Files
FlaxEngine/Source/Engine/Core/Math/Vector4.cs
2025-02-11 00:32:20 +01:00

1521 lines
70 KiB
C#

// Copyright (c) 2012-2024 Wojciech Figat. All rights reserved.
#if USE_LARGE_WORLDS
using Real = System.Double;
using Mathr = FlaxEngine.Mathd;
#else
using Real = System.Single;
using Mathr = FlaxEngine.Mathf;
#endif
// -----------------------------------------------------------------------------
// Original code from SharpDX project. https://github.com/sharpdx/SharpDX/
// Greetings to Alexandre Mutel. Original code published with the following license:
// -----------------------------------------------------------------------------
// Copyright (c) 2010-2014 SharpDX - Alexandre Mutel
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// -----------------------------------------------------------------------------
// Original code from SlimMath project. http://code.google.com/p/slimmath/
// Greetings to SlimDX Group. Original code published with the following license:
// -----------------------------------------------------------------------------
/*
* Copyright (c) 2007-2011 SlimDX Group
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
using System;
using System.Globalization;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
namespace FlaxEngine
{
/// <summary>
/// Represents a four dimensional mathematical vector.
/// </summary>
[Unmanaged]
[Serializable]
[StructLayout(LayoutKind.Sequential)]
#if FLAX_EDITOR
[System.ComponentModel.TypeConverter(typeof(TypeConverters.Vector4Converter))]
#endif
public partial struct Vector4 : IEquatable<Vector4>, IFormattable
{
private static readonly string _formatString = "X:{0:F2} Y:{1:F2} Z:{2:F2} W:{3:F2}";
/// <summary>
/// The X component.
/// </summary>
public Real X;
/// <summary>
/// The Y component.
/// </summary>
public Real Y;
/// <summary>
/// The Z component.
/// </summary>
public Real Z;
/// <summary>
/// The W component.
/// </summary>
public Real W;
/// <summary>
/// The size of the <see cref="Vector4" /> type, in bytes.
/// </summary>
public static readonly int SizeInBytes = Marshal.SizeOf(typeof(Vector4));
/// <summary>
/// A <see cref="Vector4" /> with all of its components set to zero.
/// </summary>
public static readonly Vector4 Zero;
/// <summary>
/// The X unit <see cref="Vector4" /> (1, 0, 0, 0).
/// </summary>
public static readonly Vector4 UnitX = new Vector4(1.0f, 0.0f, 0.0f, 0.0f);
/// <summary>
/// The Y unit <see cref="Vector4" /> (0, 1, 0, 0).
/// </summary>
public static readonly Vector4 UnitY = new Vector4(0.0f, 1.0f, 0.0f, 0.0f);
/// <summary>
/// The Z unit <see cref="Vector4" /> (0, 0, 1, 0).
/// </summary>
public static readonly Vector4 UnitZ = new Vector4(0.0f, 0.0f, 1.0f, 0.0f);
/// <summary>
/// The W unit <see cref="Vector4" /> (0, 0, 0, 1).
/// </summary>
public static readonly Vector4 UnitW = new Vector4(0.0f, 0.0f, 0.0f, 1.0f);
/// <summary>
/// A <see cref="Vector4" /> with all of its components set to half.
/// </summary>
public static readonly Vector4 Half = new Vector4(0.5f, 0.5f, 0.5f, 0.5f);
/// <summary>
/// A <see cref="Vector4" /> with all of its components set to one.
/// </summary>
public static readonly Vector4 One = new Vector4(1.0f, 1.0f, 1.0f, 1.0f);
/// <summary>
/// A <see cref="Vector4" /> with all components equal to <see cref="double.MinValue"/> (or <see cref="float.MinValue"/> if using 32-bit precision).
/// </summary>
public static readonly Vector4 Minimum = new Vector4(Real.MinValue);
/// <summary>
/// A <see cref="Vector4" /> with all components equal to <see cref="double.MaxValue"/> (or <see cref="float.MaxValue"/> if using 32-bit precision).
/// </summary>
public static readonly Vector4 Maximum = new Vector4(Real.MaxValue);
/// <summary>
/// Initializes a new instance of the <see cref="Vector4" /> struct.
/// </summary>
/// <param name="value">The value that will be assigned to all components.</param>
public Vector4(float value)
{
X = value;
Y = value;
Z = value;
W = value;
}
/// <summary>
/// Initializes a new instance of the <see cref="Vector4" /> struct.
/// </summary>
/// <param name="x">Initial value for the X component of the vector.</param>
/// <param name="y">Initial value for the Y component of the vector.</param>
/// <param name="z">Initial value for the Z component of the vector.</param>
/// <param name="w">Initial value for the W component of the vector.</param>
public Vector4(float x, float y, float z, float w)
{
X = x;
Y = y;
Z = z;
W = w;
}
/// <summary>
/// Initializes a new instance of the <see cref="Vector4" /> struct.
/// </summary>
/// <param name="value">The value that will be assigned to all components.</param>
public Vector4(double value)
{
X = Y = Z = W = (Real)value;
}
/// <summary>
/// Initializes a new instance of the <see cref="Vector4" /> struct.
/// </summary>
/// <param name="x">Initial value for the X component of the vector.</param>
/// <param name="y">Initial value for the Y component of the vector.</param>
/// <param name="z">Initial value for the Z component of the vector.</param>
/// <param name="w">Initial value for the W component of the vector.</param>
public Vector4(double x, double y, double z, double w)
{
X = (Real)x;
Y = (Real)y;
Z = (Real)z;
W = (Real)w;
}
/// <summary>
/// Initializes a new instance of the <see cref="Vector4" /> struct.
/// </summary>
/// <param name="value">A vector containing the values with which to initialize the X, Y, and Z components.</param>
/// <param name="w">Initial value for the W component of the vector.</param>
public Vector4(Vector3 value, Real w)
{
X = value.X;
Y = value.Y;
Z = value.Z;
W = w;
}
/// <summary>
/// Initializes a new instance of the <see cref="Vector4" /> struct.
/// </summary>
/// <param name="xy">A vector containing the values with which to initialize the X and Y components.</param>
/// <param name="zw">A vector containing the values with which to initialize the Z and W components.</param>
public Vector4(Vector2 xy, Vector2 zw)
{
X = xy.X;
Y = xy.Y;
Z = zw.X;
W = zw.Y;
}
/// <summary>
/// Initializes a new instance of the <see cref="Vector4" /> struct.
/// </summary>
/// <param name="value">A vector containing the values with which to initialize the X and Y components.</param>
/// <param name="z">Initial value for the Z component of the vector.</param>
/// <param name="w">Initial value for the W component of the vector.</param>
public Vector4(Vector2 value, Real z, Real w)
{
X = value.X;
Y = value.Y;
Z = z;
W = w;
}
/// <summary>
/// Initializes a new instance of the <see cref="Vector4" /> struct.
/// </summary>
/// <param name="values">The values to assign to the X, Y, Z, and W components of the vector. This must be an array with four elements.</param>
/// <exception cref="ArgumentNullException">Thrown when <paramref name="values" /> is <c>null</c>.</exception>
/// <exception cref="ArgumentOutOfRangeException">Thrown when <paramref name="values" /> contains more or less than four elements.</exception>
public Vector4(Real[] values)
{
if (values == null)
throw new ArgumentNullException(nameof(values));
if (values.Length != 4)
throw new ArgumentOutOfRangeException(nameof(values), "There must be four and only four input values for Vector4.");
X = values[0];
Y = values[1];
Z = values[2];
W = values[3];
}
/// <summary>
/// Gets a value indicting whether this instance is normalized.
