Files
FlaxEngine/Source/ThirdParty/OpenFBX/ofbx.h
2024-06-01 21:43:40 +03:00

831 lines
20 KiB
C++

#pragma once
namespace ofbx
{
typedef unsigned char u8;
typedef unsigned short u16;
typedef unsigned int u32;
#ifdef _WIN32
typedef long long i64;
typedef unsigned long long u64;
#else
typedef long i64;
typedef unsigned long u64;
#endif
static_assert(sizeof(u8) == 1, "u8 is not 1 byte");
static_assert(sizeof(u32) == 4, "u32 is not 4 bytes");
static_assert(sizeof(u64) == 8, "u64 is not 8 bytes");
static_assert(sizeof(i64) == 8, "i64 is not 8 bytes");
typedef decltype(sizeof(0)) usize;
using JobFunction = void (*)(void*);
using JobProcessor = void (*)(JobFunction, void*, void*, u32, u32);
// Ignoring certain nodes will only stop them from being processed not tokenised (i.e. they will still be in the tree)
enum class LoadFlags : u16
{
NONE = 0,
UNUSED = 1 << 0, // can be reused
IGNORE_GEOMETRY = 1 << 1,
IGNORE_BLEND_SHAPES = 1 << 2,
IGNORE_CAMERAS = 1 << 3,
IGNORE_LIGHTS = 1 << 4,
IGNORE_TEXTURES = 1 << 5,
IGNORE_SKIN = 1 << 6,
IGNORE_BONES = 1 << 7,
IGNORE_PIVOTS = 1 << 8,
IGNORE_ANIMATIONS = 1 << 9,
IGNORE_MATERIALS = 1 << 10,
IGNORE_POSES = 1 << 11,
IGNORE_VIDEOS = 1 << 12,
IGNORE_LIMBS = 1 << 13,
IGNORE_MESHES = 1 << 14,
IGNORE_MODELS = 1 << 15,
};
constexpr LoadFlags operator|(LoadFlags lhs, LoadFlags rhs)
{
return static_cast<LoadFlags>(static_cast<u16>(lhs) | static_cast<u16>(rhs));
}
inline LoadFlags& operator|=(LoadFlags& lhs, LoadFlags rhs)
{
return lhs = lhs | rhs;
}
struct DVec2 { double x, y; };
struct DVec3 { double x, y, z; };
struct DVec4 { double x, y, z, w; };
struct DMatrix { double m[16]; /* last 4 are translation */ };
struct DQuat{ double x, y, z, w; };
struct FVec2 { float x, y; };
struct FVec3 { float x, y, z; };
struct FVec4 { float x, y, z, w; };
struct FMatrix { float m[16]; };
struct FQuat{ float x, y, z, w; };
#define OFBX_SINGLE_PRECISION
#ifdef OFBX_SINGLE_PRECISION
// use floats for vertices, normals, uvs, ...
using Vec2 = FVec2;
using Vec3 = FVec3;
using Vec4 = FVec4;
using Matrix = FMatrix;
using Quat = FQuat;
#else
// use doubles for vertices, normals, uvs, ...
