Files
FlaxEngine/Source/Engine/Core/Math/Double2.h
Jean-Baptiste Perrier e655ee6b78 Tweaks Double2
2021-08-18 12:49:12 +02:00

665 lines
15 KiB
C++

// Copyright (c) 2012-2021 Wojciech Figat. All rights reserved.
#pragma once
#include "Math.h"
#include "Mathd.h"
#include "Engine/Core/Formatting.h"
#include "Engine/Core/Templates.h"
struct Double3;
struct Double4;
struct Vector2;
struct Vector3;
struct Vector4;
struct Int2;
struct Int3;
struct Int4;
struct Color;
struct Matrix;
/// <summary>
/// Represents a two dimensional mathematical vector.
/// </summary>
API_STRUCT() struct FLAXENGINE_API Double2
{
DECLARE_SCRIPTING_TYPE_MINIMAL(Double2);
public:
union
{
struct
{
/// <summary>
/// The X component of the vector.
/// </summary>
API_FIELD() double X;
/// <summary>
/// The Y component of the vector.
/// </summary>
API_FIELD() double Y;
};
// Raw values
double Raw[2];
};
public:
// Vector with all components equal 0
static const Double2 Zero;
// Vector with all components equal 1
static const Double2 One;
// Vector X=1, Y=0
static const Double2 UnitX;
// Vector X=0, Y=1
static const Double2 UnitY;
// A minimum Double2
static const Double2 Minimum;
// A maximum Double2
static const Double2 Maximum;
public:
/// <summary>
/// Empty constructor.
/// </summary>
Double2()
{
}
// Init
// @param xy Value to assign to the all components
Double2(double xy)
: X(xy)
, Y(xy)
{
}
// Init
// @param x X component value
// @param y Y component value
Double2(double x, double y)
: X(x)
, Y(y)
{
}
/// <summary>
/// Init
/// </summary>
/// <param name="v">X and Z components in an array</param>
explicit Double2(double xy[2])
: X(xy[0])
, Y(xy[1])
{
}
// Init
// @param v Int2 to use X and Y components
explicit Double2(const Int2& xy);
// Init
// @param v Int3 to use X and Y components
explicit Double2(const Int3& xyz);
// Init
// @param v Int4 to use X and Y components
explicit Double2(const Int4& xyzw);
// Init
// @param v Vector2 to use X and Y components
explicit Double2(const Vector2& xy);
// Init
// @param v Vector3 to use X and Y components
explicit Double2(const Vector3& xyz);
// Init
// @param v Vector4 to use X and Y components
explicit Double2(const Vector4& xyzw);
// Init
// @param v Double3 to use X and Y components
explicit Double2(const Double3& xyz);
// Init
// @param v Double4 to use X and Y components
explicit Double2(const Double4& xyzw);
// Init
// @param color Color value
explicit Double2(const Color& color);
public:
String ToString() const;
public:
// Arithmetic operators with Double2
Double2 operator+(const Double2& b) const
{
return Add(*this, b);
}
Double2 operator-(const Double2& b) const
{
return Subtract(*this, b);
}
Double2 operator*(const Double2& b) const
{
return Multiply(*this, b);
}
Double2 operator/(const Double2& b) const
{
return Divide(*this, b);
}
Double2 operator-() const
{
return Double2(-X, -Y);
}
// op= operators with Double2
Double2& operator+=(const Double2& b)
{
*this = Add(*this, b);
return *this;
}
Double2& operator-=(const Double2& b)
{
*this = Subtract(*this, b);
return *this;
}
Double2& operator*=(const Double2& b)
{
*this = Multiply(*this, b);
return *this;
}
Double2& operator/=(const Double2& b)
{
*this = Divide(*this, b);
return *this;
}
// Arithmetic operators with double
Double2 operator+(double b) const
{
return Add(*this, b);
}
Double2 operator-(double b) const
{
return Subtract(*this, b);
}
Double2 operator*(double b) const
{
return Multiply(*this, b);
}
Double2 operator/(double b) const
{
return Divide(*this, b);
}
// op= operators with double
Double2& operator+=(double b)
{
*this = Add(*this, b);
return *this;
}
Double2& operator-=(double b)
{
*this = Subtract(*this, b);
return *this;
}
Double2& operator*=(double b)
{
*this = Multiply(*this, b);
return *this;
}
Double2& operator/=(double b)
{
*this = Divide(*this, b);
return *this;
}
// Comparison operators
bool operator==(const Double2& b) const
{
return X == b.X && Y == b.Y;
}
bool operator!=(const Double2& b) const
{
return X != b.X || Y != b.Y;
}
bool operator>(const Double2& b) const
{
return X > b.X && Y > b.Y;
}
bool operator>=(const Double2& b) const
{
return X >= b.X && Y >= b.Y;
}
bool operator<(const Double2& b) const
{
return X < b.X && Y < b.Y;
}
bool operator<=(const Double2& b) const
{
return X <= b.X && Y <= b.Y;
}
public:
static bool NearEqual(const Double2& a, const Double2& b)