/// </summary>
public bool IsNormalized => Mathr.Abs((X * X + Y * Y + Z * Z + W * W) - 1.0f) < 1e-4f;
/// <summary>
/// Gets a value indicting whether this vector is zero
/// </summary>
public bool IsZero => Mathr.IsZero(X) && Mathr.IsZero(Y) && Mathr.IsZero(Z) && Mathr.IsZero(W);
/// <summary>
/// Gets a value indicting whether this vector is one
/// </summary>
public bool IsOne => Mathr.IsOne(X) && Mathr.IsOne(Y) && Mathr.IsOne(Z) && Mathr.IsOne(W);
/// <summary>
/// Gets a minimum component value
/// </summary>
public Real MinValue => Mathr.Min(X, Mathr.Min(Y, Mathr.Min(Z, W)));
/// <summary>
/// Gets a maximum component value
/// </summary>
public Real MaxValue => Mathr.Max(X, Mathr.Max(Y, Mathr.Max(Z, W)));
/// <summary>
/// Gets an arithmetic average value of all vector components.
/// </summary>
public Real AvgValue => (X + Y + Z + W) * (1.0f / 4.0f);
/// <summary>
/// Gets a sum of the component values.
/// </summary>
public Real ValuesSum => X + Y + Z + W;
/// <summary>
/// Gets a vector with values being absolute values of that vector.
/// </summary>
public Vector4 Absolute => new Vector4(Mathr.Abs(X), Mathr.Abs(Y), Mathr.Abs(Z), Mathr.Abs(W));
/// <summary>
/// Gets a vector with values being opposite to values of that vector.
/// </summary>
public Vector4 Negative => new Vector4(-X, -Y, -Z, -W);
/// <summary>
/// Gets or sets the component at the specified index.
/// </summary>
/// <value>The value of the X, Y, Z, or W component, depending on the index.</value>
/// <param name="index">The index of the component to access. Use 0 for the X component, 1 for the Y component, 2 for the Z component, and 3 for the W component.</param>
/// <returns>The value of the component at the specified index.</returns>
/// <exception cref="System.ArgumentOutOfRangeException">Thrown when the <paramref name="index" /> is out of the range [0,3].</exception>
public Real this[int index]
{
get
{
switch (index)
{
case 0: return X;
case 1: return Y;
case 2: return Z;
case 3: return W;
}
throw new ArgumentOutOfRangeException(nameof(index), "Indices for Vector4 run from 0 to 3, inclusive.");
}
set
{
switch (index)
{
case 0:
X = value;
break;
case 1:
Y = value;
break;
case 2:
Z = value;
break;
case 3:
W = value;
break;
default: throw new ArgumentOutOfRangeException(nameof(index), "Indices for Vector4 run from 0 to 3, inclusive.");
}
}
}
/// <summary>
/// Calculates the length of the vector.
/// </summary>
/// <returns>The length of the vector.</returns>
/// <remarks><see cref="Vector4.LengthSquared" /> may be preferred when only the relative length is needed and speed is of the essence.</remarks>
public Real Length => (Real)Math.Sqrt(X * X + Y * Y + Z * Z + W * W);
/// <summary>
/// Calculates the squared length of the vector.
/// </summary>
/// <returns>The squared length of the vector.</returns>
/// <remarks>This method may be preferred to <see cref="Vector4.Length" /> when only a relative length is needed and speed is of the essence.</remarks>
public Real LengthSquared => X * X + Y * Y + Z * Z + W * W;
/// <summary>
/// Converts the vector into a unit vector.
/// </summary>
public void Normalize()
{
Real length = (Real)Math.Sqrt(X * X + Y * Y + Z * Z + W * W);
if (length >= Mathr.Epsilon)
{
Real inverse = 1.0f / length;
X *= inverse;
Y *= inverse;
Z *= inverse;
W *= inverse;
}
}
/// <summary>
/// Creates an array containing the elements of the vector.
/// </summary>
/// <returns>A four-element array containing the components of the vector.</returns>
public Real[] ToArray()
{
return new[] { X, Y, Z, W };
}
/// <summary>
/// Adds two vectors.
/// </summary>
/// <param name="left">The first vector to add.</param>
/// <param name="right">The second vector to add.</param>
/// <param name="result">When the method completes, contains the sum of the two vectors.</param>
public static void Add(ref Vector4 left, ref Vector4 right, out Vector4 result)
{
result = new Vector4(left.X + right.X, left.Y + right.Y, left.Z + right.Z, left.W + right.W);
}
/// <summary>
/// Adds two vectors.
/// </summary>
/// <param name="left">The first vector to add.</param>
/// <param name="right">The second vector to add.</param>
/// <returns>The sum of the two vectors.</returns>
public static Vector4 Add(Vector4 left, Vector4 right)
{
return new Vector4(left.X + right.X, left.Y + right.Y, left.Z + right.Z, left.W + right.W);
}
/// <summary>
/// Performs a component-wise addition.
/// </summary>
/// <param name="left">The input vector</param>
/// <param name="right">The scalar value to be added to elements</param>
/// <param name="result">The vector with added scalar for each element.</param>
public static void Add(ref Vector4 left, ref Real right, out Vector4 result)
{
result = new Vector4(left.X + right, left.Y + right, left.Z + right, left.W + right);
}
/// <summary>
/// Performs a component-wise addition.
/// </summary>
/// <param name="left">The input vector</param>
/// <param name="right">The scalar value to be added to elements</param>
/// <returns>The vector with added scalar for each element.</returns>
public static Vector4 Add(Vector4 left, Real right)
{
return new Vector4(left.X + right, left.Y + right, left.Z + right, left.W + right);
}
/// <summary>
/// Subtracts two vectors.
/// </summary>
/// <param name="left">The first vector to subtract.</param>
/// <param name="right">The second vector to subtract.</param>
/// <param name="result">When the method completes, contains the difference of the two vectors.</param>
public static void Subtract(ref Vector4 left, ref Vector4 right, out Vector4 result)
{
result = new Vector4(left.X - right.X, left.Y - right.Y, left.Z - right.Z, left.W - right.W);
}
/// <summary>
/// Subtracts two vectors.
/// </summary>
/// <param name="left">The first vector to subtract.</param>
/// <param name="right">The second vector to subtract.</param>
/// <returns>The difference of the two vectors.</returns>
public static Vector4 Subtract(Vector4 left, Vector4 right)
{
return new Vector4(left.X - right.X, left.Y - right.Y, left.Z - right.Z, left.W - right.W);
}
/// <summary>
/// Performs a component-wise subtraction.
/// </summary>
/// <param name="left">The input vector</param>
/// <param name="right">The scalar value to be subtracted from elements</param>
/// <param name="result">The vector with subtracted scalar for each element.</param>
public static void Subtract(ref Vector4 left, ref Real right, out Vector4 result)
{
result = new Vector4(left.X - right, left.Y - right, left.Z - right, left.W - right);
}
/// <summary>
/// Performs a component-wise subtraction.
/// </summary>
/// <param name="left">The input vector</param>
/// <param name="right">The scalar value to be subtracted from elements</param>
/// <returns>The vector with subtracted scalar for each element.</returns>
public static Vector4 Subtract(Vector4 left, Real right)
{
return new Vector4(left.X - right, left.Y - right, left.Z - right, left.W - right);
}
/// <summary>
/// Performs a component-wise subtraction.