using Vec2 = DVec2;
using Vec3 = DVec3;
using Vec4 = DVec4;
using Matrix = DMatrix;
using Quat = DQuat;
#endif
struct Color
{
float r, g, b;
};
struct DataView
{
const u8* begin = nullptr;
const u8* end = nullptr;
bool is_binary = true;
bool operator!=(const char* rhs) const { return !(*this == rhs); }
bool operator==(const char* rhs) const;
u64 toU64() const;
i64 toI64() const;
int toInt() const;
u32 toU32() const;
bool toBool() const;
double toDouble() const;
float toFloat() const;
template <int N>
void toString(char(&out)[N]) const
{
char* cout = out;
const u8* cin = begin;
while (cin != end && cout - out < N - 1)
{
*cout = (char)*cin;
++cin;
++cout;
}
*cout = '\0';
}
};
struct IElementProperty
{
enum Type : unsigned char
{
LONG = 'L',
INTEGER = 'I',
STRING = 'S',
FLOAT = 'F',
DOUBLE = 'D',
ARRAY_DOUBLE = 'd',
ARRAY_INT = 'i',
ARRAY_LONG = 'l',
ARRAY_FLOAT = 'f',
BINARY = 'R',
NONE = ' '
};
virtual ~IElementProperty() {}
virtual Type getType() const = 0;
virtual IElementProperty* getNext() const = 0;
virtual DataView getValue() const = 0;
virtual int getCount() const = 0;
virtual bool getValues(double* values, int max_size) const = 0;
virtual bool getValues(int* values, int max_size) const = 0;
virtual bool getValues(float* values, int max_size) const = 0;
virtual bool getValues(u64* values, int max_size) const = 0;
virtual bool getValues(i64* values, int max_size) const = 0;
};
struct IElement
{
virtual ~IElement() = default;
virtual IElement* getFirstChild() const = 0;
virtual IElement* getSibling() const = 0;
virtual DataView getID() const = 0;
virtual IElementProperty* getFirstProperty() const = 0;
};
enum class RotationOrder
{
EULER_XYZ,
EULER_XZY,
EULER_YZX,
EULER_YXZ,
EULER_ZXY,
EULER_ZYX,
SPHERIC_XYZ // Currently unsupported. Treated as EULER_XYZ.
};
struct AnimationCurveNode;
struct AnimationLayer;
struct Scene;
struct IScene;
struct Object
{
enum class Type
{
ROOT,
GEOMETRY,
SHAPE,
MATERIAL,
MESH,
TEXTURE,
LIMB_NODE,
NULL_NODE,
CAMERA,
LIGHT,
NODE_ATTRIBUTE,
CLUSTER,
SKIN,
BLEND_SHAPE,
BLEND_SHAPE_CHANNEL,
ANIMATION_STACK,
ANIMATION_LAYER,
ANIMATION_CURVE,
ANIMATION_CURVE_NODE,
POSE
};
Object(const Scene& _scene, const IElement& _element);
virtual ~Object() {}
virtual Type getType() const = 0;
const IScene& getScene() const;
Object* resolveObjectLink(int idx) const;
Object* resolveObjectLink(Type type, const char* property, int idx) const;
Object* resolveObjectLinkReverse(Type type) const;
Object* getParent() const { return parent; }
RotationOrder getRotationOrder() const;
DVec3 getRotationOffset() const;
DVec3 getRotationPivot() const;
DVec3 getPostRotation() const;
DVec3 getScalingOffset() const;
DVec3 getScalingPivot() const;
DVec3 getPreRotation() const;
DVec3 getLocalTranslation() const;
DVec3 getLocalRotation() const;
DVec3 getLocalScaling() const;
DMatrix getGlobalTransform() const;
DMatrix getLocalTransform() const;
DMatrix evalLocal(const DVec3& translation, const DVec3& rotation) const;
DMatrix evalLocal(const DVec3& translation, const DVec3& rotation, const DVec3& scaling) const;
bool isNode() const { return is_node; }
template <typename T> T* resolveObjectLink(int idx) const
{
return static_cast<T*>(resolveObjectLink(T::s_type, nullptr, idx));
}
u64 id;
u32 depth = 0xffFFffFF;
Object* parent = nullptr;
char name[128];
const IElement& element;
const Object* node_attribute;
protected:
friend struct Scene;
bool is_node;
const Scene& scene;
};
struct Pose : Object {
static const Type s_type = Type::POSE;
Pose(const Scene& _scene, const IElement& _element);
