3320 lines
89 KiB
C#
3320 lines
89 KiB
C#
using System;
|
|
using System.Collections.Generic;
|
|
using FlaxEngine;
|
|
using System.IO;
|
|
using System.Linq;
|
|
using System.Runtime.CompilerServices;
|
|
using System.Threading;
|
|
using FlaxEngine.Assertions;
|
|
using FlaxEngine.Utilities;
|
|
using Console = Cabrito.Console;
|
|
|
|
// TODO: remove coplanar/degenerate faces from the final mesh
|
|
// It seems the original algorithm is working but removing degenerate faces does not work
|
|
|
|
namespace Game
|
|
{
|
|
/// <summary>
|
|
/// An implementation of the quickhull algorithm for generating 3d convex
|
|
/// hulls.
|
|
///
|
|
/// The algorithm works like this: you start with an initial "seed" hull,
|
|
/// that is just a simple tetrahedron made up of four points in the point
|
|
/// cloud. This seed hull is then grown until it all the points in the
|
|
/// point cloud is inside of it, at which point it will be the convex hull
|
|
/// for the entire set.
|
|
///
|
|
/// All of the points in the point cloud is divided into two parts, the
|
|
/// "open set" and the "closed set". The open set consists of all the
|
|
/// points outside of the tetrahedron, and the closed set is all of the
|
|
/// points inside the tetrahedron. After each iteration of the algorithm,
|
|
/// the closed set gets bigger and the open set get smaller. When the open
|
|
/// set is empty, the algorithm is finished.
|
|
///
|
|
/// Each point in the open set is assigned to a face that it lies outside
|
|
/// of. To grow the hull, the point in the open set which is farthest from
|
|
/// it's face is chosen. All faces which are facing that point (I call
|
|
/// them "lit faces" in the code, because if you imagine the point as a
|
|
/// point light, it's the set of points which would be lit by that point
|
|
/// light) are removed, and a "horizon" of edges is found from where the
|
|
/// faces were removed. From this horizon, new faces are constructed in a
|
|
/// "cone" like fashion connecting the point to the edges.
|
|
///
|
|
/// To keep track of the faces, I use a struct for each face which
|
|
/// contains the three vertices of the face in CCW order, as well as the
|
|
/// three triangles which share an edge. I was considering doing a
|
|
/// half-edge structure to store the mesh, but it's not needed. Using a
|
|
/// struct for each face and neighbors simplify the algorithm and makes it
|
|
/// easy to export it as a mesh.
|
|
///
|
|
/// The most subtle part of the algorithm is finding the horizon. In order
|
|
/// to properly construct the cone so that all neighbors are kept
|
|
/// consistent, you can do a depth-first search from the first lit face.
|
|
/// If the depth-first search always proceeeds in a counter-clockwise
|
|
/// fashion, it guarantees that the horizon will be found in a
|
|
/// counter-clockwise order, which makes it easy to construct the cone of
|
|
/// new faces.
|
|
///
|
|
/// A note: the code uses a right-handed coordinate system, where the
|
|
/// cross-product uses the right-hand rule and the faces are in CCW order.
|
|
/// At the end of the algorithm, the hull is exported in a Unity-friendly
|
|
/// fashion, with a left-handed mesh.
|
|
/// </summary>
|
|
public class ConvexHullCalculator {
|
|
|
|
/// <summary>
|
|
/// Constant representing a point that has yet to be assigned to a
|
|
/// face. It's only used immediately after constructing the seed hull.
|
|
/// </summary>
|
|
const int UNASSIGNED = -2;
|
|
|
|
/// <summary>
|
|
/// Constant representing a point that is inside the convex hull, and
|
|
/// thus is behind all faces. In the openSet array, all points with
|
|
/// INSIDE are at the end of the array, with indexes larger
|
|
/// openSetTail.
|
|
/// </summary>
|
|
const int INSIDE = -1;
|
|
|
|
/// <summary>
|
|
/// Epsilon value. If the coordinates of the point space are
|
|
/// exceptionally close to each other, this value might need to be
|
|
/// adjusted.
|
|
/// </summary>
|
|
const float EPSILON = 0.0001f;
|
|
|
|
/// <summary>
|
|
/// Struct representing a single face.
|
|
///
|
|
/// Vertex0, Vertex1 and Vertex2 are the vertices in CCW order. They
|
|
/// acutal points are stored in the points array, these are just
|
|
/// indexes into that array.
|
|
///
|
|
/// Opposite0, Opposite1 and Opposite2 are the keys to the faces which
|
|
/// share an edge with this face. Opposite0 is the face opposite
|
|
/// Vertex0 (so it has an edge with Vertex2 and Vertex1), etc.
|
|
///
|
|
/// Normal is (unsurprisingly) the normal of the triangle.
|
|
/// </summary>
|
|
struct Face {
|
|
public int Vertex0;
|
|
public int Vertex1;
|
|
public int Vertex2;
|
|
|
|
public int Opposite0;
|
|
public int Opposite1;
|
|
public int Opposite2;
|
|
|
|
public Vector3 Normal;
|
|
|
|
public Face(int v0, int v1, int v2, int o0, int o1, int o2, Vector3 normal) {
|
|
Vertex0 = v0;
|
|
Vertex1 = v1;
|
|
Vertex2 = v2;
|
|
Opposite0 = o0;
|
|
Opposite1 = o1;
|
|
Opposite2 = o2;
|
|
Normal = normal;
|
|
}
|
|
|
|
public bool Equals(Face other) {
|
|
return (this.Vertex0 == other.Vertex0)
|
|
&& (this.Vertex1 == other.Vertex1)
|
|
&& (this.Vertex2 == other.Vertex2)
|
|
&& (this.Opposite0 == other.Opposite0)
|
|
&& (this.Opposite1 == other.Opposite1)
|
|
&& (this.Opposite2 == other.Opposite2)
|
|
&& (this.Normal == other.Normal);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Struct representing a mapping between a point and a face. These
|
|
/// are used in the openSet array.
|
|
///
|
|
/// Point is the index of the point in the points array, Face is the
|
|
/// key of the face in the Key dictionary, Distance is the distance
|
|
/// from the face to the point.
|
|
/// </summary>
|
|
struct PointFace {
|
|
public int Point;
|
|
public int Face;
|
|
public float Distance;
|
|
|
|
public PointFace(int p, int f, float d) {
|
|
Point = p;
|
|
Face = f;
|
|
Distance = d;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Struct representing a single edge in the horizon.
|
|
///
|
|
/// Edge0 and Edge1 are the vertexes of edge in CCW order, Face is the
|
|
/// face on the other side of the horizon.
|
|
///
|
|
/// TODO Edge1 isn't actually needed, you can just index the next item
|
|
/// in the horizon array.
|
|
/// </summary>
|
|
struct HorizonEdge {
|
|
public int Face;
|
|
public int Edge0;
|
|
public int Edge1;
|
|
}
|
|
|
|
/// <summary>
|
|
/// A dictionary storing the faces of the currently generated convex
|
|
/// hull. The key is the id of the face, used in the Face, PointFace
|
|
/// and HorizonEdge struct.
|
|
///
|
|
/// This is a Dictionary, because we need both random access to it,
|
|
/// the ability to loop through it, and ability to quickly delete
|
|
/// faces (in the ConstructCone method), and Dictionary is the obvious
|
|
/// candidate that can do all of those things.
|
|
///
|
|
/// I'm wondering if using a Dictionary is best idea, though. It might
|
|
/// be better to just have them in a List<Face> and mark a face as
|
|
/// deleted by adding a field to the Face struct. The downside is that
|
|
/// we would need an extra field in the Face struct, and when we're
|
|
/// looping through the points in openSet, we would have to loop
|
|
/// through all the Faces EVER created in the algorithm, and skip the
|
|
/// ones that have been marked as deleted. However, looping through a
|
|
/// list is fairly fast, and it might be worth it to avoid Dictionary
|
|
/// overhead.
|
|
///
|
|
/// TODO test converting to a List<Face> instead.
|
|
/// </summary>
|
|
Dictionary<int, Face> faces;
|
|
|
|
/// <summary>
|
|
/// The set of points to be processed. "openSet" is a misleading name,
|
|
/// because it's both the open set (points which are still outside the
|
|
/// convex hull) and the closed set (points that are inside the convex
|
|
/// hull). The first part of the array (with indexes <= openSetTail)
|
|
/// is the openSet, the last part of the array (with indexes >
|
|
/// openSetTail) are the closed set, with Face set to INSIDE. The
|
|
/// closed set is largely irrelevant to the algorithm, the open set is
|
|
/// what matters.
|
|
///
|
|
/// Storing the entire open set in one big list has a downside: when
|
|
/// we're reassigning points after ConstructCone, we only need to
|
|
/// reassign points that belong to the faces that have been removed,
|
|
/// but storing it in one array, we have to loop through the entire
|
|
/// list, and checking litFaces to determine which we can skip and
|
|
/// which need to be reassigned.
|
|
///
|
|
/// The alternative here is to give each face in Face array it's own
|
|
/// openSet. I don't like that solution, because then you have to
|
|
/// juggle so many more heap-allocated List<T>'s, we'd have to use
|
|
/// object pools and such. It would do a lot more allocation, and it
|
|
/// would have worse locality. I should maybe test that solution, but
|
|
/// it probably wont be faster enough (if at all) to justify the extra
|
|
/// allocations.
|
|
/// </summary>
|
|
List<PointFace> openSet;
|
|
|
|
/// <summary>
|
|
/// Set of faces which are "lit" by the current point in the set. This
|
|
/// is used in the FindHorizon() DFS search to keep track of which
|
|
/// faces we've already visited, and in the ReassignPoints() method to
|
|
/// know which points need to be reassigned.
|
|
/// </summary>
|
|
HashSet<int> litFaces;
|
|
|
|
/// <summary>
|
|
/// The current horizon. Generated by the FindHorizon() DFS search,
|
|
/// and used in ConstructCone to construct new faces. The list of
|
|
/// edges are in CCW order.
|
|
/// </summary>
|
|
List<HorizonEdge> horizon;
|
|
|
|
/// <summary>
|
|
/// If SplitVerts is false, this Dictionary is used to keep track of
|
|
/// which points we've added to the final mesh.
|
|
/// </summary>
|
|
Dictionary<int, int> hullVerts;
|
|
|
|
/// <summary>
|
|
/// The "tail" of the openSet, the last index of a vertex that has
|
|
/// been assigned to a face.
|
|
/// </summary>
|
|
int openSetTail = -1;
|
|
|
|
/// <summary>
|
|
/// When adding a new face to the faces Dictionary, use this for the
|
|
/// key and then increment it.
|
|
/// </summary>
|
|
int faceCount = 0;
|
|
|
|
/// <summary>
|
|
/// Generate a convex hull from points in points array, and store the
|
|
/// mesh in Unity-friendly format in verts and tris. If splitVerts is
|
|
/// true, the the verts will be split, if false, the same vert will be
|
|
/// used for more than one triangle.
|
|
/// </summary>
|
|
public void GenerateHull(
|
|
List<Vector3> points,
|
|
bool splitVerts,
|
|
ref List<Vector3> verts,
|
|
ref List<int> tris,
|
|
ref List<Vector3> normals)
|
|
{
|
|
if (points.Count < 4) {
|
|
throw new System.ArgumentException("Need at least 4 points to generate a convex hull");
|
|
}
|
|
|
|
Initialize(points, splitVerts);
|
|
|
|
GenerateInitialHull(points);
|
|
|
|
while (openSetTail >= 0) {
|
|
GrowHull(points);
|
|
}
|
|
|
|
ExportMesh(points, splitVerts, ref verts, ref tris, ref normals);
|
|
//VerifyMesh(points, ref verts, ref tris);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Make sure all the buffers and variables needed for the algorithm
|
|
/// are initialized.
|
|
/// </summary>
|
|
void Initialize(List<Vector3> points, bool splitVerts) {
|
|
faceCount = 0;
|
|
openSetTail = -1;
|
|
|
|
if (faces == null) {
|
|
faces = new Dictionary<int, Face>();
|
|
litFaces = new HashSet<int>();
|
|
horizon = new List<HorizonEdge>();
|
|
openSet = new List<PointFace>(points.Count);
|
|
} else {
|
|
faces.Clear();
|
|
litFaces.Clear();
|
|
horizon.Clear();
|
|
openSet.Clear();
|
|
|
|
if (openSet.Capacity < points.Count) {
|
|
// i wonder if this is a good idea... if you call
|
|
// GenerateHull over and over with slightly increasing
|
|
// points counts, it's going to reallocate every time. Maybe
|
|
// i should just use .Add(), and let the List<T> manage the
|
|
// capacity, increasing it geometrically every time we need
|
|
// to reallocate.
|
|
|
|
// maybe do
|
|
// openSet.Capacity = Mathf.NextPowerOfTwo(points.Count)
|
|
// instead?
|
|
|
|
openSet.Capacity = points.Count;
|
|
}
|
|
}
|
|
|
|
if (!splitVerts) {
|
|
if (hullVerts == null) {
|
|
hullVerts = new Dictionary<int, int>();
|
|
} else {
|
|
hullVerts.Clear();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Create initial seed hull.
|
|
/// </summary>
|
|
void GenerateInitialHull(List<Vector3> points) {
|
|
// Find points suitable for use as the seed hull. Some varieties of
|
|
// this algorithm pick extreme points here, but I'm not convinced
|
|
// you gain all that much from that. Currently what it does is just
|
|
// find the first four points that are not coplanar.