/// </summary>
/// <param name="left">The scalar value to be subtracted from elements</param>
/// <param name="right">The input vector.</param>
/// <param name="result">The vector with subtracted scalar for each element.</param>
public static void Subtract(ref Real left, ref Vector4 right, out Vector4 result)
{
result = new Vector4(left - right.X, left - right.Y, left - right.Z, left - right.W);
}
/// <summary>
/// Performs a component-wise subtraction.
/// </summary>
/// <param name="left">The scalar value to be subtracted from elements</param>
/// <param name="right">The input vector.</param>
/// <returns>The vector with subtracted scalar for each element.</returns>
public static Vector4 Subtract(Real left, Vector4 right)
{
return new Vector4(left - right.X, left - right.Y, left - right.Z, left - right.W);
}
/// <summary>
/// Scales a vector by the given value.
/// </summary>
/// <param name="value">The vector to scale.</param>
/// <param name="scale">The amount by which to scale the vector.</param>
/// <param name="result">When the method completes, contains the scaled vector.</param>
public static void Multiply(ref Vector4 value, Real scale, out Vector4 result)
{
result = new Vector4(value.X * scale, value.Y * scale, value.Z * scale, value.W * scale);
}
/// <summary>
/// Scales a vector by the given value.
/// </summary>
/// <param name="value">The vector to scale.</param>
/// <param name="scale">The amount by which to scale the vector.</param>
/// <returns>The scaled vector.</returns>
public static Vector4 Multiply(Vector4 value, Real scale)
{
return new Vector4(value.X * scale, value.Y * scale, value.Z * scale, value.W * scale);
}
/// <summary>
/// Multiplies a vector with another by performing component-wise multiplication.
/// </summary>
/// <param name="left">The first vector to multiply.</param>
/// <param name="right">The second vector to multiply.</param>
/// <param name="result">When the method completes, contains the multiplied vector.</param>
public static void Multiply(ref Vector4 left, ref Vector4 right, out Vector4 result)
{
result = new Vector4(left.X * right.X, left.Y * right.Y, left.Z * right.Z, left.W * right.W);
}
/// <summary>
/// Multiplies a vector with another by performing component-wise multiplication.
/// </summary>
/// <param name="left">The first vector to multiply.</param>
/// <param name="right">The second vector to multiply.</param>
/// <returns>The multiplied vector.</returns>
public static Vector4 Multiply(Vector4 left, Vector4 right)
{
return new Vector4(left.X * right.X, left.Y * right.Y, left.Z * right.Z, left.W * right.W);
}
/// <summary>
/// Scales a vector by the given value.
/// </summary>
/// <param name="value">The vector to scale.</param>
/// <param name="scale">The amount by which to scale the vector.</param>
/// <param name="result">When the method completes, contains the scaled vector.</param>
public static void Divide(ref Vector4 value, Real scale, out Vector4 result)
{
result = new Vector4(value.X / scale, value.Y / scale, value.Z / scale, value.W / scale);
}
/// <summary>
/// Scales a vector by the given value.
/// </summary>
/// <param name="value">The vector to scale.</param>
/// <param name="scale">The amount by which to scale the vector.</param>
/// <returns>The scaled vector.</returns>
public static Vector4 Divide(Vector4 value, Real scale)
{
return new Vector4(value.X / scale, value.Y / scale, value.Z / scale, value.W / scale);
}
/// <summary>
/// Scales a vector by the given value.
/// </summary>
/// <param name="scale">The amount by which to scale the vector.</param>
/// <param name="value">The vector to scale.</param>
/// <param name="result">When the method completes, contains the scaled vector.</param>
public static void Divide(Real scale, ref Vector4 value, out Vector4 result)
{
result = new Vector4(scale / value.X, scale / value.Y, scale / value.Z, scale / value.W);
}
/// <summary>
/// Scales a vector by the given value.
/// </summary>
/// <param name="value">The vector to scale.</param>
/// <param name="scale">The amount by which to scale the vector.</param>
/// <returns>The scaled vector.</returns>
public static Vector4 Divide(Real scale, Vector4 value)
{
return new Vector4(scale / value.X, scale / value.Y, scale / value.Z, scale / value.W);
}
/// <summary>
/// Reverses the direction of a given vector.
/// </summary>
/// <param name="value">The vector to negate.</param>
/// <param name="result">When the method completes, contains a vector facing in the opposite direction.</param>
public static void Negate(ref Vector4 value, out Vector4 result)
{
result = new Vector4(-value.X, -value.Y, -value.Z, -value.W);
}
/// <summary>
/// Reverses the direction of a given vector.
/// </summary>
/// <param name="value">The vector to negate.</param>
/// <returns>A vector facing in the opposite direction.</returns>
public static Vector4 Negate(Vector4 value)
{
return new Vector4(-value.X, -value.Y, -value.Z, -value.W);
}
/// <summary>
/// Returns a <see cref="Vector4" /> containing the 4D Cartesian coordinates of a point specified in Barycentric coordinates relative to a 4D triangle.
/// </summary>
/// <param name="value1">A <see cref="Vector4" /> containing the 4D Cartesian coordinates of vertex 1 of the triangle.</param>
/// <param name="value2">A <see cref="Vector4" /> containing the 4D Cartesian coordinates of vertex 2 of the triangle.</param>
/// <param name="value3">A <see cref="Vector4" /> containing the 4D Cartesian coordinates of vertex 3 of the triangle.</param>
/// <param name="amount1">Barycentric coordinate b2, which expresses the weighting factor toward vertex 2 (specified in <paramref name="value2" />).</param>
/// <param name="amount2">Barycentric coordinate b3, which expresses the weighting factor toward vertex 3 (specified in <paramref name="value3" />).</param>
/// <param name="result">When the method completes, contains the 4D Cartesian coordinates of the specified point.</param>
public static void Barycentric(ref Vector4 value1, ref Vector4 value2, ref Vector4 value3, float amount1, float amount2, out Vector4 result)
{
result = new Vector4(value1.X + amount1 * (value2.X - value1.X) + amount2 * (value3.X - value1.X),
value1.Y + amount1 * (value2.Y - value1.Y) + amount2 * (value3.Y - value1.Y),
value1.Z + amount1 * (value2.Z - value1.Z) + amount2 * (value3.Z - value1.Z),
value1.W + amount1 * (value2.W - value1.W) + amount2 * (value3.W - value1.W));
}
/// <summary>
/// Returns a <see cref="Vector4" /> containing the 4D Cartesian coordinates of a point specified in Barycentric coordinates relative to a 4D triangle.
/// </summary>
/// <param name="value1">A <see cref="Vector4" /> containing the 4D Cartesian coordinates of vertex 1 of the triangle.</param>
/// <param name="value2">A <see cref="Vector4" /> containing the 4D Cartesian coordinates of vertex 2 of the triangle.</param>
/// <param name="value3">A <see cref="Vector4" /> containing the 4D Cartesian coordinates of vertex 3 of the triangle.</param>
/// <param name="amount1">Barycentric coordinate b2, which expresses the weighting factor toward vertex 2 (specified in <paramref name="value2" />).</param>
/// <param name="amount2">Barycentric coordinate b3, which expresses the weighting factor toward vertex 3 (specified in <paramref name="value3" />).</param>
/// <returns>A new <see cref="Vector4" /> containing the 4D Cartesian coordinates of the specified point.</returns>
public static Vector4 Barycentric(Vector4 value1, Vector4 value2, Vector4 value3, float amount1, float amount2)
{
Barycentric(ref value1, ref value2, ref value3, amount1, amount2, out Vector4 result);
return result;
}
/// <summary>
/// Restricts a value to be within a specified range.