virtual DMatrix getMatrix() const = 0;
virtual const Object* getNode() const = 0;
};
struct Texture : Object
{
enum TextureType
{
DIFFUSE,
NORMAL,
SPECULAR,
SHININESS,
AMBIENT,
EMISSIVE,
REFLECTION,
COUNT
};
static const Type s_type = Type::TEXTURE;
Texture(const Scene& _scene, const IElement& _element);
virtual DataView getFileName() const = 0;
virtual DataView getRelativeFileName() const = 0;
virtual DataView getEmbeddedData() const = 0;
};
struct Light : Object
{
public:
enum class LightType
{
POINT,
DIRECTIONAL,
SPOT,
AREA,
VOLUME,
COUNT
};
enum class DecayType
{
NO_DECAY,
LINEAR,
QUADRATIC,
CUBIC,
COUNT
};
Light(const Scene& _scene, const IElement& _element)
: Object(_scene, _element)
{
// Initialize the light properties here
}
// Light type
virtual LightType getLightType() const = 0;
// Light properties
virtual bool doesCastLight() const = 0;
virtual bool doesDrawVolumetricLight() const = 0;
virtual bool doesDrawGroundProjection() const = 0;
virtual bool doesDrawFrontFacingVolumetricLight() const = 0;
virtual Color getColor() const = 0;
virtual double getIntensity() const = 0;
virtual double getInnerAngle() const = 0;
virtual double getOuterAngle() const = 0;
virtual double getFog() const = 0;
virtual DecayType getDecayType() const = 0;
virtual double getDecayStart() const = 0;
// Near attenuation
virtual bool doesEnableNearAttenuation() const = 0;
virtual double getNearAttenuationStart() const = 0;
virtual double getNearAttenuationEnd() const = 0;
// Far attenuation
virtual bool doesEnableFarAttenuation() const = 0;
virtual double getFarAttenuationStart() const = 0;
virtual double getFarAttenuationEnd() const = 0;
// Shadows
virtual const Texture* getShadowTexture() const = 0;
virtual bool doesCastShadows() const = 0;
virtual Color getShadowColor() const = 0;
};
struct Camera : Object
{
enum class ProjectionType
{
PERSPECTIVE,
ORTHOGRAPHIC,
COUNT
};
enum class ApertureMode // Used to determine how to calculate the FOV
{
HORIZANDVERT,
HORIZONTAL,
VERTICAL,
FOCALLENGTH,
COUNT
};
enum class GateFit
{
NONE,
VERTICAL,
HORIZONTAL,
FILL,
OVERSCAN,
STRETCH,
COUNT
};
static const Type s_type = Type::CAMERA;
Camera(const Scene& _scene, const IElement& _element)
: Object(_scene, _element)
{
}
virtual Type getType() const { return Type::CAMERA; }
virtual ProjectionType getProjectionType() const = 0;
virtual ApertureMode getApertureMode() const = 0;
virtual double getFilmHeight() const = 0;
virtual double getFilmWidth() const = 0;
virtual double getAspectHeight() const = 0;
virtual double getAspectWidth() const = 0;
virtual double getNearPlane() const = 0;
virtual double getFarPlane() const = 0;
virtual bool doesAutoComputeClipPanes() const = 0;
virtual GateFit getGateFit() const = 0;
virtual double getFilmAspectRatio() const = 0;
virtual double getFocalLength() const = 0;
virtual double getFocusDistance() const = 0;
virtual DVec3 getBackgroundColor() const = 0;
virtual DVec3 getInterestPosition() const = 0;
};
struct Material : Object
{
static const Type s_type = Type::MATERIAL;
Material(const Scene& _scene, const IElement& _element);
virtual Color getDiffuseColor() const = 0;
virtual Color getSpecularColor() const = 0;
virtual Color getReflectionColor() const = 0;
virtual Color getAmbientColor() const = 0;
virtual Color getEmissiveColor() const = 0;
virtual double getDiffuseFactor() const = 0;
virtual double getSpecularFactor() const = 0;
virtual double getReflectionFactor() const = 0;
virtual double getShininess() const = 0;