{
return Math::NearEqual(a.X, b.X) && Math::NearEqual(a.Y, b.Y);
}
static bool NearEqual(const Double2& a, const Double2& b, double epsilon)
{
return Math::NearEqual(a.X, b.X, epsilon) && Math::NearEqual(a.Y, b.Y, epsilon);
}
public:
static double Dot(const Double2& a, const Double2& b)
{
return a.X * b.X + a.Y * b.Y;
}
static double Cross(const Double2& a, const Double2& b)
{
return a.X * b.Y - a.Y * b.X;
}
static void Add(const Double2& a, const Double2& b, Double2& result)
{
result.X = a.X + b.X;
result.Y = a.Y + b.Y;
}
static Double2 Add(const Double2& a, const Double2& b)
{
Double2 result;
Add(a, b, result);
return result;
}
static void Subtract(const Double2& a, const Double2& b, Double2& result)
{
result.X = a.X - b.X;
result.Y = a.Y - b.Y;
}
static Double2 Subtract(const Double2& a, const Double2& b)
{
Double2 result;
Subtract(a, b, result);
return result;
}
static Double2 Multiply(const Double2& a, const Double2& b)
{
return Double2(a.X * b.X, a.Y * b.Y);
}
static Double2 Multiply(const Double2& a, double b)
{
return Double2(a.X * b, a.Y * b);
}
static Double2 Divide(const Double2& a, const Double2& b)
{
return Double2(a.X / b.X, a.Y / b.Y);
}
static Double2 Divide(const Double2& a, double b)
{
return Double2(a.X / b, a.Y / b);
}
// Calculates distance between two points in 2D
// @param a 1st point
// @param b 2nd point
// @returns Distance
static double Distance(const Double2& a, const Double2& b)
{
const double x = a.X - b.X;
const double y = a.Y - b.Y;
return Math::Sqrt(x * x + y * y);
}
// Calculates the squared distance between two points in 2D
// @param a 1st point
// @param b 2nd point
// @returns Distance
static double DistanceSquared(const Double2& a, const Double2& b)
{
const double x = a.X - b.X;
const double y = a.Y - b.Y;
return x * x + y * y;
}
// Clamp vector values within given range
// @param v Vector to clamp
// @param min Minimum value
// @param max Maximum value
// @returns Clamped vector
static Double2 Clamp(const Double2& v, double min, double max)
{
return Double2(Math::Clamp(v.X, min, max), Math::Clamp(v.Y, min, max));
}
// Clamp vector values within given range
// @param v Vector to clamp
// @param min Minimum value
// @param max Maximum value
// @returns Clamped vector
static Double2 Clamp(const Double2& v, const Double2& min, const Double2& max)
{
return Double2(Math::Clamp(v.X, min.X, max.X), Math::Clamp(v.Y, min.Y, max.Y));
}
// Performs vector normalization (scales vector up to unit length)
void Normalize()
{
const double length = Length();
if (!Math::IsZero(length))
{
const double invLength = 1. / length;
X *= invLength;
Y *= invLength;
}
}
public:
// Gets a value indicting whether this instance is normalized
bool IsNormalized() const
{
return Math::IsOne(X * X + Y * Y);
}
// Gets a value indicting whether this vector is zero
bool IsZero() const
{
return Math::IsZero(X) && Math::IsZero(Y);
}
// Gets a value indicting whether any vector component is zero
bool IsAnyZero() const
{
return Math::IsZero(X) || Math::IsZero(Y);
}
// Gets a value indicting whether this vector is zero
bool IsOne() const
{
return Math::IsOne(X) && Math::IsOne(Y);
}
// Calculates length of the vector
// @returns Length of the vector
double Length() const
{
return Math::Sqrt(X * X + Y * Y);
}
// Calculates the squared length of the vector
// @returns The squared length of the vector
double LengthSquared() const
{
return X * X + Y * Y;
}
// Calculates inverted length of the vector (1 / Length())
double InvLength() const
{
return 1. / Length();
}
// Calculates a vector with values being absolute values of that vector
Double2 GetAbsolute() const
{
return Double2(Math::Abs(X), Math::Abs(Y));
}
// Calculates a vector with values being opposite to values of that vector
Double2 GetNegative() const
{
return Double2(-X, -Y);
}
/// <summary>
/// Returns average arithmetic of all the components
/// </summary>
/// <returns>Average arithmetic of all the components</returns>
double AverageArithmetic() const
{
return (X + Y) * 0.5;
}
/// <summary>
/// Gets sum of all vector components values
/// </summary>
/// <returns>Sum of X,Y and Z</returns>
double SumValues() const
{
return X + Y;
}
/// <summary>
/// Gets multiplication result of all vector components values
/// </summary>
/// <returns>X * Y</returns>
double MulValues() const
{
return X * Y;
}