|
|
int b0, b1, b2, b3;
|
|
FindInitialHullIndices(points, out b0, out b1, out b2, out b3);
|
|
|
|
var v0 = points[b0];
|
|
var v1 = points[b1];
|
|
var v2 = points[b2];
|
|
var v3 = points[b3];
|
|
|
|
var above = Dot(v3 - v1, Cross(v1 - v0, v2 - v0)) > 0.0f;
|
|
|
|
// Create the faces of the seed hull. You need to draw a diagram
|
|
// here, otherwise it's impossible to know what's going on :)
|
|
|
|
// Basically: there are two different possible start-tetrahedrons,
|
|
// depending on whether the fourth point is above or below the base
|
|
// triangle. If you draw a tetrahedron with these coordinates (in a
|
|
// right-handed coordinate-system):
|
|
|
|
// b0 = (0,0,0)
|
|
// b1 = (1,0,0)
|
|
// b2 = (0,1,0)
|
|
// b3 = (0,0,1)
|
|
|
|
// you can see the first case (set b3 = (0,0,-1) for the second
|
|
// case). The faces are added with the proper references to the
|
|
// faces opposite each vertex
|
|
|
|
faceCount = 0;
|
|
if (above) {
|
|
faces[faceCount++] = new Face(b0, b2, b1, 3, 1, 2, Normal(points[b0], points[b2], points[b1]));
|
|
faces[faceCount++] = new Face(b0, b1, b3, 3, 2, 0, Normal(points[b0], points[b1], points[b3]));
|
|
faces[faceCount++] = new Face(b0, b3, b2, 3, 0, 1, Normal(points[b0], points[b3], points[b2]));
|
|
faces[faceCount++] = new Face(b1, b2, b3, 2, 1, 0, Normal(points[b1], points[b2], points[b3]));
|
|
} else {
|
|
faces[faceCount++] = new Face(b0, b1, b2, 3, 2, 1, Normal(points[b0], points[b1], points[b2]));
|
|
faces[faceCount++] = new Face(b0, b3, b1, 3, 0, 2, Normal(points[b0], points[b3], points[b1]));
|
|
faces[faceCount++] = new Face(b0, b2, b3, 3, 1, 0, Normal(points[b0], points[b2], points[b3]));
|
|
faces[faceCount++] = new Face(b1, b3, b2, 2, 0, 1, Normal(points[b1], points[b3], points[b2]));
|
|
}
|
|
|
|
VerifyFaces(points);
|
|
|
|
// Create the openSet. Add all points except the points of the seed
|
|
// hull.
|
|
for (int i = 0; i < points.Count; i++) {
|
|
if (i == b0 || i == b1 || i == b2 || i == b3) continue;
|
|
|
|
openSet.Add(new PointFace(i, UNASSIGNED, 0.0f));
|
|
}
|
|
|
|
// Add the seed hull verts to the tail of the list.
|
|
openSet.Add(new PointFace(b0, INSIDE, float.NaN));
|
|
openSet.Add(new PointFace(b1, INSIDE, float.NaN));
|
|
openSet.Add(new PointFace(b2, INSIDE, float.NaN));
|
|
openSet.Add(new PointFace(b3, INSIDE, float.NaN));
|
|
|
|
// Set the openSetTail value. Last item in the array is
|
|
// openSet.Count - 1, but four of the points (the verts of the seed
|
|
// hull) are part of the closed set, so move openSetTail to just
|
|
// before those.
|
|
openSetTail = openSet.Count - 5;
|
|
|
|
Assert.IsTrue(openSet.Count == points.Count);
|
|
|
|
// Assign all points of the open set. This does basically the same
|
|
// thing as ReassignPoints()
|
|
for (int i = 0; i <= openSetTail; i++) {
|
|
Assert.IsTrue(openSet[i].Face == UNASSIGNED);
|
|
Assert.IsTrue(openSet[openSetTail].Face == UNASSIGNED);
|
|
Assert.IsTrue(openSet[openSetTail + 1].Face == INSIDE);
|
|
|
|
var assigned = false;
|
|
var fp = openSet[i];
|
|
|
|
Assert.IsTrue(faces.Count == 4);
|
|
Assert.IsTrue(faces.Count == faceCount);
|
|
for (int j = 0; j < 4; j++) {
|
|
Assert.IsTrue(faces.ContainsKey(j));
|
|
|
|
var face = faces[j];
|
|
|
|
var dist = PointFaceDistance(points[fp.Point], points[face.Vertex0], face);
|
|
|
|
if (dist > 0) {
|
|
fp.Face = j;
|
|
fp.Distance = dist;
|
|
openSet[i] = fp;
|
|
|
|
assigned = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!assigned) {
|
|
// Point is inside
|
|
fp.Face = INSIDE;
|
|
fp.Distance = float.NaN;
|
|
|
|
// Point is inside seed hull: swap point with tail, and move
|
|
// openSetTail back. We also have to decrement i, because
|
|
// there's a new item at openSet[i], and we need to process
|
|
// it next iteration
|
|
openSet[i] = openSet[openSetTail];
|
|
openSet[openSetTail] = fp;
|
|
|
|
openSetTail -= 1;
|
|
i -= 1;
|
|
}
|
|
}
|
|
|
|
VerifyOpenSet(points);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Find four points in the point cloud that are not coplanar for the
|
|
/// seed hull
|
|
/// </summary>
|
|
void FindInitialHullIndices(List<Vector3> points, out int b0, out int b1, out int b2, out int b3) {
|
|
var count = points.Count;
|
|
|
|
for (int i0 = 0; i0 < count - 3; i0++) {
|
|
for (int i1 = i0 + 1; i1 < count - 2; i1++) {
|
|
var p0 = points[i0];
|
|
var p1 = points[i1];
|
|
|
|
if (AreCoincident(p0, p1)) continue;
|
|
|
|
for (int i2 = i1 + 1; i2 < count - 1; i2++) {
|
|
var p2 = points[i2];
|
|
|
|
if (AreCollinear(p0, p1, p2)) continue;
|
|
|
|
for (int i3 = i2 + 1; i3 < count - 0; i3++) {
|
|
var p3 = points[i3];
|
|
|
|
if(AreCoplanar(p0, p1, p2, p3)) continue;
|
|
|
|
b0 = i0;
|
|
b1 = i1;
|
|
b2 = i2;
|
|
b3 = i3;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
throw new System.ArgumentException("Can't generate hull, points are coplanar");
|
|
}
|
|
|
|
/// <summary>
|
|
/// Grow the hull. This method takes the current hull, and expands it
|
|
/// to encompass the point in openSet with the point furthest away
|
|
/// from its face.
|
|
/// </summary>
|
|
void GrowHull(List<Vector3> points) {
|
|
Assert.IsTrue(openSetTail >= 0);
|
|
Assert.IsTrue(openSet[0].Face != INSIDE);
|
|
|
|
// Find farthest point and first lit face.
|
|
var farthestPoint = 0;
|
|
var dist = openSet[0].Distance;
|
|
|
|
for (int i = 1; i <= openSetTail; i++) {
|
|
if (openSet[i].Distance > dist) {
|
|
farthestPoint = i;
|
|
dist = openSet[i].Distance;
|
|
}
|
|
}
|
|
|
|
// Use lit face to find horizon and the rest of the lit
|
|
// faces.
|
|
FindHorizon(
|
|
points,
|
|
points[openSet[farthestPoint].Point],
|
|
openSet[farthestPoint].Face,
|
|
faces[openSet[farthestPoint].Face]);
|
|
|
|
VerifyHorizon();
|
|
|
|
// Construct new cone from horizon
|
|
ConstructCone(points, openSet[farthestPoint].Point);
|
|
|
|
VerifyFaces(points);
|
|
|
|
// Reassign points
|
|
ReassignPoints(points);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Start the search for the horizon.
|
|
///
|
|
/// The search is a DFS search that searches neighboring triangles in
|
|
/// a counter-clockwise fashion. When it find a neighbor which is not
|
|
/// lit, that edge will be a line on the horizon. If the search always
|
|
/// proceeds counter-clockwise, the edges of the horizon will be found
|
|
/// in counter-clockwise order.
|
|
///
|
|
/// The heart of the search can be found in the recursive
|
|
/// SearchHorizon() method, but the the first iteration of the search
|
|
/// is special, because it has to visit three neighbors (all the
|
|
/// neighbors of the initial triangle), while the rest of the search
|
|
/// only has to visit two (because one of them has already been
|
|
/// visited, the one you came from).
|
|
/// </summary>
|
|
void FindHorizon(List<Vector3> points, Vector3 point, int fi, Face face) {
|
|
// TODO should I use epsilon in the PointFaceDistance comparisons?
|
|
|
|
litFaces.Clear();
|
|
horizon.Clear();
|
|
|
|
litFaces.Add(fi);
|
|
|
|
Assert.IsTrue(PointFaceDistance(point, points[face.Vertex0], face) > 0.0f);
|
|
|
|
// For the rest of the recursive search calls, we first check if the
|
|
// triangle has already been visited and is part of litFaces.
|
|
// However, in this first call we can skip that because we know it
|
|
// can't possibly have been visited yet, since the only thing in
|
|
// litFaces is the current triangle.
|
|
{
|
|
var oppositeFace = faces[face.Opposite0];
|
|
|
|
var dist = PointFaceDistance(
|
|
point,
|
|
points[oppositeFace.Vertex0],
|
|
oppositeFace);
|
|
|
|
if (dist <= 0.0f) {
|
|
horizon.Add(new HorizonEdge {
|
|
Face = face.Opposite0,
|
|
Edge0 = face.Vertex1,
|
|
Edge1 = face.Vertex2,
|
|
});
|
|
} else {
|
|
SearchHorizon(points, point, fi, face.Opposite0, oppositeFace);
|
|
}
|
|
}
|
|
|
|
if (!litFaces.Contains(face.Opposite1)) {
|
|
var oppositeFace = faces[face.Opposite1];
|
|
|
|
var dist = PointFaceDistance(
|
|
point,
|
|
points[oppositeFace.Vertex0],
|
|
oppositeFace);
|
|
|
|
if (dist <= 0.0f) {
|
|
horizon.Add(new HorizonEdge {
|
|
Face = face.Opposite1,
|
|
Edge0 = face.Vertex2,
|
|
Edge1 = face.Vertex0,
|
|
});
|
|
} else {
|
|
SearchHorizon(points, point, fi, face.Opposite1, oppositeFace);
|
|
}
|
|
}
|
|
|
|
if (!litFaces.Contains(face.Opposite2)) {
|
|
var oppositeFace = faces[face.Opposite2];
|
|
|
|
var dist = PointFaceDistance(
|
|
point,
|
|
points[oppositeFace.Vertex0],
|
|
oppositeFace);
|
|
|
|
if (dist <= 0.0f) {
|
|
horizon.Add(new HorizonEdge {
|
|
Face = face.Opposite2,
|
|
Edge0 = face.Vertex0,
|
|
Edge1 = face.Vertex1,
|
|
});
|
|
} else {
|
|
SearchHorizon(points, point, fi, face.Opposite2, oppositeFace);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Recursively search to find the horizon or lit set.
|
|
/// </summary>
|
|
void SearchHorizon(List<Vector3> points, Vector3 point, int prevFaceIndex, int faceCount, Face face) {
|
|
Assert.IsTrue(prevFaceIndex >= 0);
|
|
Assert.IsTrue(litFaces.Contains(prevFaceIndex));
|
|
Assert.IsTrue(!litFaces.Contains(faceCount));
|
|
Assert.IsTrue(faces[faceCount].Equals(face));
|
|
|
|
litFaces.Add(faceCount);
|
|
|
|
// Use prevFaceIndex to determine what the next face to search will
|
|
// be, and what edges we need to cross to get there. It's important
|
|
// that the search proceeds in counter-clockwise order from the
|
|
// previous face.
|
|
int nextFaceIndex0;
|
|
int nextFaceIndex1;
|
|
int edge0;
|
|
int edge1;
|
|
int edge2;
|
|
|
|
if (prevFaceIndex == face.Opposite0) {
|
|
nextFaceIndex0 = face.Opposite1;
|
|
nextFaceIndex1 = face.Opposite2;
|
|
|
|
edge0 = face.Vertex2;
|
|
edge1 = face.Vertex0;
|
|
edge2 = face.Vertex1;
|
|
} else if (prevFaceIndex == face.Opposite1) {
|
|
nextFaceIndex0 = face.Opposite2;
|
|
nextFaceIndex1 = face.Opposite0;
|
|
|
|
edge0 = face.Vertex0;
|
|
edge1 = face.Vertex1;
|
|
edge2 = face.Vertex2;
|
|
} else {
|
|
Assert.IsTrue(prevFaceIndex == face.Opposite2);
|
|
|
|
nextFaceIndex0 = face.Opposite0;
|
|
nextFaceIndex1 = face.Opposite1;
|
|
|
|
edge0 = face.Vertex1;
|
|
edge1 = face.Vertex2;
|
|
edge2 = face.Vertex0;
|
|
}
|
|
|
|
if (!litFaces.Contains(nextFaceIndex0)) {
|
|
var oppositeFace = faces[nextFaceIndex0];
|
|
|
|
var dist = PointFaceDistance(
|
|
point,
|
|
points[oppositeFace.Vertex0],
|
|
oppositeFace);
|
|
|
|
if (dist <= 0.0f) {
|
|
horizon.Add(new HorizonEdge {
|
|
Face = nextFaceIndex0,
|
|
Edge0 = edge0,
|
|
Edge1 = edge1,
|
|
});
|
|
} else {
|
|
SearchHorizon(points, point, faceCount, nextFaceIndex0, oppositeFace);
|
|
}
|
|
}
|
|
|
|
if (!litFaces.Contains(nextFaceIndex1)) {
|
|
var oppositeFace = faces[nextFaceIndex1];
|
|
|
|
var dist = PointFaceDistance(
|
|
point,
|
|
points[oppositeFace.Vertex0],
|
|
oppositeFace);
|
|
|
|
if (dist <= 0.0f) {
|
|
horizon.Add(new HorizonEdge {
|
|
Face = nextFaceIndex1,
|
|
Edge0 = edge1,
|
|
Edge1 = edge2,
|
|
});
|
|
} else {
|
|
SearchHorizon(points, point, faceCount, nextFaceIndex1, oppositeFace);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Remove all lit faces and construct new faces from the horizon in a
|
|
/// "cone-like" fashion.
|
|
///
|
|
/// This is a relatively straight-forward procedure, given that the
|
|
/// horizon is handed to it in already sorted counter-clockwise. The
|
|
/// neighbors of the new faces are easy to find: they're the previous
|
|
/// and next faces to be constructed in the cone, as well as the face
|
|
/// on the other side of the horizon. We also have to update the face
|
|
/// on the other side of the horizon to reflect it's new neighbor from
|
|
/// the cone.
|
|
/// </summary>
|
|
void ConstructCone(List<Vector3> points, int farthestPoint) {
|
|
foreach (var fi in litFaces) {
|
|
Assert.IsTrue(faces.ContainsKey(fi));
|
|
faces.Remove(fi);
|
|
}
|
|
|
|
var firstNewFace = faceCount;
|
|
|
|
// Check for coplanar faces
|
|
/*var firstNormal = new Vector3(0, 0, 0);
|
|
int sameNormals = 1;
|
|
for (int i = 0; i < horizon.Count; i++)
|
|
{
|
|
var v0 = farthestPoint;
|
|
var v1 = horizon[i].Edge0;
|
|
var v2 = horizon[i].Edge1;
|
|
var norm = Normal(points[v0], points[v1], points[v2]);
|
|
if (firstNormal.IsZero)
|
|
{
|
|
firstNormal = norm;
|
|
continue;
|
|
}
|
|
|
|
const float tol = 0.1f;
|
|
if ((firstNormal - norm).Length < tol || (firstNormal - norm).Length > 2.0f-tol)
|
|
{
|
|
sameNormals++;
|
|
}
|
|
}
|
|
|
|
if (sameNormals == horizon.Count)
|
|
sameNormals = sameNormals;*/
|
|
|
|
for (int i = 0; i < horizon.Count; i++) {
|
|
// Vertices of the new face, the farthest point as well as the
|
|
// edge on the horizon. Horizon edge is CCW, so the triangle
|
|
// should be as well.
