWeights.Resize(0);
BlendShapes.Resize(0);
for (uint32 i = 0; i < verticesCount; i++)
{
Positions[i] = vb0->Position;
UVs[i] = vb1->TexCoord.ToFloat2();
Normals[i] = vb1->Normal.ToFloat3() * 2.0f - 1.0f;
Tangents[i] = vb1->Tangent.ToFloat3() * 2.0f - 1.0f;
LightmapUVs[i] = vb1->LightmapUVs.ToFloat2();
vb0++;
vb1++;
}
}
void MeshData::InitFromModelVertices(VB0ElementType18* vb0, VB1ElementType18* vb1, VB2ElementType18* vb2, uint32 verticesCount)
{
Positions.Resize(verticesCount, false);
UVs.Resize(verticesCount, false);
Normals.Resize(verticesCount, false);
Tangents.Resize(verticesCount, false);
BitangentSigns.Resize(0);
LightmapUVs.Resize(verticesCount, false);
if (vb2)
{
Colors.Resize(verticesCount, false);
}
else
{
Colors.Resize(0);
}
BlendIndices.Resize(0);
BlendWeights.Resize(0);
BlendShapes.Resize(0);
for (uint32 i = 0; i < verticesCount; i++)
{
Positions[i] = vb0->Position;
UVs[i] = vb1->TexCoord.ToFloat2();
Normals[i] = vb1->Normal.ToFloat3() * 2.0f - 1.0f;
Tangents[i] = vb1->Tangent.ToFloat3() * 2.0f - 1.0f;
LightmapUVs[i] = vb1->LightmapUVs.ToFloat2();
if (vb2)
{
Colors[i] = Color(vb2->Color);
vb2++;
}
vb0++;
vb1++;
}
}
void MeshData::InitFromModelVertices(VB0ElementType15* vb0, VB1ElementType15* vb1, uint32 verticesCount)
{
Positions.Resize(verticesCount, false);
UVs.Resize(verticesCount, false);
Normals.Resize(verticesCount, false);
Tangents.Resize(verticesCount, false);
BitangentSigns.Resize(0);
LightmapUVs.Resize(0, false);
Colors.Resize(0);
BlendIndices.Resize(0);
BlendWeights.Resize(0);
BlendShapes.Resize(0);
for (uint32 i = 0; i < verticesCount; i++)
{
Positions[i] = vb0->Position;
UVs[i] = vb1->TexCoord.ToFloat2();
Normals[i] = vb1->Normal.ToFloat3() * 2.0f - 1.0f;
Tangents[i] = vb1->Tangent.ToFloat3() * 2.0f - 1.0f;
vb0++;
vb1++;
}
}
void MeshData::SetIndexBuffer(void* data, uint32 indicesCount)
{
bool use16BitIndexBuffer = indicesCount <= MAX_uint16;
Indices.Resize(indicesCount, false);
if (use16BitIndexBuffer)
{
auto ib16 = static_cast<uint16*>(data);
for (uint32 a = 0; a < indicesCount; a++)
Indices[a] = *ib16++;
}
else
{
auto ib32 = static_cast<uint32*>(data);
for (uint32 a = 0; a < indicesCount; a++)
Indices[a] = *ib32++;
}
}
bool MeshData::Pack2Model(WriteStream* stream) const
{
// Validate input
if (stream == nullptr)
{
LOG(Error, "Invalid input.");
return true;
}
// Cache size
uint32 verticiecCount = Positions.Count();
uint32 indicesCount = Indices.Count();
uint32 trianglesCount = indicesCount / 3;
bool use16Bit = indicesCount <= MAX_uint16;
if (verticiecCount == 0 || trianglesCount == 0 || indicesCount % 3 != 0)
{
LOG(Error, "Empty mesh! Triangles: {0}, Verticies: {1}.", trianglesCount, verticiecCount);
return true;
}
// Validate data structure
bool hasUVs = UVs.HasItems();
if (hasUVs && UVs.Count() != verticiecCount)
{
LOG(Error, "Invalid size of {0} stream.", TEXT("UVs"));
return true;
}
bool hasNormals = Normals.HasItems();
if (hasNormals && Normals.Count() != verticiecCount)
{
LOG(Error, "Invalid size of {0} stream.", TEXT("Normals"));
return true;
}
bool hasTangents = Tangents.HasItems();
if (hasTangents && Tangents.Count() != verticiecCount)
{
LOG(Error, "Invalid size of {0} stream.", TEXT("Tangents"));
return true;
}
bool hasBitangentSigns = BitangentSigns.HasItems();
if (hasBitangentSigns && BitangentSigns.Count() != verticiecCount)
{
