Files
FlaxEngine/Source/Engine/Core/Math/Mathd.h
2023-01-10 15:29:37 +01:00

334 lines
9.9 KiB
C++

// Copyright (c) 2012-2023 Wojciech Figat. All rights reserved.
#pragma once
#include "Engine/Core/Types/BaseTypes.h"
#include <math.h>
namespace Math
{
/// <summary>
/// Computes the sine and cosine of a scalar double.
/// </summary>
/// <param name="angle">The input angle (in radians).</param>
/// <param name="sine">The output sine value.</param>
/// <param name="cosine">The output cosine value.</param>
FLAXENGINE_API void SinCos(double angle, double& sine, double& cosine);
static FORCE_INLINE double Trunc(double value)
{
return trunc(value);
}
static FORCE_INLINE double Round(double value)
{
return round(value);
}
static FORCE_INLINE double Floor(double value)
{
return floor(value);
}
static FORCE_INLINE double Ceil(double value)
{
return ceil(value);
}
static FORCE_INLINE double Sin(double value)
{
return sin(value);
}
static FORCE_INLINE double Asin(double value)
{
return asin(value < -1. ? -1. : value < 1. ? value : 1.);
}
static FORCE_INLINE double Sinh(double value)
{
return sinh(value);
}
static FORCE_INLINE double Cos(double value)
{
return cos(value);
}
static FORCE_INLINE double Acos(double value)
{
return acos(value < -1. ? -1. : value < 1. ? value : 1.);
}
static FORCE_INLINE double Tan(double value)
{
return tan(value);
}
static FORCE_INLINE double Atan(double value)
{
return atan(value);
}
static FORCE_INLINE double Atan2(double y, double x)
{
return atan2(y, x);
}
static FORCE_INLINE double InvSqrt(double value)
{
return 1.0 / sqrt(value);
}
static FORCE_INLINE double Log(const double value)
{
return log(value);
}
static FORCE_INLINE double Log2(const double value)
{
return log2(value);
}
static FORCE_INLINE double Log10(const double value)
{
return log10(value);
}
static FORCE_INLINE double Pow(const double base, const double exponent)
{
return pow(base, exponent);
}
static FORCE_INLINE double Sqrt(const double value)
{
return sqrt(value);
}
static FORCE_INLINE double Exp(const double value)
{
return exp(value);
}
static FORCE_INLINE double Exp2(const double value)
{
return exp2(value);
}
static FORCE_INLINE double Abs(const double value)
{
return fabs(value);
}
static FORCE_INLINE double Mod(const double a, const double b)
{
return fmod(a, b);
}
static FORCE_INLINE double ModF(double a, double* b)
{
return modf(a, b);
}
static FORCE_INLINE double Frac(double value)
{
return value - Floor(value);
}
/// <summary>
/// Returns signed fractional part of a double.
/// </summary>
/// <param name="value">Double point value to convert.</param>
/// <returns>A double between [0 ; 1) for nonnegative input. A double between [-1; 0) for negative input.</returns>
static FORCE_INLINE double Fractional(double value)
{
return value - Trunc(value);
}
static int64 TruncToInt(double value)
{
return (int64)value;
}
static int64 FloorToInt(double value)
{
return TruncToInt(floor(value));
}
static FORCE_INLINE int64 RoundToInt(double value)
{
return FloorToInt(value + 0.5);
}
static FORCE_INLINE int64 CeilToInt(double value)
{
return TruncToInt(ceil(value));
}
// Performs smooth (cubic Hermite) interpolation between 0 and 1
// @param amount Value between 0 and 1 indicating interpolation amount
static double SmoothStep(double amount)
{
return amount <= 0. ? 0. : amount >= 1. ? 1. : amount * amount * (3. - 2. * amount);
}
// Performs a smooth(er) interpolation between 0 and 1 with 1st and 2nd order derivatives of zero at endpoints
// @param amount Value between 0 and 1 indicating interpolation amount
static double SmootherStep(double amount)
{
return amount <= 0. ? 0. : amount >= 1. ? 1. : amount * amount * amount * (amount * (amount * 6. - 15.) + 10.);
}
// Determines whether the specified value is close to zero (0.0)
// @param a The floating value
// @returns True if the specified value is close to zero (0.0). otherwise false
inline bool IsZero(double a)
{
return Abs(a) < ZeroTolerance;
}
// Determines whether the specified value is close to one (1.0f)
// @param a The floating value
// @returns True if the specified value is close to one (1.0f). otherwise false
inline bool IsOne(double a)
{
return IsZero(a - 1.);
}
// Returns a value indicating the sign of a number
// @returns A number that indicates the sign of value
inline double Sign(double v)
{
return v > 0. ? 1. : v < 0. ? -1. : 0.;
}
/// <summary>
/// Compares the sign of two double values.