/// <summary>
/// Returns minimum value of all the components
/// </summary>
/// <returns>Minimum value</returns>
double MinValue() const
{
return Math::Min(X, Y);
}
/// <summary>
/// Returns maximum value of all the components
/// </summary>
/// <returns>Maximum value</returns>
double MaxValue() const
{
return Math::Max(X, Y);
}
/// <summary>
/// Returns true if vector has one or more components is not a number (NaN)
/// </summary>
/// <returns>True if one or more components is not a number (NaN)</returns>
bool IsNaN() const
{
return isnan(X) || isnan(Y);
}
/// <summary>
/// Returns true if vector has one or more components equal to +/- infinity
/// </summary>
/// <returns>True if one or more components equal to +/- infinity</returns>
bool IsInfinity() const
{
return isinf(X) || isinf(Y);
}
/// <summary>
/// Returns true if vector has one or more components equal to +/- infinity or NaN
/// </summary>
/// <returns>True if one or more components equal to +/- infinity or NaN</returns>
bool IsNanOrInfinity() const
{
return IsInfinity() || IsNaN();
}
public:
// Performs a linear interpolation between two vectors
// @param start Start vector
// @param end End vector
// @param amount Value between 0 and 1 indicating the weight of end
// @param result When the method completes, contains the linear interpolation of the two vectors
static void Lerp(const Double2& start, const Double2& end, double amount, Double2& result)
{
result.X = Math::Lerp(start.X, end.X, amount);
result.Y = Math::Lerp(start.Y, end.Y, amount);
}
// <summary>
// Performs a linear interpolation between two vectors.
// </summary>
// @param start Start vector,
// @param end End vector,
// @param amount Value between 0 and 1 indicating the weight of @paramref end"/>,
// @returns The linear interpolation of the two vectors
static Double2 Lerp(const Double2& start, const Double2& end, double amount)
{
Double2 result;
Lerp(start, end, amount, result);
return result;
}
static Double2 Abs(const Double2& v)
{
return Double2(Math::Abs(v.X), Math::Abs(v.Y));
}
// Creates vector from minimum components of two vectors
static Double2 Min(const Double2& a, const Double2& b)
{
return Double2(a.X < b.X ? a.X : b.X, a.Y < b.Y ? a.Y : b.Y);
}
// Creates vector from minimum components of two vectors
static void Min(const Double2& a, const Double2& b, Double2& result)
{
result = Double2(a.X < b.X ? a.X : b.X, a.Y < b.Y ? a.Y : b.Y);
}
// Creates vector from maximum components of two vectors
static Double2 Max(const Double2& a, const Double2& b)
{
return Double2(a.X > b.X ? a.X : b.X, a.Y > b.Y ? a.Y : b.Y);
}
// Creates vector from maximum components of two vectors
static void Max(const Double2& a, const Double2& b, Double2& result)
{
result = Double2(a.X > b.X ? a.X : b.X, a.Y > b.Y ? a.Y : b.Y);
}
// Returns normalized vector
static Double2 Normalize(const Double2& v);
static Double2 Round(const Double2& v)
{
return Double2(Math::Round(v.X), Math::Round(v.Y));
}
static Double2 Ceil(const Double2& v)
{
return Double2(Math::Ceil(v.X), Math::Ceil(v.Y));
}
static Double2 Floor(const Double2& v)
{
return Double2(Math::Floor(v.X), Math::Floor(v.Y));
}
static Double2 Frac(const Double2& v)
{
return Double2(v.X - (int64)v.X, v.Y - (int64)v.Y);
}
static Int2 CeilToInt(const Double2& v);
static Int2 FloorToInt(const Double2& v);
static Double2 Mod(const Double2& v)
{
return Double2(
v.X - (int64)v.X,
v.Y - (int64)v.Y
);
}
public:
/// <summary>
/// Calculates the area of the triangle.
/// </summary>
/// <param name="v0">The first triangle vertex.</param>
/// <param name="v1">The second triangle vertex.</param>
/// <param name="v2">The third triangle vertex.</param>
/// <returns>The triangle area.</returns>
static double TriangleArea(const Double2& v0, const Double2& v1, const Double2& v2);
};
inline Double2 operator+(double a, const Double2& b)
{
return b + a;
}
inline Double2 operator-(double a, const Double2& b)
{
return Double2(a) - b;
}
inline Double2 operator*(double a, const Double2& b)
{
return b * a;
}
inline Double2 operator/(double a, const Double2& b)
{
return Double2(a) / b;
}
namespace Math
{
FORCE_INLINE static bool NearEqual(const Double2& a, const Double2& b)
{
return Double2::NearEqual(a, b);
}
}
template<>
struct TIsPODType<Double2>
{
enum { Value = true };
};
DEFINE_DEFAULT_FORMATTING(Double2, "X:{0} Y:{1}", v.X, v.Y);