|
|
var v0 = farthestPoint;
|
|
var v1 = horizon[i].Edge0;
|
|
var v2 = horizon[i].Edge1;
|
|
|
|
// Opposite faces of the triangle. First, the edge on the other
|
|
// side of the horizon, then the next/prev faces on the new cone
|
|
var o0 = horizon[i].Face;
|
|
var o1 = (i == horizon.Count - 1) ? firstNewFace : firstNewFace + i + 1;
|
|
var o2 = (i == 0) ? (firstNewFace + horizon.Count - 1) : firstNewFace + i - 1;
|
|
|
|
var fi = faceCount++;
|
|
|
|
faces[fi] = new Face(
|
|
v0, v1, v2,
|
|
o0, o1, o2,
|
|
Normal(points[v0], points[v1], points[v2]));
|
|
|
|
var horizonFace = faces[horizon[i].Face];
|
|
|
|
if (horizonFace.Vertex0 == v1) {
|
|
Assert.IsTrue(v2 == horizonFace.Vertex2);
|
|
horizonFace.Opposite1 = fi;
|
|
} else if (horizonFace.Vertex1 == v1) {
|
|
Assert.IsTrue(v2 == horizonFace.Vertex0);
|
|
horizonFace.Opposite2 = fi;
|
|
} else {
|
|
Assert.IsTrue(v1 == horizonFace.Vertex2);
|
|
Assert.IsTrue(v2 == horizonFace.Vertex1);
|
|
horizonFace.Opposite0 = fi;
|
|
}
|
|
|
|
faces[horizon[i].Face] = horizonFace;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Reassign points based on the new faces added by ConstructCone().
|
|
///
|
|
/// Only points that were previous assigned to a removed face need to
|
|
/// be updated, so check litFaces while looping through the open set.
|
|
///
|
|
/// There is a potential optimization here: there's no reason to loop
|
|
/// through the entire openSet here. If each face had it's own
|
|
/// openSet, we could just loop through the openSets in the removed
|
|
/// faces. That would make the loop here shorter.
|
|
///
|
|
/// However, to do that, we would have to juggle A LOT more List<T>'s,
|
|
/// and we would need an object pool to manage them all without
|
|
/// generating a whole bunch of garbage. I don't think it's worth
|
|
/// doing that to make this loop shorter, a straight for-loop through
|
|
/// a list is pretty darn fast. Still, it might be worth trying
|
|
/// </summary>
|
|
void ReassignPoints(List<Vector3> points) {
|
|
for (int i = 0; i <= openSetTail; i++) {
|
|
var fp = openSet[i];
|
|
|
|
if (litFaces.Contains(fp.Face)) {
|
|
var assigned = false;
|
|
var point = points[fp.Point];
|
|
|
|
foreach (var kvp in faces) {
|
|
var fi = kvp.Key;
|
|
var face = kvp.Value;
|
|
|
|
var dist = PointFaceDistance(
|
|
point,
|
|
points[face.Vertex0],
|
|
face);
|
|
|
|
if (dist > EPSILON) {
|
|
assigned = true;
|
|
|
|
fp.Face = fi;
|
|
fp.Distance = dist;
|
|
|
|
openSet[i] = fp;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!assigned) {
|
|
// If point hasn't been assigned, then it's inside the
|
|
// convex hull. Swap it with openSetTail, and decrement
|
|
// openSetTail. We also have to decrement i, because
|
|
// there's now a new thing in openSet[i], so we need i
|
|
// to remain the same the next iteration of the loop.
|
|
fp.Face = INSIDE;
|
|
fp.Distance = float.NaN;
|
|
|
|
openSet[i] = openSet[openSetTail];
|
|
openSet[openSetTail] = fp;
|
|
|
|
i--;
|
|
openSetTail--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Final step in algorithm, export the faces of the convex hull in a
|
|
/// mesh-friendly format.
|
|
///
|
|
/// TODO normals calculation for non-split vertices. Right now it just
|
|
/// leaves the normal array empty.
|
|
/// </summary>
|
|
void ExportMesh(
|
|
List<Vector3> points,
|
|
bool splitVerts,
|
|
ref List<Vector3> verts,
|
|
ref List<int> tris,
|
|
ref List<Vector3> normals)
|
|
{
|
|
if (verts == null) {
|
|
verts = new List<Vector3>();
|
|
} else {
|
|
verts.Clear();
|
|
}
|
|
|
|
if (tris == null) {
|
|
tris = new List<int>();
|
|
} else {
|
|
tris.Clear();
|
|
}
|
|
|
|
if (normals == null) {
|
|
normals = new List<Vector3>();
|
|
} else {
|
|
normals.Clear();
|
|
}
|
|
|
|
foreach (var face in faces.Values) {
|
|
int vi0, vi1, vi2;
|
|
|
|
if (splitVerts) {
|
|
vi0 = verts.Count; verts.Add(points[face.Vertex0]);
|
|
vi1 = verts.Count; verts.Add(points[face.Vertex1]);
|
|
vi2 = verts.Count; verts.Add(points[face.Vertex2]);
|
|
|
|
normals.Add(face.Normal);
|
|
normals.Add(face.Normal);
|
|
normals.Add(face.Normal);
|
|
} else {
|
|
if (!hullVerts.TryGetValue(face.Vertex0, out vi0)) {
|
|
vi0 = verts.Count;
|
|
hullVerts[face.Vertex0] = vi0;
|
|
verts.Add(points[face.Vertex0]);
|
|
}
|
|
|
|
if (!hullVerts.TryGetValue(face.Vertex1, out vi1)) {
|
|
vi1 = verts.Count;
|
|
hullVerts[face.Vertex1] = vi1;
|
|
verts.Add(points[face.Vertex1]);
|
|
}
|
|
|
|
if (!hullVerts.TryGetValue(face.Vertex2, out vi2)) {
|
|
vi2 = verts.Count;
|
|
hullVerts[face.Vertex2] = vi2;
|
|
verts.Add(points[face.Vertex2]);
|
|
}
|
|
}
|
|
|
|
tris.Add(vi0);
|
|
tris.Add(vi1);
|
|
tris.Add(vi2);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Signed distance from face to point (a positive number means that
|
|
/// the point is above the face)
|
|
/// </summary>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
float PointFaceDistance(Vector3 point, Vector3 pointOnFace, Face face) {
|
|
return Dot(face.Normal, point - pointOnFace);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calculate normal for triangle
|
|
/// </summary>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
Vector3 Normal(Vector3 v0, Vector3 v1, Vector3 v2) {
|
|
return Cross(v1 - v0, v2 - v0).Normalized;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Dot product, for convenience.
|
|
/// </summary>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
static float Dot(Vector3 a, Vector3 b) {
|
|
return a.X*b.X + a.Y*b.Y + a.Z*b.Z;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Vector3.Cross i left-handed, the algorithm is right-handed. Also,
|
|
/// i wanna test to see if using aggressive inlining makes any
|
|
/// difference here.
|
|
/// </summary>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
static Vector3 Cross(Vector3 a, Vector3 b) {
|
|
return new Vector3(
|
|
a.Y*b.Z - a.Z*b.Y,
|
|
a.Z*b.X - a.X*b.Z,
|
|
a.X*b.Y - a.Y*b.X);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Check if two points are coincident
|
|
/// </summary>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
bool AreCoincident(Vector3 a, Vector3 b) {
|
|
return (a - b).Length <= EPSILON;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Check if three points are collinear
|
|
/// </summary>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
bool AreCollinear(Vector3 a, Vector3 b, Vector3 c) {
|
|
return Cross(c - a, c - b).Length <= EPSILON;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Check if four points are coplanar
|
|
/// </summary>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
bool AreCoplanar(Vector3 a, Vector3 b, Vector3 c, Vector3 d) {
|
|
var n1 = Cross(c - a, c - b);
|
|
var n2 = Cross(d - a, d - b);
|
|
|
|
var m1 = n1.Length;
|
|
var m2 = n2.Length;
|
|
|
|
return m1 <= EPSILON
|
|
|| m2 <= EPSILON
|
|
|| AreCollinear(Vector3.Zero,
|
|
(1.0f / m1) * n1,
|
|
(1.0f / m2) * n2);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Method used for debugging, verifies that the openSet is in a
|
|
/// sensible state. Conditionally compiled if DEBUG_QUICKHULL if
|
|
/// defined.
|
|
/// </summary>
|
|
void VerifyOpenSet(List<Vector3> points) {
|
|
for (int i = 0; i < openSet.Count; i++) {
|
|
if (i > openSetTail) {
|
|
Assert.IsTrue(openSet[i].Face == INSIDE);
|
|
} else {
|
|
Assert.IsTrue(openSet[i].Face != INSIDE);
|
|
Assert.IsTrue(openSet[i].Face != UNASSIGNED);
|
|
|
|
Assert.IsTrue(PointFaceDistance(
|
|
points[openSet[i].Point],
|
|
points[faces[openSet[i].Face].Vertex0],
|
|
faces[openSet[i].Face]) > 0.0f);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Method used for debugging, verifies that the horizon is in a
|
|
/// sensible state. Conditionally compiled if DEBUG_QUICKHULL if
|
|
/// defined.
|
|
/// </summary>
|
|
void VerifyHorizon() {
|
|
for (int i = 0; i < horizon.Count; i++) {
|
|
var prev = i == 0 ? horizon.Count - 1 : i - 1;
|
|
|
|
Assert.IsTrue(horizon[prev].Edge1 == horizon[i].Edge0);
|
|
Assert.IsTrue(HasEdge(faces[horizon[i].Face], horizon[i].Edge1, horizon[i].Edge0));
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Method used for debugging, verifies that the faces array is in a
|
|
/// sensible state. Conditionally compiled if DEBUG_QUICKHULL if
|
|
/// defined.
|
|
/// </summary>
|
|
void VerifyFaces(List<Vector3> points) {
|
|
foreach (var kvp in faces) {
|
|
var fi = kvp.Key;
|
|
var face = kvp.Value;
|
|
|
|
Assert.IsTrue(faces.ContainsKey(face.Opposite0));
|
|
Assert.IsTrue(faces.ContainsKey(face.Opposite1));
|
|
Assert.IsTrue(faces.ContainsKey(face.Opposite2));
|
|
|
|
Assert.IsTrue(face.Opposite0 != fi);
|
|
Assert.IsTrue(face.Opposite1 != fi);
|
|
Assert.IsTrue(face.Opposite2 != fi);
|
|
|
|
Assert.IsTrue(face.Vertex0 != face.Vertex1);
|
|
Assert.IsTrue(face.Vertex0 != face.Vertex2);
|
|
Assert.IsTrue(face.Vertex1 != face.Vertex2);
|
|
|
|
Assert.IsTrue(HasEdge(faces[face.Opposite0], face.Vertex2, face.Vertex1));
|
|
Assert.IsTrue(HasEdge(faces[face.Opposite1], face.Vertex0, face.Vertex2));
|
|
Assert.IsTrue(HasEdge(faces[face.Opposite2], face.Vertex1, face.Vertex0));
|
|
|
|
Assert.IsTrue((face.Normal - Normal(
|
|
points[face.Vertex0],
|
|
points[face.Vertex1],
|
|
points[face.Vertex2])).Length < EPSILON);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Method used for debugging, verifies that the final mesh is
|
|
/// actually a convex hull of all the points. Conditionally compiled
|
|
/// if DEBUG_QUICKHULL if defined.
|
|
/// </summary>
|
|
void VerifyMesh(List<Vector3> points, ref List<Vector3> verts, ref List<int> tris) {
|
|
Assert.IsTrue(tris.Count % 3 == 0);
|
|
|
|
for (int i = 0; i < points.Count; i++) {
|
|
for (int j = 0; j < tris.Count; j+=3) {
|
|
var t0 = verts[tris[j]];
|
|
var t1 = verts[tris[j + 1]];
|
|
var t2 = verts[tris[j + 2]];
|
|
|
|
var dot = Dot(points[i] - t0, Vector3.Cross(t1 - t0, t2 - t0));
|
|
//Assert.IsTrue(dot <= EPSILON, $"not convex hull: {dot} > {EPSILON}");
|
|
if (!(dot <= EPSILON))
|
|
Console.PrintError($"not convex hull: {dot} > {EPSILON}");
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Does face f have a face with vertexes e0 and e1? Used only for
|
|
/// debugging.