LOG(Error, "Invalid size of {0} stream.", TEXT("BitangentSigns"));
return true;
}
bool hasLightmapUVs = LightmapUVs.HasItems();
if (hasLightmapUVs && LightmapUVs.Count() != verticiecCount)
{
LOG(Error, "Invalid size of {0} stream.", TEXT("LightmapUVs"));
return true;
}
bool hasVertexColors = Colors.HasItems();
if (hasVertexColors && Colors.Count() != verticiecCount)
{
LOG(Error, "Invalid size of {0} stream.", TEXT("Colors"));
return true;
}
// Vertices
stream->WriteUint32(verticiecCount);
// Triangles
stream->WriteUint32(trianglesCount);
// Vertex Buffer 0
stream->WriteBytes(Positions.Get(), sizeof(Float3) * verticiecCount);
// Vertex Buffer 1
VB1ElementType vb1;
for (uint32 i = 0; i < verticiecCount; i++)
{
// Get vertex components
Float2 uv = hasUVs ? UVs[i] : Float2::Zero;
Float3 normal = hasNormals ? Normals[i] : Float3::UnitZ;
Float3 tangent = hasTangents ? Tangents[i] : Float3::UnitX;
Float2 lightmapUV = hasLightmapUVs ? LightmapUVs[i] : Float2::Zero;
Float3 bitangentSign = hasBitangentSigns ? BitangentSigns[i] : Float3::Dot(Float3::Cross(Float3::Normalize(Float3::Cross(normal, tangent)), normal), tangent);
// Write vertex
vb1.TexCoord = Half2(uv);
vb1.Normal = Float1010102(normal * 0.5f + 0.5f, 0);
vb1.Tangent = Float1010102(tangent * 0.5f + 0.5f, static_cast<byte>(bitangentSign < 0 ? 1 : 0));
vb1.LightmapUVs = Half2(lightmapUV);
stream->WriteBytes(&vb1, sizeof(vb1));
// Pack TBN matrix into a quaternion
/*Quaternion quaternionTBN;
bool invertedHandednessTBN;
CalculateQuaternionFromTBN(tangent, bitangent, normal, &quaternionTBN, &invertedHandednessTBN);
quaternionTBN.Normalize();
uint32 packedQuaternionTBN = QuantizeNormalizedQuaternionWithHandedness(quaternionTBN, invertedHandednessTBN);
Float4 unpackedQuaternionTBN = Float4(quaternionTBN.X, quaternionTBN.Y, quaternionTBN.Z, ((invertedHandednessTBN ? 0.0f : 128.0f) + (127.0f * (quaternionTBN.W * 0.5f + 0.5f))) / 255.0f);
//lods.WriteUint32(packedQuaternionTBN);
//lods.WriteFloat4(unpackedQuaternionTBN);
*/
}
// Vertex Buffer 2
stream->WriteBool(hasVertexColors);
if (hasVertexColors)
{
VB2ElementType vb2;
for (uint32 i = 0; i < verticiecCount; i++)
{
vb2.Color = Color32(Colors[i]);
stream->WriteBytes(&vb2, sizeof(vb2));
}
}
// Index Buffer
if (use16Bit)
{
for (uint32 i = 0; i < indicesCount; i++)
stream->WriteUint16(Indices[i]);
}
else
{
stream->WriteBytes(Indices.Get(), sizeof(uint32) * indicesCount);
}
return false;
}
bool MeshData::Pack2SkinnedModel(WriteStream* stream) const
{
// Validate input
if (stream == nullptr)
{
LOG(Error, "Invalid input.");
return true;
}
// Cache size
uint32 verticiecCount = Positions.Count();
uint32 indicesCount = Indices.Count();
uint32 trianglesCount = indicesCount / 3;
bool use16Bit = indicesCount <= MAX_uint16;
if (verticiecCount == 0 || trianglesCount == 0 || indicesCount % 3 != 0)
{
LOG(Error, "Empty mesh! Triangles: {0}, Verticies: {1}.", trianglesCount, verticiecCount);
return true;
}
// Validate data structure
bool hasUVs = UVs.HasItems();
if (hasUVs && UVs.Count() != verticiecCount)
{
LOG(Error, "Invalid size of {0} stream.", TEXT( "UVs"));
return true;
}
bool hasNormals = Normals.HasItems();
if (hasNormals && Normals.Count() != verticiecCount)
{
LOG(Error, "Invalid size of {0} stream.", TEXT("Normals"));
return true;
}
bool hasTangents = Tangents.HasItems();
if (hasTangents && Tangents.Count() != verticiecCount)
{