virtual double getShininessExponent() const = 0;
virtual double getAmbientFactor() const = 0;
virtual double getBumpFactor() const = 0;
virtual double getEmissiveFactor() const = 0;
virtual const Texture* getTexture(Texture::TextureType type) const = 0;
};
struct Cluster : Object
{
static const Type s_type = Type::CLUSTER;
Cluster(const Scene& _scene, const IElement& _element);
virtual const int* getIndices() const = 0;
virtual int getIndicesCount() const = 0;
virtual const double* getWeights() const = 0;
virtual int getWeightsCount() const = 0;
virtual DMatrix getTransformMatrix() const = 0;
virtual DMatrix getTransformLinkMatrix() const = 0;
virtual const Object* getLink() const = 0;
};
struct Skin : Object
{
static const Type s_type = Type::SKIN;
Skin(const Scene& _scene, const IElement& _element);
virtual int getClusterCount() const = 0;
virtual const Cluster* getCluster(int idx) const = 0;
};
struct BlendShapeChannel : Object
{
static const Type s_type = Type::BLEND_SHAPE_CHANNEL;
BlendShapeChannel(const Scene& _scene, const IElement& _element);
virtual double getDeformPercent() const = 0;
virtual int getShapeCount() const = 0;
virtual const struct Shape* getShape(int idx) const = 0;
};
struct BlendShape : Object
{
static const Type s_type = Type::BLEND_SHAPE;
BlendShape(const Scene& _scene, const IElement& _element);
virtual int getBlendShapeChannelCount() const = 0;
virtual const BlendShapeChannel* getBlendShapeChannel(int idx) const = 0;
};
struct NodeAttribute : Object
{
static const Type s_type = Type::NODE_ATTRIBUTE;
NodeAttribute(const Scene& _scene, const IElement& _element);
virtual DataView getAttributeType() const = 0;
};
struct Vec2Attributes {
const Vec2* values = nullptr;
const int* indices = nullptr;
int count = 0;
Vec2Attributes() {}
Vec2Attributes(const Vec2* v, const int* i, int c) : values(v), indices(i), count(c) {}
Vec2 get(int i) const { return indices ? values[indices[i]] : values[i]; }
};
struct Vec3Attributes {
const Vec3* values = nullptr;
const int* indices = nullptr;
int count = 0;
int values_count = 0;
Vec3Attributes() {}
Vec3Attributes(const Vec3* v, const int* i, int c, int vc) : values(v), indices(i), count(c), values_count(vc) {}
Vec3 get(int i) const { return indices ? values[indices[i]] : values[i]; }
};
struct Vec4Attributes {
const Vec4* values = nullptr;
const int* indices = nullptr;
int count = 0;
Vec4Attributes() {}
Vec4Attributes(const Vec4* v, const int* i, int c) : values(v), indices(i), count(c) {}
Vec4 get(int i) const { return indices ? values[indices[i]] : values[i]; }
};
// subset of polygons with same material
struct GeometryPartition {
struct Polygon {
const int from_vertex; // index into VecNAttributes::indices
const int vertex_count;
};
const Polygon* polygons;
const int polygon_count;
const int max_polygon_triangles; // max triangles in single polygon, can be used for preallocation
const int triangles_count; // number of triangles after polygon triangulation, can be used for preallocation
};
struct GeometryData {
virtual ~GeometryData() {}
virtual Vec3Attributes getPositions() const = 0;
virtual Vec3Attributes getNormals() const = 0;
virtual Vec2Attributes getUVs(int index = 0) const = 0;
virtual Vec4Attributes getColors() const = 0;
virtual Vec3Attributes getTangents() const = 0;
virtual int getPartitionCount() const = 0;
virtual GeometryPartition getPartition(int partition_index) const = 0;
};
struct Geometry : Object {
static const Type s_type = Type::GEOMETRY;
static const int s_uvs_max = 4;