|
|
/// </summary>
|
|
bool HasEdge(Face f, int e0, int e1) {
|
|
return (f.Vertex0 == e0 && f.Vertex1 == e1)
|
|
|| (f.Vertex1 == e0 && f.Vertex2 == e1)
|
|
|| (f.Vertex2 == e0 && f.Vertex0 == e1);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
public class Q3MapImporter : Script
|
|
{
|
|
private string mapPath = @"C:\dev\GoakeFlax\Assets\Maps\cube.map";
|
|
//private string mapPath = @"C:\dev\Goake\maps\aerowalk\aerowalk.map";
|
|
//private string mapPath = @"C:\dev\GoakeFlax\Assets\Maps\problematic.map";
|
|
|
|
Model model;
|
|
public MaterialBase material;
|
|
|
|
const float epsilon = 0.01f;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void QuickHull(Vector3[] points, out Vector3[] outVertices)
|
|
{
|
|
var verts = new List<Vector3>();
|
|
var tris = new List<int>();
|
|
var normals = new List<Vector3>();
|
|
|
|
var calc = new ConvexHullCalculator();
|
|
calc.GenerateHull(points.ToList(), true, ref verts, ref tris, ref normals);
|
|
|
|
var finalPoints = new List<Vector3>();
|
|
|
|
foreach (var tri in tris)
|
|
{
|
|
finalPoints.Add(verts[tri]);
|
|
}
|
|
|
|
outVertices = finalPoints.ToArray();
|
|
}
|
|
|
|
private Color[] planeColors = new Color[]
|
|
{
|
|
Color.Red,
|
|
Color.Orange,
|
|
Color.Yellow,
|
|
Color.Green,
|
|
Color.Cyan,
|
|
Color.Blue,
|
|
Color.Purple,
|
|
Color.Magenta,
|
|
};
|
|
|
|
private int skipPlanes = 0;
|
|
private int takePlanes = 5;
|
|
|
|
private List<Vector3> debugPoints = new List<Vector3>();
|
|
|
|
public override void OnDebugDraw()
|
|
{
|
|
return;
|
|
if (root == null)
|
|
return;
|
|
|
|
//foreach (var p in debugPoints)
|
|
// DebugDraw.DrawSphere(new BoundingSphere(p, 30f), Color.LightBlue, 0f, false);
|
|
|
|
foreach (var brush in root.entities[0].brushes.Skip(1).Take(1))
|
|
{
|
|
int planeI = skipPlanes;
|
|
foreach (var plane in brush.planes.Take(takePlanes))
|
|
//foreach (var plane in brush.planes)
|
|
{
|
|
Plane p = new Plane(plane.v1, plane.v2, plane.v3);
|
|
Vector3 planeNormal = -p.Normal;
|
|
|
|
const float w = 300f;
|
|
|
|
Vector3 p1 = new Vector3(-w, -w, 0f);
|
|
Vector3 p2 = new Vector3(w, -w, 0f);
|
|
Vector3 p3 = new Vector3(-w, w, 0f);
|
|
Vector3 p4 = new Vector3(w, w, 0f);
|
|
|
|
Vector3 uu = Vector3.Up;
|
|
if (Mathf.Abs(Vector3.Dot(planeNormal, uu)) > 0.9999f)
|
|
uu = Vector3.Forward;
|
|
|
|
var q = Quaternion.LookAt(Vector3.Zero, planeNormal, -uu);
|
|
|
|
p1 = p1 * q;
|
|
p2 = p2 * q;
|
|
p3 = p3 * q;
|
|
p4 = p4 * q;
|
|
|
|
p1 += p.D * planeNormal;
|
|
p2 += p.D * planeNormal;
|
|
p3 += p.D * planeNormal;
|
|
p4 += p.D * planeNormal;
|
|
|
|
var color = planeColors[planeI%planeColors.Length] * 0.5f;
|
|
DebugDraw.DrawTriangle(p1, p2, p3, color);
|
|
DebugDraw.DrawTriangle(p2, p3, p4, color);
|
|
|
|
|
|
|
|
planeI++;
|
|
}
|
|
}
|
|
}
|
|
|
|
private MapEntity root;
|
|
|
|
private IEnumerable<IEnumerable<T>> DifferentCombinations<T>(IEnumerable<T> elements, int k)
|
|
{
|
|
return k == 0 ? new[] { new T[0] } :
|
|
elements.SelectMany((e, i) =>
|
|
DifferentCombinations(elements.Skip(i + 1), (k - 1)).Select(c => (new[] {e}).Concat(c)));
|
|
}
|
|
|
|
/// <summary>
|
|
/// Triangulates the brush by calculating intersection points between triplets of planes.
|
|
/// Does not work well with off-axis aligned planes.
|
|
/// </summary>
|
|
void TriangulateBrush(MapBrush brush, out Vector3[] vertices)
|
|
{
|
|
HashSet<Vector3> planePoints = new HashSet<Vector3>();
|
|
|
|
List<Plane> planes = new List<Plane>();
|
|
foreach (var brushPlane in brush.planes)
|
|
planes.Add(new Plane(brushPlane.v1, brushPlane.v2, brushPlane.v3));
|
|
|
|
var combinations = DifferentCombinations(planes, 3).ToList();
|
|
foreach (var comb in Enumerable.Reverse(combinations))
|
|
{
|
|
var p1 = comb.Skip(0).First();
|
|
var p2 = comb.Skip(1).First();
|
|
var p3 = comb.Skip(2).First();
|
|
|
|
var maxDist = Math.Abs(p1.D * p2.D * p3.D);//Math.Max(p1.D, Math.Max(p2.D, p3.D));
|
|
|
|
// intersection of three planes
|
|
double denom = Vector3.Dot(p1.Normal, Vector3.Cross(p2.Normal, p3.Normal));
|
|
if (Math.Abs(denom) < 0.000001f)
|
|
continue; // multiple or no intersections
|
|
|
|
if (Math.Abs(denom) < 0.000001f)
|
|
denom = denom;
|
|
|
|
var intersection = (Vector3.Cross(p2.Normal, p3.Normal) * -p1.D +
|
|
Vector3.Cross(p3.Normal, p1.Normal) * -p2.D +
|
|
Vector3.Cross(p1.Normal, p2.Normal) * -p3.D) / (float)denom;
|
|
|
|
// Flip Y and Z
|
|
/*var temp = intersection.Y;
|
|
intersection.Y = intersection.Z;
|
|
intersection.Z = temp;*/
|
|
|
|
//if (intersection.Length >= maxDist)
|
|
// temp = temp;
|
|
|
|
planePoints.Add(intersection);
|
|
}
|
|
|
|
if (planePoints.Count > 0)
|
|
{
|
|
QuickHull(planePoints.ToArray(), out vertices);
|
|
return;
|
|
}
|
|
|
|
vertices = new Vector3[0];
|
|
}
|
|
|
|
Vector3[] TriangulateBrush2(MapBrush brush)
|
|
{
|
|
const float cs = 3000f;
|
|
|
|
Vector3[] cubePoints = new[]
|
|
{
|
|
new Vector3(-cs, -cs, -cs),
|
|
new Vector3(cs, -cs, -cs),
|
|
new Vector3(-cs, cs, -cs),
|
|
new Vector3(cs, cs, -cs),
|
|
new Vector3(-cs, -cs, cs),
|
|
new Vector3(cs, -cs, cs),
|
|
new Vector3(-cs, cs, cs),
|
|
new Vector3(cs, cs, cs),
|
|
};
|
|
Vector3[] cubeVerts;
|
|
QuickHull(cubePoints, out cubeVerts);
|
|
List<Vector3> brushVertices = new List<Vector3>(cubeVerts);
|
|
|
|
foreach (var brushPlane in brush.planes.Take(1))
|
|
{
|
|
Plane plane = new Plane(brushPlane.v1, brushPlane.v2, brushPlane.v3);
|
|
List<Vector3> faceVertices = new List<Vector3>();
|
|
List<Vector3> clippedVertices = new List<Vector3>();
|
|
|
|
Func<float, bool> isFront = (f) => f > epsilon;
|
|
Func<float, bool> isBack = (f) => f < -epsilon;
|
|
|
|
for (int i = 0; i < brushVertices.Count; i++)
|
|
{
|
|
int i2 = ((i + 1) % 3 == 0) ? (i - 2) : (i + 1);
|
|
Vector3 start = brushVertices[i];
|
|
Vector3 end = brushVertices[i2];
|
|
|
|
var d1 = Plane.DotCoordinate(plane, start);
|
|
var d2 = Plane.DotCoordinate(plane, end);
|
|
|
|
if (isBack(d1))
|
|
{
|
|
// include the point behind the clipping plane
|
|
faceVertices.Add(start);
|
|
}
|
|
|
|
if (isBack(d1) && isFront(d2) || isFront(d1) && isBack(d2))
|
|
{
|
|
// the cutting plane clips the edge
|
|
//if (isFront(d2))
|
|
{
|
|
Ray ray = new Ray(start, (end - start).Normalized);
|
|
if (plane.Intersects(ref ray, out Vector3 point))
|
|
{
|
|
|
|
//faceVertices.Add(point);
|
|
//clippedVertices.Add(point);
|
|
|
|
/*
|
|
intersect
|
|
start __._ (end)
|
|
| |/
|
|
| /
|
|
|/
|
|
next
|
|
*/
|
|
if (isBack(d1) && isFront(d2))
|
|
{
|
|
// finish the current triangle and start the next one
|
|
// [start, intersect, next], [intersect, ...]
|
|
|
|
faceVertices.Add(point);
|
|
|
|
if ((faceVertices.Count % 3) == 2)
|
|
{
|
|
int i3 = ((i2 + 1) % 3 == 0) ? (i2 - 2) : (i2 + 1);
|
|
Vector3 next = brushVertices[i3];
|
|
faceVertices.Add(next);
|
|
}
|
|
else
|
|
ray = ray;
|
|
|
|
faceVertices.Add(point);
|
|
}
|
|
|
|
/*
|
|
|
|
____ (start)
|
|
| |/
|
|
| * intersect2
|
|
|/
|
|
end
|
|
*/
|
|
else if (isFront(d1) && isBack(d2))
|
|
{
|
|
// continue where we left off
|
|
// [intersect, intersect2, ...]
|
|
|
|
faceVertices.Add(point);
|
|
|
|
if ((i % 3) == 2)
|
|
{
|
|
int i3 = ((i2 + 1) % 3 == 0) ? (i2 - 2) : (i2 + 1);
|
|
Vector3 next = brushVertices[i3];
|
|
faceVertices.Add(next);
|
|
}
|
|
else
|
|
ray = ray;
|
|
}
|
|
else
|
|
ray = ray;
|
|
}
|
|
else
|
|
d1 = d1;
|
|
}
|
|
}
|
|
}
|
|
|
|
brushVertices.Clear();
|
|
brushVertices.AddRange(faceVertices);
|
|
|
|
/*var newMeshPoints = new List<Vector3>();
|
|
int duplis = 0;
|
|
foreach (var v in faceVertices)
|
|
{
|
|
bool found = false;
|
|
foreach (var vo in newMeshPoints)
|
|
{
|
|
if ((v - vo).Length < epsilon)
|
|
{
|
|
found = true;
|
|
duplis++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
//if (!newMeshPoints.Contains(v))
|
|
if (!found)
|
|
newMeshPoints.Add(v);
|
|
}
|
|
if (duplis > 0)
|
|
Console.Print("duplicates: " + duplis);
|
|
|
|
if (newMeshPoints.Count > 0)
|
|
{
|
|
var tempPoints = newMeshPoints;
|
|
newMeshPoints = new List<Vector3>(tempPoints.Count);
|
|
foreach (var tp in tempPoints)
|
|
{
|
|
// Flip Y and Z
|
|
newMeshPoints.Add(new Vector3(tp.X, tp.Z, tp.Y));
|
|
}
|
|
|
|
var hullPoints = QuickHull(newMeshPoints.ToArray());
|
|
var ms = new MeshSimplifier();
|
|
var optimizedVerts = ms.Simplify(hullPoints);
|
|
brushVertices.Clear();
|
|
brushVertices.AddRange(hullPoints);
|
|
}
|
|
else
|
|
brushVertices.Clear();
|
|
*/
|
|
|
|
}
|
|
|
|
return brushVertices.ToArray();
|
|
}
|
|
|
|
void TriangulateBrush3(MapBrush brush, out Vector3[] vertices)
|
|
{
|
|
float cs = 3000f;
|
|
|
|
float maxD = 0f;
|
|
float minD = 0f;
|
|
foreach (var brushPlane in brush.planes)
|
|
{
|
|
var p = new Plane(brushPlane.v1, brushPlane.v2, brushPlane.v3);
|
|
minD = Mathf.Min(p.D);
|
|
maxD = Mathf.Max(p.D);
|
|
}
|
|
|
|
//cs = maxD*2;
|
|
|
|
|
|
Vector3[] cubePoints = new[]
|
|
{
|
|
new Vector3(-cs, -cs, -cs),
|
|
new Vector3(cs, -cs, -cs),
|
|
new Vector3(-cs, cs, -cs),
|
|
new Vector3(cs, cs, -cs),
|
|
new Vector3(-cs, -cs, cs),
|
|
new Vector3(cs, -cs, cs),
|
|
new Vector3(-cs, cs, cs),
|
|
new Vector3(cs, cs, cs),
|
|
};
|
|
Vector3[] cubeVerts;
|
|
QuickHull(cubePoints, out cubeVerts);
|
|
List<Vector3> brushVertices = new List<Vector3>(cubeVerts);
|
|
|
|
int asdf = 0;
|
|
//foreach (var brushPlane in brush.planes.Skip(skipPlanes).Take(takePlanes))
|
|
foreach (var brushPlane in brush.planes)
|
|
{
|
|
Plane plane = new Plane(brushPlane.v1, brushPlane.v2, brushPlane.v3);
|
|
//if (asdf % 2 == 0)
|
|
//plane = new Plane(-plane.Normal, -plane.D);
|
|
|
|
|
|
List<Vector3> faceVertices = new List<Vector3>();
|
|
List<Vector3> clippedVertices = new List<Vector3>();
|
|
|
|
Func<float, bool> isFront = (f) => f < epsilon;
|
|
Func<float, bool> isBack = (f) => f > epsilon;
|
|
|
|
List<Tuple<Vector3, Vector3>> edges = new List<Tuple<Vector3, Vector3>>();
|
|
List<Tuple<Vector3, Vector3>> faceEdges = new List<Tuple<Vector3, Vector3>>();
|
|
|
|
void TriangulateEdges()
|
|
{
|
|
if (edges.Count > 0)
|
|
{
|
|
// heal discontinued edges
|
|
for (int j = 0; j < edges.Count; j++)
|
|
{
|
|
var edgePrev = edges[j];
|
|
var edgeNext = edges[(j + 1) % edges.Count];
|
|
|
|
//if (edgePrev.Item2 != edgeNext.Item1)
|
|
if ((edgePrev.Item2 - edgeNext.Item1).Length > 0.0001f)
|
|
{
|
|
var newEdge = new Tuple<Vector3, Vector3>(edgePrev.Item2, edgeNext.Item1);
|
|
edges.Insert(j + 1, newEdge);
|
|
j--;
|
|
}
|
|
}
|
|
|
|
// triangulate edges
|
|