/// </summary>
/// <param name="a">The first value.</param>
/// <param name="b">The second value.</param>
/// <returns>True if given values have the same sign (both positive or negative); otherwise false.</returns>
inline bool SameSign(const double a, const double b)
{
return a * b >= 0.;
}
/// <summary>
/// Compares the sign of two double values.
/// </summary>
/// <param name="a">The first value.</param>
/// <param name="b">The second value.</param>
/// <returns>True if given values don't have the same sign (first is positive and second is negative or vice versa); otherwise false.</returns>
inline bool NotSameSign(const double a, const double b)
{
return a * b < 0.;
}
/// <summary>
/// Checks if a and b are not even almost equal, taking into account the magnitude of double numbers
/// </summary>
/// <param name="a">The left value to compare</param>
/// <param name="b">The right value to compare</param>
/// <returns>False if a almost equal to b, otherwise true</returns>
static bool NotNearEqual(double a, double b)
{
return Abs(a - b) >= ZeroToleranceDouble;
}
/// <summary>
/// Checks if a and b are almost equals, taking into account the magnitude of double precision floating point numbers
/// </summary>
/// <param name="a">The left value to compare</param>
/// <param name="b">The right value to compare</param>
/// <returns>True if a almost equal to b, otherwise false</returns>
static bool NearEqual(double a, double b)
{
return Abs(a - b) < ZeroToleranceDouble;
}
/// <summary>
/// Checks if a and b are almost equals within the given epsilon value.
/// </summary>
/// <param name="a">The left value to compare.</param>
/// <param name="b">The right value to compare.</param>
/// <param name="eps">The comparision epsilon value. Should be 1e-4 or less.</param>
/// <returns>True if a almost equal to b, otherwise false</returns>
static bool NearEqual(double a, double b, double eps)
{
return Abs(a - b) < eps;
}
/// <summary>
/// Remaps the specified value from the specified range to another.
/// </summary>
/// <param name="value">The value to remap.</param>
/// <param name="fromMin">The source range minimum.</param>
/// <param name="fromMax">The source range maximum.</param>
/// <param name="toMin">The destination range minimum.</param>
/// <param name="toMax">The destination range maximum.</param>
/// <returns>The remapped value.</returns>
static double Remap(double value, double fromMin, double fromMax, double toMin, double toMax)
{
return (value - fromMin) / (fromMax - fromMin) * (toMax - toMin) + toMin;
}
static double ClampAxis(double angle)
{
angle = Mod(angle, 360.);
if (angle < 0.)
angle += 360.;
return angle;
}
static double NormalizeAxis(double angle)
{
angle = ClampAxis(angle);
if (angle > 180.)
angle -= 360.;
return angle;
}
// Find the smallest angle between two headings (in radians).
static double FindDeltaAngle(double a1, double a2)
{
double delta = a2 - a1;
if (delta > PI)
delta = delta - TWO_PI;
else if (delta < -PI)
delta = delta + TWO_PI;
return delta;
}
/// <summary>
/// Returns value based on comparand. The main purpose of this function is to avoid branching based on floating point comparison which can be avoided via compiler intrinsics.
/// </summary>
/// <remarks>
/// Please note that this doesn't define what happens in the case of NaNs as there might be platform specific differences.
/// </remarks>
/// <param name="comparand">Comparand the results are based on.</param>
/// <param name="valueGEZero">The result value if comparand >= 0.</param>
/// <param name="valueLTZero">The result value if comparand < 0.</param>
/// <returns>the valueGEZero if comparand >= 0, valueLTZero otherwise</returns>
static double DoubleSelect(double comparand, double valueGEZero, double valueLTZero)
{
return comparand >= 0. ? valueGEZero : valueLTZero;
}
/// <summary>
/// Returns a smooth Hermite interpolation between 0 and 1 for the value X (where X ranges between A and B). Clamped to 0 for X <= A and 1 for X >= B.
/// </summary>
/// <param name="a">The minimum value of x.</param>
/// <param name="b">The maximum value of x.</param>
/// <param name="x">The x.</param>
/// <returns>The smoothed value between 0 and 1.</returns>
static double SmoothStep(double a, double b, double x)
{
if (x < a)
return 0.;
if (x >= b)
return 1.;
const double fraction = (x - a) / (b - a);
return fraction * fraction * (3. - 2. * fraction);
}
}