/// </summary>
/// <param name="value">The value to clamp.</param>
/// <param name="min">The minimum value.</param>
/// <param name="max">The maximum value.</param>
/// <param name="result">When the method completes, contains the clamped value.</param>
public static void Clamp(ref Vector4 value, ref Vector4 min, ref Vector4 max, out Vector4 result)
{
Real x = value.X;
x = x > max.X ? max.X : x;
x = x < min.X ? min.X : x;
Real y = value.Y;
y = y > max.Y ? max.Y : y;
y = y < min.Y ? min.Y : y;
Real z = value.Z;
z = z > max.Z ? max.Z : z;
z = z < min.Z ? min.Z : z;
Real w = value.W;
w = w > max.W ? max.W : w;
w = w < min.W ? min.W : w;
result = new Vector4(x, y, z, w);
}
/// <summary>
/// Restricts a value to be within a specified range.
/// </summary>
/// <param name="value">The value to clamp.</param>
/// <param name="min">The minimum value.</param>
/// <param name="max">The maximum value.</param>
/// <returns>The clamped value.</returns>
public static Vector4 Clamp(Vector4 value, Vector4 min, Vector4 max)
{
Clamp(ref value, ref min, ref max, out Vector4 result);
return result;
}
/// <summary>
/// Calculates the distance between two vectors.
/// </summary>
/// <param name="value1">The first vector.</param>
/// <param name="value2">The second vector.</param>
/// <param name="result">When the method completes, contains the distance between the two vectors.</param>
/// <remarks><see cref="Vector4.DistanceSquared(ref Vector4, ref Vector4, out Real)" /> may be preferred when only the relative distance is needed and speed is of the essence.</remarks>
public static void Distance(ref Vector4 value1, ref Vector4 value2, out Real result)
{
Real x = value1.X - value2.X;
Real y = value1.Y - value2.Y;
Real z = value1.Z - value2.Z;
Real w = value1.W - value2.W;
result = (Real)Math.Sqrt(x * x + y * y + z * z + w * w);
}
/// <summary>
/// Calculates the distance between two vectors.
/// </summary>
/// <param name="value1">The first vector.</param>
/// <param name="value2">The second vector.</param>
/// <returns>The distance between the two vectors.</returns>
/// <remarks><see cref="Vector4.DistanceSquared(Vector4, Vector4)" /> may be preferred when only the relative distance is needed and speed is of the essence.</remarks>
public static Real Distance(Vector4 value1, Vector4 value2)
{
Real x = value1.X - value2.X;
Real y = value1.Y - value2.Y;
Real z = value1.Z - value2.Z;
Real w = value1.W - value2.W;
return (Real)Math.Sqrt(x * x + y * y + z * z + w * w);
}
/// <summary>
/// Calculates the squared distance between two vectors.
/// </summary>
/// <param name="value1">The first vector.</param>
/// <param name="value2">The second vector.</param>
/// <param name="result">When the method completes, contains the squared distance between the two vectors.</param>
public static void DistanceSquared(ref Vector4 value1, ref Vector4 value2, out Real result)
{
Real x = value1.X - value2.X;
Real y = value1.Y - value2.Y;
Real z = value1.Z - value2.Z;
Real w = value1.W - value2.W;
result = x * x + y * y + z * z + w * w;
}
/// <summary>
/// Calculates the squared distance between two vectors.
/// </summary>
/// <param name="value1">The first vector.</param>
/// <param name="value2">The second vector.</param>
/// <returns>The squared distance between the two vectors.</returns>
public static Real DistanceSquared(Vector4 value1, Vector4 value2)
{
Real x = value1.X - value2.X;
Real y = value1.Y - value2.Y;
Real z = value1.Z - value2.Z;
Real w = value1.W - value2.W;
return x * x + y * y + z * z + w * w;
}
/// <summary>
/// Tests whether one vector is near another vector.
/// </summary>
/// <param name="left">The left vector.</param>
/// <param name="right">The right vector.</param>
/// <param name="epsilon">The epsilon.</param>
/// <returns><c>true</c> if left and right are near another, <c>false</c> otherwise</returns>
public static bool NearEqual(Vector4 left, Vector4 right, float epsilon = Mathf.Epsilon)
{
return NearEqual(ref left, ref right, epsilon);
}
/// <summary>
/// Tests whether one vector is near another vector.
/// </summary>
/// <param name="left">The left vector.</param>
/// <param name="right">The right vector.</param>
/// <param name="epsilon">The epsilon.</param>
/// <returns><c>true</c> if left and right are near another, <c>false</c> otherwise</returns>
public static bool NearEqual(ref Vector4 left, ref Vector4 right, float epsilon = Mathf.Epsilon)
{
return Mathf.WithinEpsilon(left.X, right.X, epsilon) && Mathf.WithinEpsilon(left.Y, right.Y, epsilon) && Mathf.WithinEpsilon(left.Z, right.Z, epsilon) && Mathf.WithinEpsilon(left.W, right.W, epsilon);
}
/// <summary>
/// Calculates the dot product of two vectors.
/// </summary>
/// <param name="left">First source vector</param>
/// <param name="right">Second source vector.</param>
/// <param name="result">When the method completes, contains the dot product of the two vectors.</param>
public static void Dot(ref Vector4 left, ref Vector4 right, out Real result)
{
result = left.X * right.X + left.Y * right.Y + left.Z * right.Z + left.W * right.W;
}
/// <summary>
/// Calculates the dot product of two vectors.
/// </summary>
/// <param name="left">First source vector.</param>
/// <param name="right">Second source vector.</param>
/// <returns>The dot product of the two vectors.</returns>
public static Real Dot(Vector4 left, Vector4 right)
{
return left.X * right.X + left.Y * right.Y + left.Z * right.Z + left.W * right.W;
}
/// <summary>
/// Converts the vector into a unit vector.
/// </summary>
/// <param name="value">The vector to normalize.</param>
/// <param name="result">When the method completes, contains the normalized vector.</param>
public static void Normalize(ref Vector4 value, out Vector4 result)
{
result = value;
result.Normalize();
}
/// <summary>
/// Converts the vector into a unit vector.
/// </summary>
/// <param name="value">The vector to normalize.</param>
/// <returns>The normalized vector.</returns>
public static Vector4 Normalize(Vector4 value)
{
value.Normalize();
return value;
}
/// <summary>
/// Makes sure that Length of the output vector is always below max and above 0.
/// </summary>
/// <param name="vector">Input Vector.</param>
/// <param name="max">Max Length</param>
public static Vector4 ClampLength(Vector4 vector, Real max)
{
return ClampLength(vector, 0, max);
}
/// <summary>
/// Makes sure that Length of the output vector is always below max and above min.
/// </summary>
/// <param name="vector">Input Vector.</param>
/// <param name="min">Min Length</param>
/// <param name="max">Max Length</param>
public static Vector4 ClampLength(Vector4 vector, Real min, Real max)
{
ClampLength(vector, min, max, out Vector4 result);
return result;
}
/// <summary>
/// Makes sure that Length of the output vector is always below max and above min.