for (int j = 0; j < edges.Count - 1; j++)
|
|
{
|
|
var edgePrev = edges[j];
|
|
var edgeNext = edges[(j + 1) % edges.Count];
|
|
|
|
Vector3 v0 = edges[0].Item1;
|
|
Vector3 v1 = edgePrev.Item2;
|
|
Vector3 v2 = edgeNext.Item2;
|
|
|
|
faceVertices.Add(v0);
|
|
faceVertices.Add(v1);
|
|
faceVertices.Add(v2);
|
|
}
|
|
|
|
// triangulate clipped face
|
|
/*for (int j = 0; j < clippedVertices.Count-1; j++)
|
|
{
|
|
Vector3 v0 = clippedVertices[0];
|
|
Vector3 v1 = edgePrev.Item2;
|
|
Vector3 v2 = edgeNext.Item2;
|
|
}*/
|
|
// TODO: maybe optimize the triangles here instead of using QuickHull
|
|
}
|
|
else
|
|
plane = plane;
|
|
|
|
edges.Clear();
|
|
}
|
|
|
|
for (int i = 0; i < brushVertices.Count; i++)
|
|
{
|
|
if (i > 0 && i % 3 == 0)
|
|
TriangulateEdges();
|
|
|
|
int i2 = ((i + 1) % 3 == 0) ? (i - 2) : (i + 1);
|
|
Vector3 start = brushVertices[i];
|
|
Vector3 end = brushVertices[i2];
|
|
|
|
var d1 = Plane.DotCoordinate(plane, start);
|
|
var d2 = Plane.DotCoordinate(plane, end);
|
|
|
|
Vector3 edgeStart = start;
|
|
Vector3 edgeEnd = end;
|
|
|
|
|
|
if (isBack(d1))
|
|
{
|
|
edgeStart = start;
|
|
}
|
|
|
|
if (isBack(d1) && isFront(d2) || isFront(d1) && isBack(d2))
|
|
{
|
|
Ray ray = new Ray(start, (end - start).Normalized);
|
|
Ray ray2 = new Ray(end, (start - end).Normalized);
|
|
if (plane.Intersects(ref ray, out Vector3 point) /*|| plane.Intersects(ref ray2, out point)*/)
|
|
{
|
|
edgeEnd = point;
|
|
clippedVertices.Add(point);
|
|
|
|
if (isFront(d1))
|
|
{
|
|
edgeStart = edgeEnd;
|
|
edgeEnd = end;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (isFront(d1) && isFront(d2))
|
|
continue;
|
|
|
|
Tuple<Vector3, Vector3> edge = new Tuple<Vector3, Vector3>(edgeStart, edgeEnd);
|
|
edges.Add(edge);
|
|
}
|
|
|
|
TriangulateEdges();
|
|
if (false)
|
|
{
|
|
// create edges from clipped points
|
|
var clippedEdges = new List<Tuple<Vector3, Vector3>>();
|
|
|
|
//foreach (var e in edges)
|
|
// newEdges.Add(new Tuple<Vector3, Vector3>(e.Item1, e.Item2));
|
|
|
|
for (int i = 0; i < clippedVertices.Count; i++)
|
|
{
|
|
int i2 = (i + 1) % clippedVertices.Count;
|
|
Vector3 start = clippedVertices[i];
|
|
Vector3 end = clippedVertices[i2];
|
|
|
|
while (i < clippedVertices.Count)
|
|
{
|
|
int i3 = (i + 2) % clippedVertices.Count;
|
|
Vector3 end2 = clippedVertices[i3];
|
|
|
|
var edgeDirection = (end - start).Normalized;
|
|
var edgeDirection2 = (end2 - start).Normalized;
|
|
|
|
if ((edgeDirection2 - edgeDirection).Length < 0.0001f)
|
|
{
|
|
end = end2;
|
|
i++;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
|
|
clippedEdges.Add(new Tuple<Vector3, Vector3>(start, end));
|
|
}
|
|
|
|
// triangulate edges
|
|
for (int j = 0; j < clippedEdges.Count; j++)
|
|
{
|
|
var edgePrev = clippedEdges[j];
|
|
var edgeNext = clippedEdges[(j + 1) % clippedEdges.Count];
|
|
|
|
Vector3 v0 = clippedEdges[0].Item1;
|
|
Vector3 v1 = edgePrev.Item2;
|
|
Vector3 v2 = edgeNext.Item2;
|
|
|
|
faceVertices.Add(v0);
|
|
faceVertices.Add(v1);
|
|
faceVertices.Add(v2);
|
|
}
|
|
}
|
|
|
|
if (true)
|
|
{
|
|
List<Vector3> uniqPoints = new List<Vector3>();
|
|
foreach (var v in faceVertices)
|
|
{
|
|
bool found = false;
|
|
foreach (var v2 in uniqPoints)
|
|
{
|
|
if ((v - v2).Length < 0.01f)
|
|
{
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found)
|
|
uniqPoints.Add(v);
|
|
//uniqPoints.Add(new Vector3((float)Math.Round(v.X, 3), (float)Math.Round(v.Y, 3), (float)Math.Round(v.Z, 3)));
|
|
}
|
|
|
|
debugPoints = new List<Vector3>(uniqPoints);
|
|
|
|
|
|
Vector3[] hullPoints;
|
|
QuickHull(uniqPoints.ToArray(), out hullPoints);
|
|
|
|
var ms = new MeshSimplifier();
|
|
var optimizedVerts = ms.Simplify(hullPoints);
|
|
|
|
brushVertices.Clear();
|
|
brushVertices.AddRange(optimizedVerts);
|
|
}
|
|
else
|
|
{
|
|
debugPoints = new List<Vector3>(faceVertices);
|
|
|
|
var hullPoints = faceVertices;
|
|
|
|
var ms = new MeshSimplifier();
|
|
var optimizedVerts = hullPoints; //ms.Simplify(hullPoints);
|
|
|
|
brushVertices.Clear();
|
|
brushVertices.AddRange(optimizedVerts);
|
|
}
|
|
|
|
asdf++;
|
|
|
|
/*var newMeshPoints = new List<Vector3>();
|
|
int duplis = 0;
|
|
foreach (var v in faceVertices)
|
|
{
|
|
bool found = false;
|
|
foreach (var vo in newMeshPoints)
|
|
{
|
|
if ((v - vo).Length < epsilon)
|
|
{
|
|
found = true;
|
|
duplis++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
//if (!newMeshPoints.Contains(v))
|
|
if (!found)
|
|
newMeshPoints.Add(v);
|
|
}
|
|
if (duplis > 0)
|
|
Console.Print("duplicates: " + duplis);
|
|
|
|
if (newMeshPoints.Count > 0)
|
|
{
|
|
var tempPoints = newMeshPoints;
|
|
newMeshPoints = new List<Vector3>(tempPoints.Count);
|
|
foreach (var tp in tempPoints)
|
|
{
|
|
// Flip Y and Z
|
|
newMeshPoints.Add(new Vector3(tp.X, tp.Z, tp.Y));
|
|
}
|
|
|
|
var hullPoints = QuickHull(newMeshPoints.ToArray());
|
|
var ms = new MeshSimplifier();
|
|
var optimizedVerts = ms.Simplify(hullPoints);
|
|
brushVertices.Clear();
|
|
brushVertices.AddRange(hullPoints);
|
|
}
|
|
else
|
|
brushVertices.Clear();
|
|
*/
|
|
|
|
}
|
|
|
|
vertices = brushVertices.ToArray();
|
|
}
|
|
|
|
|
|
public override void OnStart()
|
|
{
|
|
byte[] mapChars = File.ReadAllBytes(mapPath);
|
|
root = MapParser.Parse(mapChars);
|
|
|
|
List<Vector3> vertices = new List<Vector3>();
|
|
List<Vector2> uvs = new List<Vector2>();
|
|
List<Vector3> normals = new List<Vector3>();
|
|
if (true)
|
|
{
|
|
int brushIndex = 0;
|
|
//foreach (var brush in root.entities[0].brushes.Skip(1).Take(1))
|
|
foreach (var brush in root.entities[0].brushes)
|
|
{
|
|
try
|
|
{
|
|
Vector3[] brushVertices;
|
|
TriangulateBrush3(brush, out brushVertices);
|
|
|
|
Vector2[] brushUvs = new Vector2[brushVertices.Length];
|
|
Vector3[] brushNormals = new Vector3[brushVertices.Length];
|
|
|
|
Vector2[] brushScaling = new Vector2[brushVertices.Length];
|
|
|
|
|
|
for (int i=0; i<brushVertices.Length; i+=3)
|
|
{
|
|
Vector3 v1 = brushVertices[i+0];
|
|
Vector3 v2 = brushVertices[i+1];
|
|
Vector3 v3 = brushVertices[i+2];
|
|
|
|
Vector3 normal = Vector3.Cross(v3 - v1, v2 - v1).Normalized;
|
|
Vector3 normal2 = normal;//new Vector3(normal.X, normal.Z, normal.Y);
|
|
|
|
// texture is projected to the surface from the closest axis
|
|
|
|
var dotX = Mathf.Abs(Vector3.Dot(normal2, Vector3.Right));
|
|
var dotY = Mathf.Abs(Vector3.Dot(normal2, Vector3.Up));
|
|
var dotZ = Mathf.Abs(Vector3.Dot(normal2, Vector3.Forward));
|
|
Vector3 theUp = Vector3.Up;
|
|
|
|
if (dotX > dotY && dotX > dotZ)
|
|
theUp = Vector3.Right;
|
|
else if (dotZ > dotX && dotZ > dotY)
|
|
theUp = Vector3.Forward;
|
|
else if (dotY > dotX && dotY > dotZ)
|
|
theUp = Vector3.Up;
|
|
|
|
|
|
//rot = Quaternion.LookRotation(theUp, Vector3.Dot(normal, Vector3.Forward) < -0.01f ? Vector3.Forward : Vector3.Up);
|
|
|
|
//theUp = Vector3.Right;
|
|
//theUp = new Vector3(theUp.X, theUp.Z, theUp.Y);
|
|
var up1 = Vector3.Up;
|
|
var up2 = Vector3.Forward;
|
|
//theUp = Vector3.Forward;
|
|
Quaternion rot = Quaternion.LookRotation(theUp, Mathf.Abs(Vector3.Dot(theUp, up1)) > 0.01f ? up2 : up1);
|
|
|
|
|
|
Vector2 uvScale = new Vector2(1f / 16);
|
|
float uvRotation = 0f;
|
|
bool found = false;
|
|
foreach (var brushPlane in brush.planes)
|
|
{
|
|
Plane plane = new Plane(brushPlane.v1, brushPlane.v2, brushPlane.v3);
|
|
if ((plane.Normal - normal).Length < 0.01f)
|
|
{
|
|
uvScale = 1f / brushPlane.scale / 64f;
|
|
//uvScale = brushPlane.scale;
|
|
uvRotation = brushPlane.rotation;
|
|
//uvScale = 1f / 512f;
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found)
|
|
Console.Print("no found:/");
|
|
|
|
/*v1 = new Vector3(v1.X, v1.Z, v1.Y);
|
|
v2 = new Vector3(v2.X, v2.Z, v2.Y);
|
|
v3 = new Vector3(v3.X, v3.Z, v3.Y);*/
|
|
|
|
brushUvs[i + 0] = (Vector2)(v1 * rot) * uvScale;
|
|
brushUvs[i + 1] = (Vector2)(v2 * rot) * uvScale;
|
|
brushUvs[i + 2] = (Vector2)(v3 * rot) * uvScale;
|
|
|
|
brushNormals[i + 0] = normal;
|
|
brushNormals[i + 1] = normal;
|
|
brushNormals[i + 2] = normal;
|
|
}
|
|
|
|
vertices.AddRange(brushVertices);
|
|
uvs.AddRange(brushUvs);
|
|
normals.AddRange(brushNormals);
|
|
}
|
|
catch (Exception e)
|
|
{
|
|
Console.Print("Failed to hull brush " + brushIndex.ToString() + ": " + e.Message);
|
|
}
|
|
brushIndex++;
|
|
}
|
|
}
|
|
|
|
if (vertices.Count > 0)
|
|
{
|
|
uint[] triangles = new uint[vertices.Count];
|
|
for (uint i = 0; i < vertices.Count; i++)
|
|
triangles[i] = i;
|
|
|
|
model = Content.CreateVirtualAsset<Model>();
|
|
model.SetupLODs(new int[] { 1 });
|
|
model.LODs[0].Meshes[0].UpdateMesh(vertices.ToArray(), (int[])(object)triangles, normals.ToArray(), null, uvs.ToArray());
|
|
|
|
StaticModel childModel = Actor.AddChild<StaticModel>();
|
|
childModel.Name = "MapModel";
|
|
childModel.Model = model;
|
|
childModel.SetMaterial(0, material);
|
|
|
|
CollisionData collisionData = Content.CreateVirtualAsset<CollisionData>();
|
|
if (collisionData.CookCollision(CollisionDataType.TriangleMesh, vertices.ToArray(), triangles.ToArray()))
|
|
throw new Exception("failed to cook final collision");
|
|
var meshCollider = childModel.AddChild<MeshCollider>();
|
|
meshCollider.CollisionData = collisionData;
|
|
|
|
// TODO: flip Y and Z
|
|
childModel.Orientation = Quaternion.RotationYawPitchRoll(180f*Mathf.DegreesToRadians, -90f*Mathf.DegreesToRadians, 0f);
|
|
childModel.Scale = new Vector3(1f, -1f, 1f);
|
|
}
|
|
}
|
|
|
|
public override void OnEnable()
|
|
{
|
|
// Here you can add code that needs to be called when script is enabled (eg. register for events)
|
|
}
|
|
|
|
public override void OnDisable()
|
|
{
|
|
// Here you can add code that needs to be called when script is disabled (eg. unregister from events)
|
|
}
|
|
|
|
public override void OnUpdate()
|
|
{
|
|
}
|
|
|
|
public override void OnDestroy()
|
|
{
|
|
Destroy(ref model);
|
|
base.OnDestroy();
|
|
}
|
|
}
|
|
|
|
#if false
|
|
public struct Edge
|
|
{
|
|
public Vector3 v1, v2;
|
|
|
|
public Edge(Vector3 v1, Vector3 v2)
|
|
{
|
|
this.v1 = v1;
|
|
this.v2 = v2;
|
|
}
|
|
|
|
public static Edge[] GetEdges(Vector3 v1, Vector3 v2, Vector3 v3)
|
|
{
|
|
return new[]
|
|
{
|
|
new Edge(v1, v2),
|
|
new Edge(v2, v3),
|
|
new Edge(v3, v1),
|
|
};
|
|
}
|
|
|
|
public override bool Equals(object obj)
|
|
{
|
|
if (obj is Edge)
|
|
{
|
|
var other = (Edge) obj;
|
|
var d1a = Math.Abs((v1 - other.v1).Length);
|
|
var d1b = Math.Abs((v1 - other.v2).Length);
|
|