Geometry(const Scene& _scene, const IElement& _element);
virtual const GeometryData& getGeometryData() const = 0;
virtual const Skin* getSkin() const = 0;
virtual const BlendShape* getBlendShape() const = 0;
};
struct Shape : Object
{
static const Type s_type = Type::SHAPE;
Shape(const Scene& _scene, const IElement& _element);
virtual const Vec3* getVertices() const = 0;
virtual int getVertexCount() const = 0;
virtual const int* getIndices() const = 0;
virtual int getIndexCount() const = 0;
virtual const Vec3* getNormals() const = 0;
};
struct Mesh : Object {
static const Type s_type = Type::MESH;
Mesh(const Scene& _scene, const IElement& _element);
virtual const Pose* getPose() const = 0;
virtual const Geometry* getGeometry() const = 0;
virtual DMatrix getGeometricMatrix() const = 0;
virtual const Material* getMaterial(int idx) const = 0;
virtual int getMaterialCount() const = 0;
// this will use data from `Geometry` if available and from `Mesh` otherwise
virtual const GeometryData& getGeometryData() const = 0;
virtual const Skin* getSkin() const = 0;
virtual const BlendShape* getBlendShape() const = 0;
};
struct AnimationStack : Object
{
static const Type s_type = Type::ANIMATION_STACK;
AnimationStack(const Scene& _scene, const IElement& _element);
virtual const AnimationLayer* getLayer(int index) const = 0;
};
struct AnimationLayer : Object
{
static const Type s_type = Type::ANIMATION_LAYER;
AnimationLayer(const Scene& _scene, const IElement& _element);
virtual const AnimationCurveNode* getCurveNode(int index) const = 0;
virtual const AnimationCurveNode* getCurveNode(const Object& bone, const char* property) const = 0;
};
struct AnimationCurve : Object
{
static const Type s_type = Type::ANIMATION_CURVE;
AnimationCurve(const Scene& _scene, const IElement& _element);
virtual int getKeyCount() const = 0;
virtual const i64* getKeyTime() const = 0;
virtual const float* getKeyValue() const = 0;
};
struct AnimationCurveNode : Object
{
static const Type s_type = Type::ANIMATION_CURVE_NODE;
AnimationCurveNode(const Scene& _scene, const IElement& _element);
virtual DataView getBoneLinkProperty() const = 0;
virtual const AnimationCurve* getCurve(int idx) const = 0;
virtual DVec3 getNodeLocalTransform(double time) const = 0;
virtual const Object* getBone() const = 0;
};
struct TakeInfo
{
DataView name;
DataView filename;
double local_time_from;
double local_time_to;
double reference_time_from;
double reference_time_to;
};
// Specifies which canonical axis represents up in the system (typically Y or Z).
enum UpVector
{
UpVector_AxisX = 1,
UpVector_AxisY = 2,
UpVector_AxisZ = 3
};
// Vector with origin at the screen pointing toward the camera.
enum FrontVector
{
FrontVector_ParityEven = 1,
FrontVector_ParityOdd = 2
};
// Specifies the third vector of the system.
enum CoordSystem
{
CoordSystem_RightHanded = 0,
CoordSystem_LeftHanded = 1
};
// http://docs.autodesk.com/FBX/2014/ENU/FBX-SDK-Documentation/index.html?url=cpp_ref/class_fbx_time.html,topicNumber=cpp_ref_class_fbx_time_html29087af6-8c2c-4e9d-aede-7dc5a1c2436c,hash=a837590fd5310ff5df56ffcf7c394787e
enum FrameRate
{
FrameRate_DEFAULT = 0,
FrameRate_120 = 1,
FrameRate_100 = 2,
FrameRate_60 = 3,
FrameRate_50 = 4,
FrameRate_48 = 5,
FrameRate_30 = 6,
FrameRate_30_DROP = 7,
FrameRate_NTSC_DROP_FRAME = 8,
FrameRate_NTSC_FULL_FRAME = 9,
FrameRate_PAL = 10,
FrameRate_CINEMA = 11,
FrameRate_1000 = 12,
FrameRate_CINEMA_ND = 13,
FrameRate_CUSTOM = 14,
};
struct GlobalSettings
{
UpVector UpAxis = UpVector_AxisY;
int UpAxisSign = 1;