/// </summary>
/// <param name="vector">Input Vector.</param>
/// <param name="min">Min Length</param>
/// <param name="max">Max Length</param>
/// <param name="result">The result vector.</param>
public static void ClampLength(Vector4 vector, Real min, Real max, out Vector4 result)
{
result = vector;
Real lenSq = result.LengthSquared;
if (lenSq > max * max)
{
var scaleFactor = max / (Real)Math.Sqrt(lenSq);
result.X *= scaleFactor;
result.Y *= scaleFactor;
result.Z *= scaleFactor;
result.W *= scaleFactor;
}
if (lenSq < min * min)
{
var scaleFactor = min / (Real)Math.Sqrt(lenSq);
result.X *= scaleFactor;
result.Y *= scaleFactor;
result.Z *= scaleFactor;
result.W *= scaleFactor;
}
}
/// <summary>
/// Performs a linear interpolation between two vectors.
/// </summary>
/// <param name="start">Start vector.</param>
/// <param name="end">End vector.</param>
/// <param name="amount">Value between 0 and 1 indicating the weight of <paramref name="end" />.</param>
/// <param name="result">When the method completes, contains the linear interpolation of the two vectors.</param>
/// <remarks>Passing <paramref name="amount" /> a value of 0 will cause <paramref name="start" /> to be returned; a value of 1 will cause <paramref name="end" /> to be returned.</remarks>
public static void Lerp(ref Vector4 start, ref Vector4 end, Real amount, out Vector4 result)
{
result.X = Mathr.Lerp(start.X, end.X, amount);
result.Y = Mathr.Lerp(start.Y, end.Y, amount);
result.Z = Mathr.Lerp(start.Z, end.Z, amount);
result.W = Mathr.Lerp(start.W, end.W, amount);
}
/// <summary>
/// Performs a linear interpolation between two vectors.
/// </summary>
/// <param name="start">Start vector.</param>
/// <param name="end">End vector.</param>
/// <param name="amount">Value between 0 and 1 indicating the weight of <paramref name="end" />.</param>
/// <returns>The linear interpolation of the two vectors.</returns>
/// <remarks>Passing <paramref name="amount" /> a value of 0 will cause <paramref name="start" /> to be returned; a value of 1 will cause <paramref name="end" /> to be returned.</remarks>
public static Vector4 Lerp(Vector4 start, Vector4 end, Real amount)
{
Lerp(ref start, ref end, amount, out Vector4 result);
return result;
}
/// <summary>
/// Performs a cubic interpolation between two vectors.
/// </summary>
/// <param name="start">Start vector.</param>
/// <param name="end">End vector.</param>
/// <param name="amount">Value between 0 and 1 indicating the weight of <paramref name="end" />.</param>
/// <param name="result">When the method completes, contains the cubic interpolation of the two vectors.</param>
public static void SmoothStep(ref Vector4 start, ref Vector4 end, Real amount, out Vector4 result)
{
amount = Mathr.SmoothStep(amount);
Lerp(ref start, ref end, amount, out result);
}
/// <summary>
/// Performs a cubic interpolation between two vectors.
/// </summary>
/// <param name="start">Start vector.</param>
/// <param name="end">End vector.</param>
/// <param name="amount">Value between 0 and 1 indicating the weight of <paramref name="end" />.</param>
/// <returns>The cubic interpolation of the two vectors.</returns>
public static Vector4 SmoothStep(Vector4 start, Vector4 end, Real amount)
{
SmoothStep(ref start, ref end, amount, out Vector4 result);
return result;
}
/// <summary>
/// Performs a Hermite spline interpolation.
/// </summary>
/// <param name="value1">First source position vector.</param>
/// <param name="tangent1">First source tangent vector.</param>
/// <param name="value2">Second source position vector.</param>
/// <param name="tangent2">Second source tangent vector.</param>
/// <param name="amount">Weighting factor.</param>
/// <param name="result">When the method completes, contains the result of the Hermite spline interpolation.</param>
public static void Hermite(ref Vector4 value1, ref Vector4 tangent1, ref Vector4 value2, ref Vector4 tangent2, float amount, out Vector4 result)
{
float squared = amount * amount;
float cubed = amount * squared;
float part1 = 2.0f * cubed - 3.0f * squared + 1.0f;
float part2 = -2.0f * cubed + 3.0f * squared;
float part3 = cubed - 2.0f * squared + amount;
float part4 = cubed - squared;
result = new Vector4(value1.X * part1 + value2.X * part2 + tangent1.X * part3 + tangent2.X * part4,
value1.Y * part1 + value2.Y * part2 + tangent1.Y * part3 + tangent2.Y * part4,
value1.Z * part1 + value2.Z * part2 + tangent1.Z * part3 + tangent2.Z * part4,
value1.W * part1 + value2.W * part2 + tangent1.W * part3 + tangent2.W * part4);
}
/// <summary>
/// Performs a Hermite spline interpolation.
/// </summary>
/// <param name="value1">First source position vector.</param>
/// <param name="tangent1">First source tangent vector.</param>
/// <param name="value2">Second source position vector.</param>
/// <param name="tangent2">Second source tangent vector.</param>
/// <param name="amount">Weighting factor.</param>
/// <returns>The result of the Hermite spline interpolation.</returns>
public static Vector4 Hermite(Vector4 value1, Vector4 tangent1, Vector4 value2, Vector4 tangent2, float amount)
{
Hermite(ref value1, ref tangent1, ref value2, ref tangent2, amount, out Vector4 result);
return result;
}
/// <summary>
/// Performs a Catmull-Rom interpolation using the specified positions.
/// </summary>
/// <param name="value1">The first position in the interpolation.</param>
/// <param name="value2">The second position in the interpolation.</param>
/// <param name="value3">The third position in the interpolation.</param>
/// <param name="value4">The fourth position in the interpolation.</param>
/// <param name="amount">Weighting factor.</param>
/// <param name="result">When the method completes, contains the result of the Catmull-Rom interpolation.</param>
public static void CatmullRom(ref Vector4 value1, ref Vector4 value2, ref Vector4 value3, ref Vector4 value4, float amount, out Vector4 result)
{
float squared = amount * amount;
float cubed = amount * squared;
result.X = 0.5f * (2.0f * value2.X + (-value1.X + value3.X) * amount + (2.0f * value1.X - 5.0f * value2.X + 4.0f * value3.X - value4.X) * squared + (-value1.X + 3.0f * value2.X - 3.0f * value3.X + value4.X) * cubed);
result.Y = 0.5f * (2.0f * value2.Y + (-value1.Y + value3.Y) * amount + (2.0f * value1.Y - 5.0f * value2.Y + 4.0f * value3.Y - value4.Y) * squared + (-value1.Y + 3.0f * value2.Y - 3.0f * value3.Y + value4.Y) * cubed);
result.Z = 0.5f * (2.0f * value2.Z + (-value1.Z + value3.Z) * amount + (2.0f * value1.Z - 5.0f * value2.Z + 4.0f * value3.Z - value4.Z) * squared + (-value1.Z + 3.0f * value2.Z - 3.0f * value3.Z + value4.Z) * cubed);
result.W = 0.5f * (2.0f * value2.W + (-value1.W + value3.W) * amount + (2.0f * value1.W - 5.0f * value2.W + 4.0f * value3.W - value4.W) * squared + (-value1.W + 3.0f * value2.W - 3.0f * value3.W + value4.W) * cubed);
}
/// <summary>
/// Performs a Catmull-Rom interpolation using the specified positions.