var d2a = Math.Abs((v2 - other.v2).Length);
|
|
var d2b = Math.Abs((v2 - other.v1).Length);
|
|
|
|
var eps = 1f;
|
|
if (d1a < eps && d2a < eps)
|
|
return true;
|
|
else if (d1b < eps && d2b < eps)
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
return base.Equals(obj);
|
|
}
|
|
|
|
public static bool operator ==(Edge edge, object obj)
|
|
{
|
|
return edge.Equals(obj);
|
|
}
|
|
|
|
public static bool operator !=(Edge edge, object obj)
|
|
{
|
|
return !(edge == obj);
|
|
}
|
|
}
|
|
|
|
public class Face
|
|
{
|
|
public Vector3 v1, v2, v3;
|
|
public List<Q3MapImporter.HalfEdge> halfEdges;
|
|
public bool visited;
|
|
|
|
public Face(Vector3 v1, Vector3 v2, Vector3 v3)
|
|
{
|
|
this.v1 = v1;
|
|
this.v2 = v2;
|
|
this.v3 = v3;
|
|
halfEdges = new List<Q3MapImporter.HalfEdge>(3);
|
|
}
|
|
|
|
public Edge[] GetEdges()
|
|
{
|
|
return new[]
|
|
{
|
|
new Edge(v1, v2),
|
|
new Edge(v2, v3),
|
|
new Edge(v3, v1),
|
|
};
|
|
}
|
|
|
|
public float DistanceToPoint(Vector3 point)
|
|
{
|
|
Plane plane = new Plane(v1, v2, v3);
|
|
|
|
float distance = (point.X * plane.Normal.X) + (point.Y * plane.Normal.Y) +
|
|
(point.Z * plane.Normal.Z) + plane.D;
|
|
return distance / (float) Math.Sqrt(
|
|
(plane.Normal.X * plane.Normal.X) + (plane.Normal.Y * plane.Normal.Y) +
|
|
(plane.Normal.Z * plane.Normal.Z));
|
|
}
|
|
|
|
public float DistanceToPlane(Face face)
|
|
{
|
|
Plane plane = new Plane(v1, v2, v3);
|
|
|
|
var center = (face.v1 + face.v2 + face.v3) / 3f;
|
|
|
|
return plane.Normal.X * center.X + plane.Normal.Y * center.Y + plane.Normal.Z * center.Z - plane.D;
|
|
}
|
|
|
|
public float GetArea()
|
|
{
|
|
Q3MapImporter.HalfEdge areaEdgeStart = halfEdges[0];
|
|
Q3MapImporter.HalfEdge areaEdge = areaEdgeStart.previous;
|
|
Vector3 areaNorm = Vector3.Zero;
|
|
int iters = 0;
|
|
do
|
|
{
|
|
if (iters++ > 1000)
|
|
throw new Exception("merge infinite loop");
|
|
areaNorm += Vector3.Cross(areaEdge.edge.v1 - areaEdgeStart.edge.v1,
|
|
areaEdge.next.edge.v1 - areaEdgeStart.edge.v1);
|
|
areaEdge = areaEdge.previous;
|
|
|
|
} while (areaEdge != areaEdgeStart);
|
|
|
|
return areaNorm.Length;
|
|
}
|
|
}
|
|
|
|
public struct Tetrahedron
|
|
{
|
|
public Vector3 v1, v2, v3, v4;
|
|
|
|
public Tetrahedron(Vector3 v1, Vector3 v2, Vector3 v3, Vector3 v4)
|
|
{
|
|
this.v1 = v1;
|
|
this.v2 = v2;
|
|
this.v3 = v3;
|
|
this.v4 = v4;
|
|
}
|
|
|
|
public Face[] GetFaces()
|
|
{
|
|
return new[]
|
|
{
|
|
new Face(v1, v2, v3),
|
|
new Face(v1, v3, v4),
|
|
new Face(v1, v4, v2),
|
|
new Face(v2, v4, v3),
|
|
};
|
|
}
|
|
}
|
|
|
|
public class Q3MapImporter : Script
|
|
{
|
|
private string mapPath = @"C:\dev\GoakeFlax\Assets\Maps\cube.map";
|
|
//private string mapPath = @"C:\dev\Goake\maps\aerowalk\aerowalk.map";
|
|
|
|
Model model;
|
|
public MaterialBase material;
|
|
|
|
const float epsilon = 0.00001f;
|
|
|
|
private void SortPoints(List<Vector3> points, Vector3 planeNormal)
|
|
{
|
|
Vector3 center = Vector3.Zero;
|
|
foreach (var vert in points)
|
|
{
|
|
center += vert;
|
|
}
|
|
|
|
if (points.Count > 0)
|
|
center /= points.Count;
|
|
|
|
points.Sort((v1, v2) =>
|
|
{
|
|
var dot = Vector3.Dot(planeNormal, Vector3.Cross(v1 - center, v2 - center));
|
|
if (dot > 0)
|
|
return 1;
|
|
else
|
|
return -1;
|
|
});
|
|
}
|
|
|
|
float PointDistanceFromPlane(Vector3 point, Plane plane)
|
|
{
|
|
float distance = (point.X * plane.Normal.X) + (point.Y * plane.Normal.Y) +
|
|
(point.Z * plane.Normal.Z) + plane.D;
|
|
return distance / (float) Math.Sqrt(
|
|
(plane.Normal.X * plane.Normal.X) + (plane.Normal.Y * plane.Normal.Y) +
|
|
(plane.Normal.Z * plane.Normal.Z));
|
|
}
|
|
|
|
private Face[] CreateInitialSimplex(Vector3[] points)
|
|
{
|
|
if (false)
|
|
{
|
|
// TODO: more optimal to find first set of points which are not coplanar?
|
|
|
|
// find the longest edge
|
|
Vector3 v1 = Vector3.Zero;
|
|
Vector3 v2 = Vector3.Zero;
|
|
foreach (var p1 in points)
|
|
{
|
|
foreach (var p2 in points)
|
|
{
|
|
if ((p2 - p1).LengthSquared > (v2 - v1).LengthSquared)
|
|
{
|
|
v1 = p1;
|
|
v2 = p2;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (v1 == v2)
|
|
v1 = v2;
|
|
|
|
Assert.IsTrue(v1 != v2, "a1 != a2");
|
|
|
|
// find the furthest point from the edge to form a face
|
|
Vector3 v3 = Vector3.Zero;
|
|
float furthestDist = 0f;
|
|
foreach (var point in points)
|
|
{
|
|
//if (vert == a1 || vert == a2)
|
|
// continue;
|
|
|
|
var edgeDir = (v2 - v1).Normalized;
|
|
var closest = v1 + edgeDir * Vector3.Dot(point - v1, edgeDir);
|
|
|
|
var dist = (point - closest).Length;
|
|
if (dist > furthestDist)
|
|
{
|
|
v3 = point;
|
|
furthestDist = dist;
|
|
}
|
|
}
|
|
|
|
Assert.IsTrue(v3 != v1, "furthest != a1");
|
|
Assert.IsTrue(v3 != v2, "furthest != a2");
|
|
|
|
// find the furthest point from he face
|
|
Plane plane = new Plane(v1, v2, v3);
|
|
Vector3 v4 = Vector3.Zero;
|
|
float fourthDist = 0f;
|
|
foreach (var point in points)
|
|
{
|
|
if (point == v1 || point == v2 || point == v3)
|
|
continue;
|
|
|
|
float distance = PointDistanceFromPlane(point, plane);
|
|
if (Math.Abs(distance) > fourthDist)
|
|
{
|
|
v4 = point;
|
|
fourthDist = distance;
|
|
}
|
|
}
|
|
|
|
// make sure the tetrahedron is in counter-clockwise order
|
|
if (fourthDist > 0)
|
|
{
|
|
return new Face[]
|
|
{
|
|
new Face(v1, v3, v2),
|
|
new Face(v1, v4, v3),
|
|
new Face(v1, v2, v4),
|
|
new Face(v2, v3, v4),
|
|
};
|
|
}
|
|
else
|
|
{
|
|
return new Face[]
|
|
{
|
|
new Face(v1, v2, v3),
|
|
new Face(v1, v3, v4),
|
|
new Face(v1, v4, v2),
|
|
new Face(v2, v4, v3),
|
|
};
|
|
}
|
|
}
|
|
else
|
|
{
|
|
Vector3 v1 = Vector3.Zero, v2 = Vector3.Zero, v3 = Vector3.Zero, v4 = Vector3.Zero;
|
|
bool found = false;
|
|
|
|
foreach (var p1 in points)
|
|
{
|
|
foreach (var p2 in points)
|
|
{
|
|
if (p1 == p2)
|
|
continue;
|
|
|
|
if (AreCoincident(p1, p2))
|
|
continue;
|
|
|
|
|
|
foreach (var p3 in points)
|
|
{
|
|
if (p3 == p2 || p3 == p1)
|
|
continue;
|
|
|
|
if (AreCollinear(p1, p2, p3))
|
|
continue;
|
|
|
|
foreach (var p4 in points)
|
|
{
|
|
if (p4 == p1 || p4 == p2 || p4 == p3)
|
|
continue;
|
|
|
|
if (AreCoplanar(p1, p2, p3, p4))
|
|
continue;
|
|
|
|
found = true;
|
|
v1 = p1;
|
|
v2 = p2;
|
|
v3 = p3;
|
|
v4 = p4;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!found)
|
|
throw new Exception("CreateInitialSimplex failed");
|
|
|
|
Plane plane = new Plane(v1, v2, v3);
|
|
var fourthDist = PointDistanceFromPlane(v4, plane);
|
|
|
|
if (fourthDist > 0)
|
|
{
|
|
return new Face[]
|
|
{
|
|
new Face(v1, v3, v2),
|
|
new Face(v1, v4, v3),
|
|
new Face(v1, v2, v4),
|
|
new Face(v2, v3, v4),
|
|
};
|
|
}
|
|
else
|
|
{
|
|
return new Face[]
|
|
{
|
|
new Face(v1, v2, v3),
|
|
new Face(v1, v3, v4),
|
|
new Face(v1, v4, v2),
|
|
new Face(v2, v4, v3),
|
|
};
|
|
}
|
|
}
|
|
}
|
|
|
|
public class HalfEdge
|
|
{
|
|
public Face face;
|
|
|
|
//public Face oppositeFace;
|
|
public HalfEdge opposite;
|
|
public HalfEdge previous, next;
|
|
|
|
public Edge edge;
|
|
//public bool horizonVisited;
|
|
|
|
public HalfEdge(Edge edge, Face face)
|
|
{
|
|
this.edge = edge;
|
|
this.face = face;
|
|
face.halfEdges.Add(this);
|
|
}
|
|
|
|
public Vector3 tail
|
|
{
|
|
get
|
|
{
|
|
return edge.v2;
|
|
}
|
|
set
|
|
{
|
|
edge.v2 = value;
|
|
opposite.edge.v1 = value;
|
|
}
|
|
}
|
|
}
|
|
|
|
//http://algolist.ru/maths/geom/convhull/qhull3d.php
|
|
|
|
private void PopulateOutsideSet(List<Tuple<Face, Vector3>> outsideSet, Face[] faces, Vector3[] points)
|
|
{
|
|
foreach (var point in points)
|
|
{
|
|
foreach (Face face in faces)
|
|
{
|
|
float distance = face.DistanceToPoint(point);
|
|
/*if (Math.Abs(distance) < epsilon)
|
|
{
|
|
// point is in the plane, this gets merged
|
|
distance = distance;
|
|
}
|
|
else*/
|
|
if (distance > 0)
|
|
{
|
|
//side.outsideSet.Add(point);
|
|
outsideSet.Add(new Tuple<Face, Vector3>(face, point));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
private List<Vector3> QuickHull2(Vector3[] points)
|
|
{
|
|
Assert.IsTrue(points.Length >= 4, "points.Length >= 4");
|
|
|
|
var tetrahedron = CreateInitialSimplex(points);
|
|
|
|
List<Tuple<Face, Vector3>> outsideSet = new List<Tuple<Face, Vector3>>();
|
|
PopulateOutsideSet(outsideSet, tetrahedron, points);
|
|
|
|
// all points not in side.outsideSet are inside in "inside" set
|
|
|
|
// create half-edges
|
|
foreach (var face in tetrahedron)
|
|
{
|
|
var halfEdges = new List<HalfEdge>(3);
|
|
foreach (var edge in face.GetEdges())
|
|
halfEdges.Add(new HalfEdge(edge, face));
|
|
|
|
for (int i = 0; i < halfEdges.Count; i++)
|
|
{
|
|
halfEdges[i].previous = halfEdges[(i + 2) % 3];
|
|
halfEdges[i].next = halfEdges[(i + 1) % 3];
|
|
}
|
|
}
|
|
|
|
// verify
|
|
{
|
|
var tetrapoints = new List<Vector3>();
|
|
foreach (var face in tetrahedron)
|
|
{
|
|
foreach (var he in face.halfEdges)
|
|
{
|
|
if (!tetrapoints.Contains(he.edge.v1))
|
|
tetrapoints.Add(he.edge.v1);
|
|
}
|
|
}
|
|
|
|
foreach (var point in tetrapoints)
|
|
{
|
|
int foundFaces = 0;
|
|
|
|
foreach (var face in tetrahedron)
|
|
{
|
|
if (face.v1 == point)
|
|
foundFaces++;
|
|
else if (face.v2 == point)
|
|
foundFaces++;
|
|
else if (face.v3 == point)
|
|
foundFaces++;
|
|
}
|
|
|
|
Assert.IsTrue(foundFaces == 3, "foundFaces == 3");
|
|
}
|
|
}
|
|
|
|
|
|
foreach (var face in tetrahedron)
|
|
{
|
|
Assert.IsTrue(face.halfEdges.Count == 3, "side.halfEdges.Count == 3");
|
|
foreach (var halfEdge in face.halfEdges)
|
|
{
|
|
bool found = false;
|
|
foreach (var otherFace in tetrahedron)
|
|
{
|
|
if (found)
|
|
break;
|
|
if (face == otherFace)
|
|
continue;
|
|
|
|
foreach (var otherHalfEdge in otherFace.halfEdges)
|
|
{
|
|
if (otherHalfEdge.opposite != null)
|
|
continue;
|
|
|
|
if (halfEdge.edge == otherHalfEdge.edge)
|
|
{
|
|
halfEdge.opposite = otherHalfEdge;
|
|
otherHalfEdge.opposite = halfEdge;
|
|
//halfEdge.oppositeFace = otherFace;
|
|
//otherHalfEdge.oppositeFace = face;
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
Assert.IsTrue(halfEdge.previous != null, "halfEdge.previous != null");
|
|
Assert.IsTrue(halfEdge.next != null, "halfEdge.next != null");
|
|
Assert.IsTrue(halfEdge.opposite != null, "halfEdge.opposite != null");
|
|
//Assert.IsTrue(halfEdge.oppositeFace != null, "halfEdge.oppositeFace != null");
|
|
Assert.IsTrue(halfEdge.opposite.face != null, "halfEdge.opposite.face != null");
|
|
//Assert.IsTrue(halfEdge.oppositeFace == halfEdge.opposite.face, "halfEdge.oppositeFace == halfEdge.opposite.face");