LOG(Error, "Invalid size of {0} stream.", TEXT("Tangents"));
return true;
}
bool hasBitangentSigns = BitangentSigns.HasItems();
if (hasBitangentSigns && BitangentSigns.Count() != verticiecCount)
{
LOG(Error, "Invalid size of {0} stream.", TEXT("BitangentSigns"));
return true;
}
if (BlendIndices.Count() != verticiecCount)
{
LOG(Error, "Invalid size of {0} stream.", TEXT("BlendIndices"));
return true;
}
if (BlendWeights.Count() != verticiecCount)
{
LOG(Error, "Invalid size of {0} stream.", TEXT("BlendWeights"));
return true;
}
// Vertices
stream->WriteUint32(verticiecCount);
// Triangles
stream->WriteUint32(trianglesCount);
// Blend Shapes
stream->WriteUint16(BlendShapes.Count());
for (const auto& blendShape : BlendShapes)
{
stream->WriteBool(blendShape.UseNormals);
stream->WriteUint32(blendShape.MinVertexIndex);
stream->WriteUint32(blendShape.MaxVertexIndex);
stream->WriteUint32(blendShape.Vertices.Count());
stream->WriteBytes(blendShape.Vertices.Get(), blendShape.Vertices.Count() * sizeof(BlendShapeVertex));
}
// Vertex Buffer
VB0SkinnedElementType vb;
for (uint32 i = 0; i < verticiecCount; i++)
{
// Get vertex components
Float2 uv = hasUVs ? UVs[i] : Float2::Zero;
Float3 normal = hasNormals ? Normals[i] : Float3::UnitZ;
Float3 tangent = hasTangents ? Tangents[i] : Float3::UnitX;
Float3 bitangentSign = hasBitangentSigns ? BitangentSigns[i] : Float3::Dot(Float3::Cross(Float3::Normalize(Float3::Cross(normal, tangent)), normal), tangent);
Int4 blendIndices = BlendIndices[i];
Float4 blendWeights = BlendWeights[i];
// Write vertex
vb.Position = Positions[i];
vb.TexCoord = Half2(uv);
vb.Normal = Float1010102(normal * 0.5f + 0.5f, 0);
vb.Tangent = Float1010102(tangent * 0.5f + 0.5f, static_cast<byte>(bitangentSign < 0 ? 1 : 0));
vb.BlendIndices = Color32(blendIndices.X, blendIndices.Y, blendIndices.Z, blendIndices.W);
vb.BlendWeights = Half4(blendWeights);
stream->WriteBytes(&vb, sizeof(vb));
}
// Index Buffer
if (use16Bit)
{
for (uint32 i = 0; i < indicesCount; i++)
stream->WriteUint16(Indices[i]);
}
else
{
stream->WriteBytes(Indices.Get(), sizeof(uint32) * indicesCount);
}
return false;
}
void MeshData::CalculateBox(BoundingBox& result) const
{
if (Positions.HasItems())
BoundingBox::FromPoints(Positions.Get(), Positions.Count(), result);
}
void MeshData::CalculateSphere(BoundingSphere& result) const
{
if (Positions.HasItems())
BoundingSphere::FromPoints(Positions.Get(), Positions.Count(), result);
}
void MeshData::TransformBuffer(const Matrix& matrix)
{
// Compute matrix inverse transpose
Matrix inverseTransposeMatrix;
Matrix::Invert(matrix, inverseTransposeMatrix);
Matrix::Transpose(inverseTransposeMatrix, inverseTransposeMatrix);
// Transform blend shapes
for (auto& blendShape : BlendShapes)
{
const auto vv = blendShape.Vertices.Get();
for (int32 i = 0; i < blendShape.Vertices.Count(); i++)
{
auto& v = vv[i];
Float3 p = Positions[v.VertexIndex];
Float3 vp = p + v.PositionDelta;
Float3::Transform(vp, matrix, vp);
Float3::Transform(p, matrix, p);
v.PositionDelta = vp - p;
Float3 n = Normals[v.VertexIndex];
Float3 vn = n + v.NormalDelta;
vn.Normalize();
Float3::TransformNormal(vn, inverseTransposeMatrix, vn);
vn.Normalize();
Float3::TransformNormal(n, inverseTransposeMatrix, n);
n.Normalize();
v.NormalDelta = vn - n;
}
}
// Transform positions
const auto pp = Positions.Get();
for (int32 i = 0; i < Positions.Count(); i++)