/// </summary>
/// <param name="value1">The first position in the interpolation.</param>
/// <param name="value2">The second position in the interpolation.</param>
/// <param name="value3">The third position in the interpolation.</param>
/// <param name="value4">The fourth position in the interpolation.</param>
/// <param name="amount">Weighting factor.</param>
/// <returns>A vector that is the result of the Catmull-Rom interpolation.</returns>
public static Vector4 CatmullRom(Vector4 value1, Vector4 value2, Vector4 value3, Vector4 value4, float amount)
{
CatmullRom(ref value1, ref value2, ref value3, ref value4, amount, out Vector4 result);
return result;
}
/// <summary>
/// Returns a vector containing the largest components of the specified vectors.
/// </summary>
/// <param name="left">The first source vector.</param>
/// <param name="right">The second source vector.</param>
/// <param name="result">When the method completes, contains an new vector composed of the largest components of the source vectors.</param>
public static void Max(ref Vector4 left, ref Vector4 right, out Vector4 result)
{
result.X = left.X > right.X ? left.X : right.X;
result.Y = left.Y > right.Y ? left.Y : right.Y;
result.Z = left.Z > right.Z ? left.Z : right.Z;
result.W = left.W > right.W ? left.W : right.W;
}
/// <summary>
/// Returns a vector containing the largest components of the specified vectors.
/// </summary>
/// <param name="left">The first source vector.</param>
/// <param name="right">The second source vector.</param>
/// <returns>A vector containing the largest components of the source vectors.</returns>
public static Vector4 Max(Vector4 left, Vector4 right)
{
Max(ref left, ref right, out Vector4 result);
return result;
}
/// <summary>
/// Returns a vector containing the smallest components of the specified vectors.
/// </summary>
/// <param name="left">The first source vector.</param>
/// <param name="right">The second source vector.</param>
/// <param name="result">When the method completes, contains an new vector composed of the smallest components of the source vectors.</param>
public static void Min(ref Vector4 left, ref Vector4 right, out Vector4 result)
{
result.X = left.X < right.X ? left.X : right.X;
result.Y = left.Y < right.Y ? left.Y : right.Y;
result.Z = left.Z < right.Z ? left.Z : right.Z;
result.W = left.W < right.W ? left.W : right.W;
}
/// <summary>
/// Returns a vector containing the smallest components of the specified vectors.
/// </summary>
/// <param name="left">The first source vector.</param>
/// <param name="right">The second source vector.</param>
/// <returns>A vector containing the smallest components of the source vectors.</returns>
public static Vector4 Min(Vector4 left, Vector4 right)
{
Min(ref left, ref right, out Vector4 result);
return result;
}
/// <summary>
/// Returns the absolute value of a vector.
/// </summary>
/// <param name="v">The value.</param>
/// <returns> A vector which components are less or equal to 0.</returns>
public static Vector4 Abs(Vector4 v)
{
return new Vector4(Math.Abs(v.X), Math.Abs(v.Y), Math.Abs(v.Z), Math.Abs(v.W));
}
/// <summary>
/// Transforms a 4D vector by the given <see cref="Quaternion" /> rotation.
/// </summary>
/// <param name="vector">The vector to rotate.</param>
/// <param name="rotation">The <see cref="Quaternion" /> rotation to apply.</param>
/// <param name="result">When the method completes, contains the transformed <see cref="Vector4" />.</param>
public static void Transform(ref Vector4 vector, ref Quaternion rotation, out Vector4 result)
{
float x = rotation.X + rotation.X;
float y = rotation.Y + rotation.Y;
float z = rotation.Z + rotation.Z;
float wx = rotation.W * x;
float wy = rotation.W * y;
float wz = rotation.W * z;
float xx = rotation.X * x;
float xy = rotation.X * y;
float xz = rotation.X * z;
float yy = rotation.Y * y;
float yz = rotation.Y * z;
float zz = rotation.Z * z;
result = new Vector4(vector.X * (1.0f - yy - zz) + vector.Y * (xy - wz) + vector.Z * (xz + wy),
vector.X * (xy + wz) + vector.Y * (1.0f - xx - zz) + vector.Z * (yz - wx),
vector.X * (xz - wy) + vector.Y * (yz + wx) + vector.Z * (1.0f - xx - yy),
vector.W);
}
/// <summary>
/// Transforms a 4D vector by the given <see cref="Quaternion" /> rotation.
/// </summary>
/// <param name="vector">The vector to rotate.</param>
/// <param name="rotation">The <see cref="Quaternion" /> rotation to apply.</param>
/// <returns>The transformed <see cref="Vector4" />.</returns>
public static Vector4 Transform(Vector4 vector, Quaternion rotation)
{
Transform(ref vector, ref rotation, out Vector4 result);
return result;
}
/// <summary>
/// Transforms a 4D vector by the given <see cref="Matrix" />.
/// </summary>
/// <param name="vector">The source vector.</param>
/// <param name="transform">The transformation <see cref="Matrix" />.</param>
/// <param name="result">When the method completes, contains the transformed <see cref="Vector4" />.</param>
public static void Transform(ref Vector4 vector, ref Matrix transform, out Vector4 result)
{
result = new Vector4(vector.X * transform.M11 + vector.Y * transform.M21 + vector.Z * transform.M31 + vector.W * transform.M41,
vector.X * transform.M12 + vector.Y * transform.M22 + vector.Z * transform.M32 + vector.W * transform.M42,
vector.X * transform.M13 + vector.Y * transform.M23 + vector.Z * transform.M33 + vector.W * transform.M43,
vector.X * transform.M14 + vector.Y * transform.M24 + vector.Z * transform.M34 + vector.W * transform.M44);
}
/// <summary>
/// Transforms a 4D vector by the given <see cref="Matrix" />.
/// </summary>
/// <param name="vector">The source vector.</param>
/// <param name="transform">The transformation <see cref="Matrix" />.</param>
/// <returns>The transformed <see cref="Vector4" />.</returns>
public static Vector4 Transform(Vector4 vector, Matrix transform)
{
Transform(ref vector, ref transform, out Vector4 result);
return result;
}
/// <summary>
/// Adds two vectors.
/// </summary>
/// <param name="left">The first vector to add.</param>
/// <param name="right">The second vector to add.</param>
/// <returns>The sum of the two vectors.</returns>
public static Vector4 operator +(Vector4 left, Vector4 right)
{
return new Vector4(left.X + right.X, left.Y + right.Y, left.Z + right.Z, left.W + right.W);
}
/// <summary>
/// Multiplies a vector with another by performing component-wise multiplication equivalent to <see cref="Multiply(ref Vector4,ref Vector4,out Vector4)" />.
/// </summary>
/// <param name="left">The first vector to multiply.</param>
/// <param name="right">The second vector to multiply.</param>
/// <returns>The multiplication of the two vectors.</returns>
public static Vector4 operator *(Vector4 left, Vector4 right)
{
return new Vector4(left.X * right.X, left.Y * right.Y, left.Z * right.Z, left.W * right.W);
}
/// <summary>
/// Assert a vector (return it unchanged).
/// </summary>
/// <param name="value">The vector to assert (unchanged).</param>
/// <returns>The asserted (unchanged) vector.</returns>
public static Vector4 operator +(Vector4 value)
{
return value;
}
/// <summary>
/// Subtracts two vectors.