|
|
}
|
|
}
|
|
|
|
|
|
// grow hull
|
|
List<HalfEdge> horizonEdges = new List<HalfEdge>();
|
|
|
|
List<Face> hullFaces = new List<Face>();
|
|
hullFaces.AddRange(tetrahedron);
|
|
|
|
// stop when none of the faces have any visible outside points
|
|
int iterCount = 0;
|
|
while (outsideSet.Count > 0)
|
|
{
|
|
iterCount++;
|
|
Tuple<Face, Vector3> pointToAdd = null;
|
|
Face pointFace = null;
|
|
// get furthest point in outside set
|
|
/*for (int sideIndex = 0; sideIndex < sides.Count; sideIndex++)
|
|
{
|
|
TetrahedronSide side = sides[sideIndex];
|
|
if (side.outsideSet.Count == 0)
|
|
continue;
|
|
|
|
float furthestDist = 0f;
|
|
foreach (var point in side.outsideSet)
|
|
{
|
|
Assert.IsTrue(point != side.face.v1, "point != side.face.v1");
|
|
Assert.IsTrue(point != side.face.v2, "point != side.face.v2");
|
|
Assert.IsTrue(point != side.face.v3, "point != side.face.v3");
|
|
|
|
float distance = PointDistanceFromPlane(point, side.plane);
|
|
if (Math.Abs(distance) > furthestDist)
|
|
{
|
|
pointToAdd = point;
|
|
pointSide = side;
|
|
furthestDist = distance;
|
|
}
|
|
}
|
|
}*/
|
|
|
|
float furthestDist = 0f;
|
|
foreach (var fp in outsideSet)
|
|
{
|
|
var face = fp.Item1;
|
|
var point = fp.Item2;
|
|
|
|
float distance = face.DistanceToPoint(point);
|
|
if (Math.Abs(distance) > furthestDist)
|
|
//if (distance > furthestDist)
|
|
{
|
|
pointToAdd = fp;
|
|
pointFace = face;
|
|
furthestDist = distance;
|
|
}
|
|
}
|
|
|
|
Assert.IsTrue(furthestDist > 0, "furthestDist > 0");
|
|
Assert.IsTrue(pointToAdd != null, "pointToAdd != null");
|
|
|
|
outsideSet.Remove(pointToAdd);
|
|
|
|
foreach (var face in hullFaces)
|
|
{
|
|
face.visited = false;
|
|
foreach (var halfEdge in face.halfEdges)
|
|
{
|
|
Assert.IsTrue(halfEdge.opposite.opposite == halfEdge, "halfEdge.opposite.opposite == halfEdge");
|
|
Assert.IsTrue(hullFaces.Contains(halfEdge.opposite.face),
|
|
"hullFaces.Contains(halfEdge.opposite.face)");
|
|
}
|
|
}
|
|
|
|
var hullFacesNew = new List<Face>();
|
|
var unclaimedPoints = new List<Vector3>();
|
|
|
|
AddPointToHull(pointToAdd.Item2, pointFace, unclaimedPoints, outsideSet, horizonEdges, hullFacesNew);
|
|
|
|
// remove lit/seen/visited faces, their points were added to unclaimed points
|
|
for (int i = 0; i < hullFaces.Count; i++)
|
|
{
|
|
if (hullFaces[i].visited)
|
|
{
|
|
hullFaces.RemoveAt(i);
|
|
i--;
|
|
}
|
|
}
|
|
|
|
hullFaces.AddRange(hullFacesNew);
|
|
|
|
foreach (var face in hullFaces)
|
|
{
|
|
face.visited = false;
|
|
foreach (var halfEdge in face.halfEdges)
|
|
{
|
|
Assert.IsTrue(halfEdge.opposite.opposite == halfEdge,
|
|
"2 halfEdge.opposite.opposite == halfEdge (degenerate face?)");
|
|
Assert.IsTrue(hullFaces.Contains(halfEdge.opposite.face),
|
|
"2 hullFaces.Contains(halfEdge.opposite.face)");
|
|
}
|
|
}
|
|
|
|
foreach (var fb in outsideSet)
|
|
unclaimedPoints.Add(fb.Item2);
|
|
|
|
outsideSet.Clear();
|
|
PopulateOutsideSet(outsideSet, hullFaces.ToArray(), unclaimedPoints.ToArray());
|
|
|
|
//if (iterCount >= 3)
|
|
// break;
|
|
|
|
if (hullFaces.Count > 1000 || iterCount > 1000)
|
|
Assert.Fail("overflow");
|
|
if (outsideSet.Count > 100000)
|
|
Assert.Fail("outsideSet overflow");
|
|
}
|
|
|
|
// merge faces with similar normals
|
|
List<Face> discardedFaces = new List<Face>();
|
|
for (int i = 0; i < hullFaces.Count; i++)
|
|
{
|
|
Face firstFace = hullFaces[i];
|
|
// if visible?
|
|
{
|
|
while (PostAdjacentMerge(firstFace, discardedFaces, hullFaces))
|
|
{
|
|
//
|
|
}
|
|
}
|
|
}
|
|
|
|
foreach (var f in discardedFaces)
|
|
hullFaces.Remove(f);
|
|
|
|
List<Vector3> hullPoints = new List<Vector3>(hullFaces.Count * 3);
|
|
foreach (var face in hullFaces)
|
|
{
|
|
hullPoints.Add(face.v1);
|
|
hullPoints.Add(face.v2);
|
|
hullPoints.Add(face.v3);
|
|
}
|
|
|
|
return hullPoints;
|
|
}
|
|
|
|
private void AddUnique(List<Vector3> list, Vector3 point)
|
|
{
|
|
foreach (var p in list)
|
|
{
|
|
if ((point - p).Length < epsilon)
|
|
return;
|
|
}
|
|
list.Add(point);
|
|
}
|
|
|
|
bool AreCoincident(Vector3 a, Vector3 b)
|
|
{
|
|
return (a - b).Length <= epsilon;
|
|
}
|
|
|
|
bool AreCollinear(Vector3 a, Vector3 b, Vector3 c)
|
|
{
|
|
return Vector3.Cross(c - a, c - b).Length <= epsilon;
|
|
}
|
|
|
|
bool AreCoplanar(Vector3 a, Vector3 b, Vector3 c, Vector3 d)
|
|
{
|
|
var n1 = Vector3.Cross(c - a, c - b);
|
|
var n2 = Vector3.Cross(d - a, d - b);
|
|
|
|
var m1 = n1.Length;
|
|
var m2 = n2.Length;
|
|
|
|
return m1 > epsilon
|
|
&& m2 > epsilon
|
|
&& AreCollinear(Vector3.Zero,
|
|
(1.0f / m1) * n1,
|
|
(1.0f / m2) * n2);
|
|
}
|
|
|
|
private bool PostAdjacentMerge(Face face, List<Face> discardedFaces, List<Face> hullFaces)
|
|
{
|
|
float maxdot_minang = Mathf.Cos(Mathf.DegreesToRadians * 3f);
|
|
HalfEdge edge = face.halfEdges[0];
|
|
|
|
do
|
|
{
|
|
Face oppFace = edge.opposite.face;
|
|
|
|
bool merge = false;
|
|
Vector3 ni = new Plane(face.v1, face.v2, face.v3).Normal;
|
|
Vector3 nj = new Plane(oppFace.v1, oppFace.v2, oppFace.v3).Normal;
|
|
float dotP = Vector3.Dot(ni, nj);
|
|
|
|
if (dotP > maxdot_minang)
|
|
{
|
|
if (face.GetArea() >= oppFace.GetArea())
|
|
{
|
|
// check if we can merge the 2 faces
|
|
merge = canMergeFaces(edge, hullFaces);
|
|
}
|
|
}
|
|
|
|
if (merge)
|
|
{
|
|
// mergeAdjacentFace
|
|
if (!MergeAdjacentFaces(edge, face, face, discardedFaces))
|
|
{
|
|
throw new Exception("merge failure");
|
|
}
|
|
return true;
|
|
}
|
|
edge = edge.next;
|
|
} while (edge != face.halfEdges[0]);
|
|
|
|
return false;
|
|
}
|
|
|
|
private static int asdf = 0;
|
|
bool canMergeFaces(HalfEdge he, List<Face> hullFaces)
|
|
{
|
|
asdf++;
|
|
if (asdf == 22)
|
|
asdf = asdf;
|
|
Face face1 = he.face;
|
|
Face face2 = he.opposite.face;
|
|
|
|
// construct the merged face
|
|
List<HalfEdge> edges = new List<HalfEdge>();
|
|
Face mergedFace = new Face(new Vector3(float.NaN), new Vector3(float.NaN), new Vector3(float.NaN));
|
|
|
|
// copy the first face edges
|
|
HalfEdge heTwin = null;
|
|
HalfEdge heCopy = null;
|
|
HalfEdge startEdge = (face1.halfEdges[0] != he) ? face1.halfEdges[0] : face1.halfEdges[1];
|
|
HalfEdge copyHe = startEdge;
|
|
HalfEdge prevEdge = null;
|
|
HalfEdge firstEdge = null;
|
|
do
|
|
{
|
|
HalfEdge newEdge = new HalfEdge(copyHe.edge, mergedFace);
|
|
newEdge.opposite = copyHe.opposite;
|
|
newEdge.face = mergedFace;
|
|
newEdge.tail = copyHe.tail;
|
|
if(copyHe == he)
|
|
{
|
|
heTwin = copyHe.opposite;
|
|
heCopy = newEdge;
|
|
}
|
|
|
|
if (firstEdge == null)
|
|
firstEdge = newEdge;
|
|
|
|
if (prevEdge != null)
|
|
{
|
|
prevEdge.next = newEdge;
|
|
newEdge.previous = prevEdge;
|
|
}
|
|
|
|
copyHe = copyHe.next;
|
|
prevEdge = newEdge;
|
|
} while (copyHe != startEdge);
|
|
|
|
if (prevEdge != null)
|
|
{
|
|
prevEdge.next = firstEdge;
|
|
firstEdge.previous = prevEdge;
|
|
}
|
|
if (heCopy == null)
|
|
heCopy = firstEdge;
|
|
|
|
// copy the second face edges
|
|
prevEdge = null;
|
|
firstEdge = null;
|
|
copyHe = face2.halfEdges[0];
|
|
do
|
|
{
|
|
HalfEdge newEdge = new HalfEdge(copyHe.edge, mergedFace);
|
|
newEdge.opposite = copyHe.opposite;
|
|
newEdge.face = mergedFace;
|
|
newEdge.tail = copyHe.tail;
|
|
|
|
if (firstEdge == null)
|
|
firstEdge = newEdge;
|
|
|
|
if (heTwin == copyHe)
|
|
heTwin = newEdge;
|
|
|
|
if (prevEdge != null)
|
|
{
|
|
prevEdge.next = newEdge;
|
|
newEdge.previous = prevEdge;
|
|
}
|
|
|
|
copyHe = copyHe.next;
|
|
prevEdge = newEdge;
|
|
} while (copyHe != face2.halfEdges[0]);
|
|
|
|
if (prevEdge != null)
|
|
{
|
|
prevEdge.next = firstEdge;
|
|
firstEdge.previous = prevEdge;
|
|
}
|
|
if (heTwin == null)
|
|
heTwin = firstEdge;
|
|
|
|
mergedFace.v1 = mergedFace.halfEdges[0].edge.v1;
|
|
mergedFace.v2 = mergedFace.halfEdges[1].edge.v1;
|
|
mergedFace.v3 = mergedFace.halfEdges[2].edge.v1;
|
|
|
|
if (heCopy == null)
|
|
heTwin = heTwin;
|
|
|
|
Assert.IsTrue(heTwin != null, "heTwin != null");
|
|
|
|
HalfEdge hedgeAdjPrev = heCopy.previous;
|
|
HalfEdge hedgeAdjNext = heCopy.next;
|
|
HalfEdge hedgeOppPrev = heTwin.previous;
|
|
HalfEdge hedgeOppNext = heTwin.next;
|
|
|
|
hedgeOppPrev.next = hedgeAdjNext;
|
|
hedgeAdjNext.previous = hedgeOppPrev;
|
|
|
|
hedgeAdjPrev.next = hedgeOppNext;
|
|
hedgeOppNext.previous = hedgeAdjPrev;
|
|
|
|
// compute normal and centroid
|
|
//mergedFace.computeNormalAndCentroid();
|
|
|
|
// test the vertex distance
|
|
float mTolarenace = epsilon;//-1;
|
|
float mPlaneTolerance = epsilon;//-1f;
|
|
float maxDist = mPlaneTolerance;
|
|
List<Vector3> uniqPoints = new List<Vector3>();
|
|
foreach (var hullFace in hullFaces)
|
|
{
|
|
AddUnique(uniqPoints, hullFace.v1);
|
|
AddUnique(uniqPoints, hullFace.v2);
|
|
AddUnique(uniqPoints, hullFace.v3);
|
|
}
|
|
|
|
foreach (var point in uniqPoints)
|
|
{
|
|
float dist = mergedFace.DistanceToPoint(point);
|
|
if (dist > maxDist)
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// check the convexity
|
|
HalfEdge qhe = mergedFace.halfEdges[0];
|
|
Assert.IsTrue(mergedFace.halfEdges.Count == 3, "mergedFace.halfEdges.Count == 3");
|
|
do
|
|
{
|
|
Vector3 vertex = qhe.tail;
|
|
Vector3 nextVertex = qhe.next.tail;
|
|
|
|
Vector3 edgeVector = (nextVertex - vertex).Normalized;
|
|
Vector3 outVector = Vector3.Cross(-(new Plane(mergedFace.v1, mergedFace.v2, mergedFace.v3).Normal), edgeVector);
|
|
|
|
HalfEdge testHe = qhe.next;
|
|
do
|
|
{
|
|
Vector3 testVertex = testHe.tail;
|
|
float dist = Vector3.Dot(testVertex - vertex, outVector);
|
|
|
|
if (dist > mTolarenace)
|
|
return false;
|
|
|
|
testHe = testHe.next;
|
|
} while (testHe != qhe.next);
|
|
|
|
qhe = qhe.next;
|
|
} while (qhe != mergedFace.halfEdges[0]);
|
|
|
|
|
|
Face oppFace = he.opposite.face;
|
|
|
|
HalfEdge hedgeOpp = he.opposite;
|
|
|
|
hedgeAdjPrev = he.previous;
|
|
hedgeAdjNext = he.next;
|
|
hedgeOppPrev = hedgeOpp.previous;
|
|
hedgeOppNext = hedgeOpp.next;
|
|
|
|
// check if we are lining up with the face in adjPrev dir
|
|
while (hedgeAdjPrev.opposite.face == oppFace)
|
|
{
|
|
hedgeAdjPrev = hedgeAdjPrev.previous;
|
|
hedgeOppNext = hedgeOppNext.next;
|
|
}
|
|
|
|
// check if we are lining up with the face in adjNext dir
|
|
while (hedgeAdjNext.opposite.face == oppFace)
|
|
{
|
|
hedgeOppPrev = hedgeOppPrev.previous;
|
|
hedgeAdjNext = hedgeAdjNext.next;
|
|
}
|
|
|
|
// no redundant merges, just clean merge of 2 neighbour faces
|
|
if (hedgeOppPrev.opposite.face == hedgeAdjNext.opposite.face)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