{
auto& p = pp[i];
Float3::Transform(p, matrix, p);
}
// Transform normals and tangents
const auto nn = Normals.Get();
for (int32 i = 0; i < Normals.Count(); i++)
{
auto& n = nn[i];
Float3::TransformNormal(n, inverseTransposeMatrix, n);
n.Normalize();
}
const auto tt = Tangents.Get();
for (int32 i = 0; i < Tangents.Count(); i++)
{
auto& t = tt[i];
Float3::TransformNormal(t, inverseTransposeMatrix, t);
t.Normalize();
}
}
void MeshData::NormalizeBlendWeights()
{
ASSERT(Positions.Count() == BlendWeights.Count());
for (int32 i = 0; i < Positions.Count(); i++)
{
Float4& weights = BlendWeights.Get()[i];
const float sum = weights.SumValues();
const float invSum = sum > ZeroTolerance ? 1.0f / sum : 0.0f;
weights *= invSum;
}
}
void MeshData::Merge(MeshData& other)
{
// Merge index buffer (and remap indices)
const uint32 vertexIndexOffset = Positions.Count();
const int32 indicesStart = Indices.Count();
const int32 indicesEnd = indicesStart + other.Indices.Count();
Indices.Add(other.Indices);
for (int32 i = indicesStart; i < indicesEnd; i++)
{
Indices[i] += vertexIndexOffset;
}
// Merge vertex buffer
#define MERGE(item, defautValue) \
if (item.HasItems() && other.item.HasItems()) \
item.Add(other.item); \
else if (item.HasItems() && !other.item.HasItems()) \
for (int32 i = 0; i < other.Positions.Count(); i++) item.Add(defautValue); \
else if (!item.HasItems() && other.item.HasItems()) \
for (int32 i = 0; i < Positions.Count(); i++) item.Add(defautValue)
MERGE(Positions, Float3::Zero);
MERGE(UVs, Float2::Zero);
MERGE(Normals, Float3::Forward);
MERGE(Tangents, Float3::Right);
MERGE(BitangentSigns, 1.0f);
MERGE(LightmapUVs, Float2::Zero);
MERGE(Colors, Color::Black);
MERGE(BlendIndices, Int4::Zero);
MERGE(BlendWeights, Float4::Zero);
#undef MERGE
// Merge blend shapes
for (auto& otherBlendShape : other.BlendShapes)
{
BlendShape* blendShape = nullptr;
for (int32 i = 0; i < BlendShapes.Count(); i++)
{
if (BlendShapes[i].Name == otherBlendShape.Name)
{
blendShape = &BlendShapes[i];
break;
}
}
if (!blendShape)
{
blendShape = &BlendShapes.AddOne();
blendShape->Name = otherBlendShape.Name;
blendShape->Weight = otherBlendShape.Weight;
}
const int32 startIndex = blendShape->Vertices.Count();
blendShape->Vertices.Add(otherBlendShape.Vertices);
for (int32 i = startIndex; i < blendShape->Vertices.Count(); i++)
{
blendShape->Vertices[i].VertexIndex += vertexIndexOffset;
}
}
}
bool MaterialSlotEntry::UsesProperties() const
{
return Diffuse.Color != Color::White ||
Diffuse.TextureIndex != -1 ||
Emissive.Color != Color::Transparent ||
Emissive.TextureIndex != -1 ||
!Math::IsOne(Opacity.Value) ||
Opacity.TextureIndex != -1 ||
Math::NotNearEqual(Roughness.Value, 0.5f) ||
Roughness.TextureIndex != -1 ||
Normals.TextureIndex != -1;
}
float MaterialSlotEntry::ShininessToRoughness(float shininess)
{
// https://github.com/assimp/assimp/issues/4573
const float a = -1.0f;
const float b = 2.0f;
const float c = (shininess / 100) - 1;
const float d = b * b - (4 * a * c);
return (-b + Math::Sqrt(d)) / (2 * a);
}
ModelLodData::~ModelLodData()
{
Meshes.ClearDelete();
}
BoundingBox ModelLodData::GetBox() const
{
if (Meshes.IsEmpty())
return BoundingBox::Empty;
BoundingBox bounds;
Meshes[0]->CalculateBox(bounds);
for (int32 i = 1; i < Meshes.Count(); i++)
{
BoundingBox b;
Meshes[i]->CalculateBox(b);
BoundingBox::Merge(bounds, b, bounds);