/// </summary>
/// <param name="left">The first vector to subtract.</param>
/// <param name="right">The second vector to subtract.</param>
/// <returns>The difference of the two vectors.</returns>
public static Vector4 operator -(Vector4 left, Vector4 right)
{
return new Vector4(left.X - right.X, left.Y - right.Y, left.Z - right.Z, left.W - right.W);
}
/// <summary>
/// Reverses the direction of a given vector.
/// </summary>
/// <param name="value">The vector to negate.</param>
/// <returns>A vector facing in the opposite direction.</returns>
public static Vector4 operator -(Vector4 value)
{
return new Vector4(-value.X, -value.Y, -value.Z, -value.W);
}
/// <summary>
/// Scales a vector by the given value.
/// </summary>
/// <param name="value">The vector to scale.</param>
/// <param name="scale">The amount by which to scale the vector.</param>
/// <returns>The scaled vector.</returns>
public static Vector4 operator *(Real scale, Vector4 value)
{
return new Vector4(value.X * scale, value.Y * scale, value.Z * scale, value.W * scale);
}
/// <summary>
/// Scales a vector by the given value.
/// </summary>
/// <param name="value">The vector to scale.</param>
/// <param name="scale">The amount by which to scale the vector.</param>
/// <returns>The scaled vector.</returns>
public static Vector4 operator *(Vector4 value, Real scale)
{
return new Vector4(value.X * scale, value.Y * scale, value.Z * scale, value.W * scale);
}
/// <summary>
/// Scales a vector by the given value.
/// </summary>
/// <param name="value">The vector to scale.</param>
/// <param name="scale">The amount by which to scale the vector.</param>
/// <returns>The scaled vector.</returns>
public static Vector4 operator /(Vector4 value, Real scale)
{
return new Vector4(value.X / scale, value.Y / scale, value.Z / scale, value.W / scale);
}
/// <summary>
/// Scales a vector by the given value.
/// </summary>
/// <param name="scale">The amount by which to scale the vector.</param>
/// <param name="value">The vector to scale.</param>
/// <returns>The scaled vector.</returns>
public static Vector4 operator /(Real scale, Vector4 value)
{
return new Vector4(scale / value.X, scale / value.Y, scale / value.Z, scale / value.W);
}
/// <summary>
/// Scales a vector by the given value.
/// </summary>
/// <param name="value">The vector to scale.</param>
/// <param name="scale">The amount by which to scale the vector.</param>
/// <returns>The scaled vector.</returns>
public static Vector4 operator /(Vector4 value, Vector4 scale)
{
return new Vector4(value.X / scale.X, value.Y / scale.Y, value.Z / scale.Z, value.W / scale.W);
}
/// <summary>
/// Remainder of value divided by scale.
/// </summary>
/// <param name="value">The vector to scale.</param>
/// <param name="scale">The amount by which to scale the vector.</param>
/// <returns>The remained vector.</returns>
public static Vector4 operator %(Vector4 value, Real scale)
{
return new Vector4(value.X % scale, value.Y % scale, value.Z % scale, value.W % scale);
}
/// <summary>
/// Remainder of value divided by scale.
/// </summary>
/// <param name="value">The amount by which to scale the vector.</param>
/// <param name="scale">The vector to scale.</param>
/// <returns>The remained vector.</returns>
public static Vector4 operator %(Real value, Vector4 scale)
{
return new Vector4(value % scale.X, value % scale.Y, value % scale.Z, value % scale.W);
}
/// <summary>
/// Remainder of value divided by scale.
/// </summary>
/// <param name="value">The vector to scale.</param>
/// <param name="scale">The amount by which to scale the vector.</param>
/// <returns>The remained vector.</returns>
public static Vector4 operator %(Vector4 value, Vector4 scale)
{
return new Vector4(value.X % scale.X, value.Y % scale.Y, value.Z % scale.Z, value.W % scale.W);
}
/// <summary>
/// Performs a component-wise addition.
/// </summary>
/// <param name="value">The input vector.</param>
/// <param name="scalar">The scalar value to be added on elements</param>
/// <returns>The vector with added scalar for each element.</returns>
public static Vector4 operator +(Vector4 value, Real scalar)
{
return new Vector4(value.X + scalar, value.Y + scalar, value.Z + scalar, value.W + scalar);
}
/// <summary>
/// Performs a component-wise addition.
/// </summary>
/// <param name="value">The input vector.</param>
/// <param name="scalar">The scalar value to be added on elements</param>
/// <returns>The vector with added scalar for each element.</returns>
public static Vector4 operator +(Real scalar, Vector4 value)
{
return new Vector4(scalar + value.X, scalar + value.Y, scalar + value.Z, scalar + value.W);
}
/// <summary>
/// Performs a component-wise subtraction.
/// </summary>
/// <param name="value">The input vector.</param>
/// <param name="scalar">The scalar value to be subtracted from elements</param>
/// <returns>The vector with subtracted scalar from each element.</returns>
public static Vector4 operator -(Vector4 value, Real scalar)
{
return new Vector4(value.X - scalar, value.Y - scalar, value.Z - scalar, value.W - scalar);
}
/// <summary>
/// Performs a component-wise subtraction.
/// </summary>
/// <param name="value">The input vector.</param>
/// <param name="scalar">The scalar value to be subtracted from elements</param>
/// <returns>The vector with subtracted scalar from each element.</returns>
public static Vector4 operator -(Real scalar, Vector4 value)
{
return new Vector4(scalar - value.X, scalar - value.Y, scalar - value.Z, scalar - value.W);
}
/// <summary>
/// Adds a vector to another by performing component-wise addition.
/// </summary>
/// <param name="left">The first vector to add.</param>
/// <param name="right">The second vector to add.</param>
/// <returns>The sum of the two vectors.</returns>
public static Float4 operator +(Float4 left, Vector4 right)
{
return new Float4(left.X + (float)right.X, left.Y + (float)right.Y, left.Z + (float)right.Z, left.W + (float)right.W);
}
/// <summary>
/// Subtracts a vector from another by performing component-wise subtraction.
/// </summary>
/// <param name="left">The first vector to add.</param>
/// <param name="right">The second vector to add.</param>
/// <returns>The sum of the two vectors.</returns>
public static Float4 operator -(Float4 left, Vector4 right)
{
return new Float4(left.X - (float)right.X, left.Y - (float)right.Y, left.Z - (float)right.Z, left.W - (float)right.W);
}
/// <summary>
/// Multiplies a vector with another by performing component-wise multiplication.
/// </summary>
/// <param name="left">The first vector to multiply.</param>
/// <param name="right">The second vector to multiply.</param>
/// <returns>The multiplication of the two vectors.</returns>
public static Float4 operator *(Float4 left, Vector4 right)
{
return new Float4(left.X * (float)right.X, left.Y * (float)right.Y, left.Z * (float)right.Z, left.W * (float)right.W);
}
/// <summary>
/// Adds a vector to another by performing component-wise addition.
/// </summary>
/// <param name="left">The first vector to add.</param>
/// <param name="right">The second vector to add.</param>
/// <returns>The sum of the two vectors.</returns>
public static Vector4 operator +(Vector4 left, Float4 right)
{
return new Vector4(left.X + (Real)right.X, left.Y + (Real)right.Y, left.Z + (Real)right.Z, left.W + (Real)right.W);
}
/// <summary>
/// Subtracts a vector from another by performing component-wise subtraction.