// this seems to be 1-2 in Autodesk (odd/even parity), and 0-2 in Blender (axis as in UpAxis)
// I recommend to ignore FrontAxis and use just UpVector
int FrontAxis = 1;
int FrontAxisSign = 1;
CoordSystem CoordAxis = CoordSystem_RightHanded;
int CoordAxisSign = 1;
int OriginalUpAxis = 0;
int OriginalUpAxisSign = 1;
float UnitScaleFactor = 1;
float OriginalUnitScaleFactor = 1;
double TimeSpanStart = 0L;
double TimeSpanStop = 0L;
FrameRate TimeMode = FrameRate_DEFAULT;
float CustomFrameRate = -1.0f;
};
struct GlobalInfo
{
char AppVendor[128];
char AppName[128];
char AppVersion[128];
};
struct IScene
{
virtual void destroy() = 0;
// Root Node
virtual const IElement* getRootElement() const = 0;
virtual const Object* getRoot() const = 0;
// Meshes
virtual int getMeshCount() const = 0;
virtual const Mesh* getMesh(int index) const = 0;
// Geometry
virtual int getGeometryCount() const = 0;
virtual const Geometry* getGeometry(int index) const = 0;
// Animations
virtual int getAnimationStackCount() const = 0;
virtual const AnimationStack* getAnimationStack(int index) const = 0;
// Cameras
virtual int getCameraCount() const = 0;
virtual const Camera* getCamera(int index) const = 0;
// Lights
virtual int getLightCount() const = 0;
virtual const Light* getLight(int index) const = 0;
// Scene Objects (Everything in scene)
virtual const Object* const* getAllObjects() const = 0;
virtual int getAllObjectCount() const = 0;
// Embedded files/Data
virtual int getEmbeddedDataCount() const = 0;
virtual DataView getEmbeddedData(int index) const = 0;
virtual DataView getEmbeddedFilename(int index) const = 0;
virtual bool isEmbeddedBase64(int index) const = 0;
// data are encoded in returned property and all ->next properties
virtual const IElementProperty* getEmbeddedBase64Data(int index) const = 0;
// Scene Misc
virtual const TakeInfo* getTakeInfo(const char* name) const = 0;
virtual float getSceneFrameRate() const = 0;
virtual const GlobalSettings* getGlobalSettings() const = 0;
virtual const GlobalInfo* getGlobalInfo() const = 0;
virtual ~IScene() {}
};
IScene* load(const u8* data, usize size, u16 flags, JobProcessor job_processor = nullptr, void* job_user_ptr = nullptr);
const char* getError();
double fbxTimeToSeconds(i64 value);
i64 secondsToFbxTime(double value);
// TODO nonconvex
inline u32 triangulate(const GeometryData& geom, const GeometryPartition::Polygon& polygon, int* tri_indices) {
if (polygon.vertex_count < 3) return 0;
if (polygon.vertex_count == 3) {
tri_indices[0] = polygon.from_vertex;
tri_indices[1] = polygon.from_vertex + 1;
tri_indices[2] = polygon.from_vertex + 2;
return 3;
}
else if (polygon.vertex_count == 4) {
tri_indices[0] = polygon.from_vertex + 0;
tri_indices[1] = polygon.from_vertex + 1;
tri_indices[2] = polygon.from_vertex + 2;
tri_indices[3] = polygon.from_vertex + 0;
tri_indices[4] = polygon.from_vertex + 2;
tri_indices[5] = polygon.from_vertex + 3;
return 6;
}
for (int tri = 0; tri < polygon.vertex_count - 2; ++tri) {
tri_indices[tri * 3 + 0] = polygon.from_vertex;
tri_indices[tri * 3 + 1] = polygon.from_vertex + 1 + tri;
tri_indices[tri * 3 + 2] = polygon.from_vertex + 2 + tri;
}
return 3 * (polygon.vertex_count - 2);
}
} // namespace ofbx
#ifdef OFBX_DEFAULT_DELETER
#include <memory>
template <> struct ::std::default_delete<ofbx::IScene>
{
default_delete() = default;
template <class U> constexpr default_delete(default_delete<U>) noexcept {}
void operator()(ofbx::IScene* scene) const noexcept
{
if (scene)
{
scene->destroy();
}
}
};
#endif