}
return bounds;
}
void ModelData::CalculateLODsScreenSizes()
{
const float autoComputeLodPowerBase = 0.5f;
const int32 lodCount = LODs.Count();
for (int32 lodIndex = 0; lodIndex < lodCount; lodIndex++)
{
auto& lod = LODs[lodIndex];
if (lodIndex == 0)
{
lod.ScreenSize = 1.0f;
}
else
{
lod.ScreenSize = Math::Pow(autoComputeLodPowerBase, (float)lodIndex);
}
}
MinScreenSize = 0.01f;
}
void ModelData::TransformBuffer(const Matrix& matrix)
{
for (int32 lodIndex = 0; lodIndex < LODs.Count(); lodIndex++)
{
auto& lod = LODs[lodIndex];
for (int32 meshIndex = 0; meshIndex < lod.Meshes.Count(); meshIndex++)
{
lod.Meshes[meshIndex]->TransformBuffer(matrix);
}
}
}
#if USE_EDITOR
bool ModelData::Pack2ModelHeader(WriteStream* stream) const
{
// Validate input
if (stream == nullptr)
{
Log::ArgumentNullException();
return true;
}
const int32 lodCount = GetLODsCount();
if (lodCount == 0 || lodCount > MODEL_MAX_LODS)
{
Log::ArgumentOutOfRangeException();
return true;
}
if (Materials.IsEmpty())
{
Log::ArgumentOutOfRangeException(TEXT("MaterialSlots"), TEXT("Material slots collection cannot be empty."));
return true;
}
// Min Screen Size
stream->WriteFloat(MinScreenSize);
// Amount of material slots
stream->WriteInt32(Materials.Count());
// For each material slot
for (int32 materialSlotIndex = 0; materialSlotIndex < Materials.Count(); materialSlotIndex++)
{
auto& slot = Materials[materialSlotIndex];
stream->Write(slot.AssetID);
stream->WriteByte(static_cast<byte>(slot.ShadowsMode));
stream->WriteString(slot.Name, 11);
}
// Amount of LODs
stream->WriteByte(lodCount);
// For each LOD
for (int32 lodIndex = 0; lodIndex < lodCount; lodIndex++)
{
auto& lod = LODs[lodIndex];
// Screen Size
stream->WriteFloat(lod.ScreenSize);
// Amount of meshes
const int32 meshes = lod.Meshes.Count();
if (meshes == 0)
{
LOG(Warning, "Empty LOD.");
return true;
}
if (meshes > MODEL_MAX_MESHES)
{
LOG(Warning, "Too many meshes per LOD.");
return true;
}
stream->WriteUint16(meshes);
// For each mesh
for (int32 meshIndex = 0; meshIndex < meshes; meshIndex++)
{
auto& mesh = *lod.Meshes[meshIndex];
// Material Slot
stream->WriteInt32(mesh.MaterialSlotIndex);
// Box
BoundingBox box;
mesh.CalculateBox(box);
stream->WriteBoundingBox(box);
// Sphere
BoundingSphere sphere;
mesh.CalculateSphere(sphere);
stream->WriteBoundingSphere(sphere);
// TODO: calculate Sphere and Box at once - make it faster using SSE
// Has Lightmap UVs
stream->WriteBool(mesh.LightmapUVs.HasItems());
}
}
return false;
}
bool ModelData::Pack2SkinnedModelHeader(WriteStream* stream) const
{
// Validate input
if (stream == nullptr)
{
Log::ArgumentNullException();
return true;
}
const int32 lodCount = GetLODsCount();
if (lodCount > MODEL_MAX_LODS)
{
Log::ArgumentOutOfRangeException();
return true;
}
// Version
stream->WriteByte(1);
// Min Screen Size
stream->WriteFloat(MinScreenSize);
// Amount of material slots
stream->WriteInt32(Materials.Count());
// For each material slot
for (int32 materialSlotIndex = 0; materialSlotIndex < Materials.Count(); materialSlotIndex++)
{
auto& slot = Materials[materialSlotIndex];
stream->Write(slot.AssetID);
stream->WriteByte(static_cast<byte>(slot.ShadowsMode));
stream->WriteString(slot.Name, 11);
}
// Amount of LODs
stream->WriteByte(lodCount);
// For each LOD
for (int32 lodIndex = 0; lodIndex < lodCount; lodIndex++)
{