/// </summary>
/// <param name="left">The first vector to add.</param>
/// <param name="right">The second vector to add.</param>
/// <returns>The sum of the two vectors.</returns>
public static Vector4 operator -(Vector4 left, Float4 right)
{
return new Vector4(left.X - (Real)right.X, left.Y - (Real)right.Y, left.Z - (Real)right.Z, left.W - (Real)right.W);
}
/// <summary>
/// Multiplies a vector with another by performing component-wise multiplication.
/// </summary>
/// <param name="left">The first vector to multiply.</param>
/// <param name="right">The second vector to multiply.</param>
/// <returns>The multiplication of the two vectors.</returns>
public static Vector4 operator *(Vector4 left, Float4 right)
{
return new Vector4(left.X * (Real)right.X, left.Y * (Real)right.Y, left.Z * (Real)right.Z, left.W * (Real)right.W);
}
/// <summary>
/// Tests for equality between two objects.
/// </summary>
/// <param name="left">The first value to compare.</param>
/// <param name="right">The second value to compare.</param>
/// <returns><c>true</c> if <paramref name="left" /> has the same value as <paramref name="right" />; otherwise, <c>false</c>.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static bool operator ==(Vector4 left, Vector4 right)
{
return Mathr.NearEqual(left.X, right.X) && Mathr.NearEqual(left.Y, right.Y) && Mathr.NearEqual(left.Z, right.Z) && Mathr.NearEqual(left.W, right.W);
}
/// <summary>
/// Tests for inequality between two objects.
/// </summary>
/// <param name="left">The first value to compare.</param>
/// <param name="right">The second value to compare.</param>
/// <returns><c>true</c> if <paramref name="left" /> has a different value than <paramref name="right" />; otherwise, <c>false</c>.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static bool operator !=(Vector4 left, Vector4 right)
{
return !left.Equals(ref right);
}
/// <summary>
/// Performs an implicit conversion from <see cref="Vector4" /> to <see cref="Float4" />.
/// </summary>
/// <param name="value">The value.</param>
/// <returns>The result of the conversion.</returns>
public static implicit operator Float4(Vector4 value)
{
return new Float4((float)value.X, (float)value.Y, (float)value.Z, (float)value.W);
}
/// <summary>
/// Performs an implicit conversion from <see cref="Vector4" /> to <see cref="Double4" />.
/// </summary>
/// <param name="value">The value.</param>
/// <returns>The result of the conversion.</returns>
public static implicit operator Double4(Vector4 value)
{
return new Double4(value.X, value.Y, value.Z, value.W);
}
/// <summary>
/// Performs an explicit conversion from <see cref="Vector4" /> to <see cref="Int4" />.
/// </summary>
/// <param name="value">The value.</param>
/// <returns>The result of the conversion.</returns>
public static explicit operator Int4(Vector4 value)
{
return new Int4((int)value.X, (int)value.Y, (int)value.Z, (int)value.W);
}
/// <summary>
/// Performs an explicit conversion from <see cref="Vector4" /> to <see cref="Vector2" />.
/// </summary>
/// <param name="value">The value.</param>
/// <returns>The result of the conversion.</returns>
public static explicit operator Vector2(Vector4 value)
{
return new Vector2(value.X, value.Y);
}
/// <summary>
/// Performs an explicit conversion from <see cref="Vector4" /> to <see cref="Vector3" />.
/// </summary>
/// <param name="value">The value.</param>
/// <returns>The result of the conversion.</returns>
public static explicit operator Vector3(Vector4 value)
{
return new Vector3(value.X, value.Y, value.Z);
}
/// <summary>
/// Returns a <see cref="System.String" /> that represents this instance.
/// </summary>
/// <returns>A <see cref="System.String" /> that represents this instance.</returns>
public override string ToString()
{
return string.Format(CultureInfo.CurrentCulture, _formatString, X, Y, Z, W);
}
/// <summary>
/// Returns a <see cref="System.String" /> that represents this instance.
/// </summary>
/// <param name="format">The format.</param>
/// <returns>A <see cref="System.String" /> that represents this instance.</returns>
public string ToString(string format)
{
if (format == null)
return ToString();
return string.Format(CultureInfo.CurrentCulture, _formatString, X.ToString(format, CultureInfo.CurrentCulture), Y.ToString(format, CultureInfo.CurrentCulture), Z.ToString(format, CultureInfo.CurrentCulture), W.ToString(format, CultureInfo.CurrentCulture));
}
/// <summary>
/// Returns a <see cref="System.String" /> that represents this instance.
/// </summary>
/// <param name="formatProvider">The format provider.</param>
/// <returns>A <see cref="System.String" /> that represents this instance.</returns>
public string ToString(IFormatProvider formatProvider)
{
return string.Format(formatProvider, _formatString, X, Y, Z, W);
}
/// <summary>
/// Returns a <see cref="System.String" /> that represents this instance.
/// </summary>
/// <param name="format">The format.</param>
/// <param name="formatProvider">The format provider.</param>
/// <returns>A <see cref="System.String" /> that represents this instance.</returns>
public string ToString(string format, IFormatProvider formatProvider)
{
if (format == null)
return ToString(formatProvider);
return string.Format(formatProvider, "X:{0} Y:{1} Z:{2} W:{3}", X.ToString(format, formatProvider), Y.ToString(format, formatProvider), Z.ToString(format, formatProvider), W.ToString(format, formatProvider));
}
/// <summary>
/// Returns a hash code for this instance.
/// </summary>
public override int GetHashCode()
{
unchecked
{
int hashCode = X.GetHashCode();
hashCode = (hashCode * 397) ^ Y.GetHashCode();
hashCode = (hashCode * 397) ^ Z.GetHashCode();
hashCode = (hashCode * 397) ^ W.GetHashCode();
return hashCode;
}
}
/// <summary>
/// Determines whether the specified <see cref="Vector4" /> is equal to this instance.
/// </summary>
/// <param name="other">The <see cref="Vector4" /> to compare with this instance.</param>
/// <returns><c>true</c> if the specified <see cref="Vector4" /> is equal to this instance; otherwise, <c>false</c>.</returns>
public bool Equals(ref Vector4 other)
{
return Mathr.NearEqual(other.X, X) && Mathr.NearEqual(other.Y, Y) && Mathr.NearEqual(other.Z, Z) && Mathr.NearEqual(other.W, W);
}
/// <summary>
/// Determines whether the specified <see cref="Vector4" /> is equal to this instance.
/// </summary>
/// <param name="other">The <see cref="Vector4" /> to compare with this instance.</param>
/// <returns><c>true</c> if the specified <see cref="Vector4" /> is equal to this instance; otherwise, <c>false</c>.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public bool Equals(Vector4 other)
{
return Mathr.NearEqual(other.X, X) && Mathr.NearEqual(other.Y, Y) && Mathr.NearEqual(other.Z, Z) && Mathr.NearEqual(other.W, W);
}
/// <summary>
/// Determines whether the specified <see cref="System.Object" /> is equal to this instance.
/// </summary>
/// <param name="value">The <see cref="System.Object" /> to compare with this instance.</param>
/// <returns><c>true</c> if the specified <see cref="System.Object" /> is equal to this instance; otherwise, <c>false</c>.</returns>
public override bool Equals(object value)
{
return value is Vector4 other && Mathr.NearEqual(other.X, X) && Mathr.NearEqual(other.Y, Y) && Mathr.NearEqual(other.Z, Z) && Mathr.NearEqual(other.W, W);
}
}
}