auto& lod = LODs[lodIndex];
// Screen Size
stream->WriteFloat(lod.ScreenSize);
// Amount of meshes
const int32 meshes = lod.Meshes.Count();
if (meshes > MODEL_MAX_MESHES)
{
LOG(Warning, "Too many meshes per LOD.");
return true;
}
stream->WriteUint16(meshes);
// For each mesh
for (int32 meshIndex = 0; meshIndex < meshes; meshIndex++)
{
auto& mesh = *lod.Meshes[meshIndex];
// Material Slot
stream->WriteInt32(mesh.MaterialSlotIndex);
// Box
BoundingBox box;
mesh.CalculateBox(box);
stream->WriteBoundingBox(box);
// Sphere
BoundingSphere sphere;
mesh.CalculateSphere(sphere);
stream->WriteBoundingSphere(sphere);
// TODO: calculate Sphere and Box at once - make it faster using SSE
// Blend Shapes
const int32 blendShapes = mesh.BlendShapes.Count();
stream->WriteUint16(blendShapes);
for (int32 blendShapeIndex = 0; blendShapeIndex < blendShapes; blendShapeIndex++)
{
auto& blendShape = mesh.BlendShapes[blendShapeIndex];
stream->WriteString(blendShape.Name, 13);
stream->WriteFloat(blendShape.Weight);
}
}
}
// Skeleton
{
stream->WriteInt32(Skeleton.Nodes.Count());
// For each node
for (int32 nodeIndex = 0; nodeIndex < Skeleton.Nodes.Count(); nodeIndex++)
{
auto& node = Skeleton.Nodes[nodeIndex];
stream->Write(node.ParentIndex);
stream->WriteTransform(node.LocalTransform);
stream->WriteString(node.Name, 71);
}
stream->WriteInt32(Skeleton.Bones.Count());
// For each bone
for (int32 boneIndex = 0; boneIndex < Skeleton.Bones.Count(); boneIndex++)
{
auto& bone = Skeleton.Bones[boneIndex];
stream->Write(bone.ParentIndex);
stream->Write(bone.NodeIndex);
stream->WriteTransform(bone.LocalTransform);
stream->Write(bone.OffsetMatrix);
}
}
// Retargeting
{
stream->WriteInt32(0);
}
return false;
}
bool ModelData::Pack2AnimationHeader(WriteStream* stream, int32 animIndex) const
{
// Validate input
if (stream == nullptr || animIndex < 0 || animIndex >= Animations.Count())
{
Log::ArgumentNullException();
return true;
}
auto& anim = Animations.Get()[animIndex];
if (anim.Duration <= ZeroTolerance || anim.FramesPerSecond <= ZeroTolerance)
{
Log::InvalidOperationException(TEXT("Invalid animation duration."));
return true;
}
if (anim.Channels.IsEmpty())
{
Log::ArgumentOutOfRangeException(TEXT("Channels"), TEXT("Animation channels collection cannot be empty."));
return true;
}
// Info
stream->WriteInt32(103); // Header version (for fast version upgrades without serialization format change)
stream->WriteDouble(anim.Duration);
stream->WriteDouble(anim.FramesPerSecond);
stream->WriteByte((byte)anim.RootMotionFlags);
stream->WriteString(anim.RootNodeName, 13);
// Animation channels
stream->WriteInt32(anim.Channels.Count());
for (int32 i = 0; i < anim.Channels.Count(); i++)
{
auto& channel = anim.Channels[i];
stream->WriteString(channel.NodeName, 172);
Serialization::Serialize(*stream, channel.Position);
Serialization::Serialize(*stream, channel.Rotation);
Serialization::Serialize(*stream, channel.Scale);
}
// Animation events
stream->WriteInt32(anim.Events.Count());
for (auto& e : anim.Events)
{
stream->WriteString(e.First, 172);
stream->WriteInt32(e.Second.GetKeyframes().Count());
for (const auto& k : e.Second.GetKeyframes())
{
stream->WriteFloat(k.Time);
stream->WriteFloat(k.Value.Duration);
stream->WriteStringAnsi(k.Value.TypeName, 17);
stream->WriteJson(k.Value.JsonData);
}
}
// Nested animations
stream->WriteInt32(0);
return false;
}
#endif