if (hedgeAdjPrev.opposite.face == hedgeOppNext.opposite.face)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
private void AddPointToHull(Vector3 point, Face face, List<Vector3> unclaimedPoints,
|
|
List<Tuple<Face, Vector3>> outsideSet,
|
|
List<HalfEdge> horizonEdges, List<Face> hullFaces)
|
|
{
|
|
horizonEdges.Clear();
|
|
|
|
CalculateHorizon(face, point, unclaimedPoints, outsideSet, horizonEdges, face.halfEdges[0]);
|
|
|
|
// create new faces
|
|
if (horizonEdges.Count > 0)
|
|
{
|
|
List<Face> newFaces = new List<Face>();
|
|
HalfEdge firstEdge = horizonEdges.First();
|
|
HalfEdge prevEdge = null;
|
|
foreach (var edge in horizonEdges)
|
|
{
|
|
var newFace = new Face(point, edge.edge.v1, edge.edge.v2);
|
|
var newPlane = new Plane(newFace.v1, newFace.v2, newFace.v3);
|
|
|
|
var uniqPoints = new List<Vector3>();
|
|
AddUnique(uniqPoints, newFace.v1);
|
|
AddUnique(uniqPoints, newFace.v2);
|
|
AddUnique(uniqPoints, newFace.v3);
|
|
|
|
var fourtPoint = edge.opposite.next.edge.v2;
|
|
|
|
AddUnique(uniqPoints, edge.opposite.next.edge.v1);
|
|
AddUnique(uniqPoints, edge.opposite.next.edge.v2);
|
|
AddUnique(uniqPoints, edge.opposite.previous.edge.v1);
|
|
AddUnique(uniqPoints, edge.opposite.previous.edge.v2);
|
|
|
|
var distFromPlane = PointDistanceFromPlane(fourtPoint, newPlane);
|
|
if (Math.Abs(distFromPlane) < epsilon)
|
|
{
|
|
// both faces are coplanar, merge them together
|
|
|
|
|
|
distFromPlane = distFromPlane;
|
|
if (AreCoplanar(newFace.v1, newFace.v2, newFace.v3, fourtPoint))
|
|
distFromPlane = distFromPlane;
|
|
}
|
|
else if (AreCoplanar(newFace.v1, newFace.v2, newFace.v3, fourtPoint))
|
|
{
|
|
distFromPlane = distFromPlane;
|
|
}
|
|
|
|
|
|
|
|
var newEdges = new List<HalfEdge>();
|
|
foreach (var ne in newFace.GetEdges())
|
|
newEdges.Add(new HalfEdge(ne, newFace));
|
|
|
|
for (int i = 0; i < newEdges.Count; i++)
|
|
{
|
|
newEdges[i].previous = newEdges[(i + 2) % 3];
|
|
newEdges[i].next = newEdges[(i + 1) % 3];
|
|
}
|
|
|
|
if (prevEdge != null)
|
|
{
|
|
var prevAdjacentEdge = newFaces.Last().halfEdges.Last();
|
|
var lastAdjacentEdge = newEdges.First();
|
|
lastAdjacentEdge.opposite = prevAdjacentEdge;
|
|
prevAdjacentEdge.opposite = lastAdjacentEdge;
|
|
}
|
|
|
|
//edge.face = newFace;
|
|
|
|
newEdges[1].opposite = edge.opposite;
|
|
edge.opposite.opposite = newEdges[1];
|
|
|
|
newFaces.Add(newFace);
|
|
prevEdge = edge;
|
|
}
|
|
|
|
if (prevEdge != null)
|
|
{
|
|
var lastAdjacentEdge = newFaces.Last().halfEdges.Last();
|
|
var firstAdjacentEdge = newFaces.First().halfEdges.First();
|
|
lastAdjacentEdge.opposite = firstAdjacentEdge;
|
|
firstAdjacentEdge.opposite = lastAdjacentEdge;
|
|
//first.previous.opposite = prev.next;
|
|
//prev.next.opposite = first.previous;
|
|
}
|
|
|
|
// merge NONCONVEX_WRT_LARGER_FACE
|
|
|
|
//List<Face> discardedFaces = new List<Face>();
|
|
if (false)
|
|
{
|
|
foreach (var newFace in newFaces)
|
|
{
|
|
// if face visible?
|
|
while (AdjacentMerge(point, newFace, unclaimedPoints, outsideSet, true))
|
|
{
|
|
// merge until failure
|
|
}
|
|
|
|
hullFaces.Add(newFace);
|
|
}
|
|
|
|
foreach (var newFace in newFaces)
|
|
{
|
|
// if face non-convex?
|
|
// mark face as visible?
|
|
while (AdjacentMerge(point, newFace, unclaimedPoints, outsideSet, false))
|
|
{
|
|
// merge until failure
|
|
}
|
|
|
|
hullFaces.Add(newFace);
|
|
}
|
|
}
|
|
else
|
|
hullFaces.AddRange(newFaces);
|
|
|
|
// verify
|
|
foreach (var newFace in hullFaces)
|
|
{
|
|
Assert.IsTrue(newFace.halfEdges.Count == 3, "AddPointToHull: side.halfEdges.Count == 3");
|
|
foreach (var halfEdge in newFace.halfEdges)
|
|
{
|
|
/*bool found = false;
|
|
foreach (var otherFace in hullFaces)
|
|
{
|
|
if (found)
|
|
break;
|
|
if (newFace == otherFace)
|
|
continue;
|
|
|
|
foreach (var otherHalfEdge in otherFace.halfEdges)
|
|
{
|
|
if (otherHalfEdge.opposite != null)
|
|
continue;
|
|
|
|
if (halfEdge.edge == otherHalfEdge.edge)
|
|
{
|
|
halfEdge.opposite = otherHalfEdge;
|
|
otherHalfEdge.opposite = halfEdge;
|
|
//halfEdge.oppositeFace = otherFace;
|
|
//otherHalfEdge.oppositeFace = face;
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
}*/
|
|
|
|
Assert.IsTrue(halfEdge.previous != null, "AddPointToHull: halfEdge.previous != null");
|
|
Assert.IsTrue(halfEdge.next != null, "AddPointToHull: halfEdge.next != null");
|
|
Assert.IsTrue(halfEdge.next.next.next == halfEdge, "AddPointToHull: halfEdge.next.next.next == halfEdge");
|
|
Assert.IsTrue(halfEdge.previous.previous.previous == halfEdge, "AddPointToHull: halfEdge.previous.previous.previous == halfEdge");
|
|
Assert.IsTrue(halfEdge.opposite != null, "AddPointToHull: halfEdge.opposite != null");
|
|
//Assert.IsTrue(halfEdge.oppositeFace != null, "halfEdge.oppositeFace != null");
|
|
Assert.IsTrue(halfEdge.opposite.face != null, "AddPointToHull: halfEdge.opposite.face != null");
|
|
//Assert.IsTrue(halfEdge.oppositeFace == halfEdge.opposite.face, "halfEdge.oppositeFace == halfEdge.opposite.face");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
private bool AdjacentMerge(Vector3 point, Face face, List<Vector3> unclaimedPoints, List<Tuple<Face, Vector3>> outsideSet, bool mergeWrtLargerFace)
|
|
{
|
|
const float tolerance = -1f;
|
|
|
|
HalfEdge edge = face.halfEdges[0];
|
|
|
|
bool convex = true;
|
|
do
|
|
{
|
|
Face oppositeFace = edge.opposite.face;
|
|
bool merge = false;
|
|
|
|
var p1 = new Plane(face.v1, face.v2, face.v3);
|
|
var p2 = new Plane(oppositeFace.v1, oppositeFace.v2, oppositeFace.v3);
|
|
|
|
if (mergeWrtLargerFace)
|
|
{
|
|
float faceArea = edge.face.GetArea();
|
|
float oppositeArea = edge.opposite.face.GetArea();
|
|
|
|
if (faceArea > oppositeArea)
|
|
{
|
|
if (edge.face.DistanceToPlane(edge.opposite.face) > -tolerance)
|
|
merge = true;
|
|
else if (edge.opposite.face.DistanceToPlane(edge.face) > -tolerance)
|
|
convex = false;
|
|
}
|
|
else
|
|
{
|
|
if (edge.opposite.face.DistanceToPlane(edge.face) > -tolerance)
|
|
merge = true;
|
|
else if (edge.face.DistanceToPlane(edge.opposite.face) > -tolerance)
|
|
convex = false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (edge.face.DistanceToPlane(edge.opposite.face) > -tolerance ||
|
|
edge.opposite.face.DistanceToPlane(edge.face) > -tolerance)
|
|
{
|
|
merge = true;
|
|
}
|
|
}
|
|
|
|
if (merge)
|
|
{
|
|
List<Face> discardedFaces = new List<Face>();
|
|
// mergeAdjacentFace
|
|
if (!MergeAdjacentFaces(edge, face, face, discardedFaces))
|
|
{
|
|
throw new Exception("merge failure");
|
|
}
|
|
|
|
foreach (var dface in discardedFaces)
|
|
{
|
|
for (int i=0; i<outsideSet.Count; i++)
|
|
{
|
|
if (outsideSet[i].Item1 == dface)
|
|
{
|
|
float distance = face.DistanceToPoint(point);
|
|
if (distance > 0)
|
|
outsideSet[i] = new Tuple<Face, Vector3>(face, outsideSet[i].Item2);
|
|
else
|
|
unclaimedPoints.Add(outsideSet[i].Item2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} while (edge != face.halfEdges[0]);
|
|
|
|
return false; // no merge
|
|
}
|
|
|
|
private bool MergeAdjacentFaces(HalfEdge edge, Face newFace, Face oldFace, List<Face> discardedFaces)
|
|
{
|
|
Face oppositeFace = edge.opposite.face;
|
|
|
|
discardedFaces.Add(oppositeFace);
|
|
|
|
HalfEdge prev = edge.previous;
|
|
HalfEdge next = edge.next;
|
|
HalfEdge oppositePrev = edge.opposite.previous;
|
|
HalfEdge oppositeNext = edge.opposite.next;
|
|
|
|
HalfEdge breakEdge = prev;
|
|
while (prev.opposite.face == oppositeFace)
|
|
{
|
|
prev = prev.previous;
|
|
oppositeNext = oppositeNext.next;
|
|
|
|
if (prev == breakEdge)
|
|
return false;
|
|
}
|
|
|
|
breakEdge = next;
|
|
while (next.opposite.face == oppositeFace)
|
|
{
|
|
oppositePrev = oppositePrev.previous;
|
|
next = next.next;
|
|
|
|
if (next == breakEdge)
|
|
return false;
|
|
}
|
|
|
|
for (HalfEdge e = oppositeNext; e != oppositePrev.next; e = e.next)
|
|
e.face = newFace;
|
|
|
|
if (edge == oldFace.halfEdges[0])
|
|
oldFace.halfEdges[0] = next;
|
|
|
|
Face discardedFace = ConnectHalfEdges(newFace, oppositePrev, next);
|
|
Face discardedFace2 = ConnectHalfEdges(newFace, prev, oppositeNext);
|
|
|
|
if (discardedFace != null)
|
|
discardedFaces.Add(discardedFace);
|
|
if (discardedFace2 != null)
|
|
discardedFaces.Add(discardedFace2);
|
|
|
|
return true;
|
|
}
|
|
|
|
// merges adjacent faces
|
|
private Face ConnectHalfEdges(Face face, HalfEdge prev, HalfEdge edge)
|
|
{
|
|
Face discardedFace = null;
|
|
|
|
if (prev.opposite.face == edge.opposite.face)
|
|
{
|
|
Face oppFace = edge.opposite.face;
|
|
HalfEdge hedgeOpp;
|
|
|
|
if (prev == face.halfEdges[0])
|
|
{
|
|
face.halfEdges[0] = edge;
|
|
}
|
|
|
|
bool isDegenerate = false;
|
|
{
|
|
// is this correct?
|
|
HalfEdge s = oppFace.halfEdges[0];
|
|
if (s.next.next.next != s)
|
|
isDegenerate = true;
|
|
else if (s.previous.previous.previous != s)
|
|
isDegenerate = true;
|
|
else if (s.next.next == s)
|
|
isDegenerate = true;
|
|
else if (s.previous.previous == s)
|
|
isDegenerate = true;
|
|
|
|
HalfEdge ee = s;
|
|
int numVerts = 0;
|
|
do
|
|
{
|
|
numVerts++;
|
|
ee = ee.next;
|
|
} while (ee != s);
|
|
|
|
if (numVerts <= 2)
|
|
isDegenerate = true;
|
|
}
|
|
|
|
//if (oppFace.numVertices() == 3)
|
|
if (!isDegenerate)
|
|
{
|
|
// then we can get rid of the
|
|
// opposite face altogether
|
|
hedgeOpp = edge.opposite.previous.opposite;
|
|
|
|
//oppFace.mark = DELETED;
|
|
discardedFace = oppFace;
|
|
}
|
|
else
|
|
{
|
|
hedgeOpp = edge.opposite.next;
|
|
|
|
if (oppFace.halfEdges[0] == hedgeOpp.previous) {
|
|
oppFace.halfEdges[0] = hedgeOpp;
|
|
}
|
|
hedgeOpp.previous = hedgeOpp.previous.previous;
|
|
hedgeOpp.previous.next = hedgeOpp;
|
|
}
|
|
edge.previous = prev.previous;
|
|
edge.previous.next = edge;
|
|
|
|
edge.opposite = hedgeOpp;
|
|
hedgeOpp.opposite = edge;
|
|
|
|
// oppFace was modified, so need to recompute
|
|
//oppFace.computeNormalAndCentroid();
|
|
}
|
|
else
|
|
{
|
|
prev.next = edge;
|
|
edge.previous = prev;
|
|
}
|
|
|
|
return discardedFace;
|
|
}
|
|
|
|
// calculates the outermost edges of the geometry seen from the eyePoint
|
|
private void CalculateHorizon(Face face, Vector3 eyePoint, List<Vector3> unclaimedPoints,
|
|
List<Tuple<Face, Vector3>> outsideSet,
|
|
List<HalfEdge> horizonEdges, HalfEdge currentEdge)
|
|
{
|
|
face.visited = true;
|
|
|
|
// move outside points of this face to unclaimed points
|
|
foreach (var set in outsideSet)
|
|
{
|
|
if (set.Item1 == face)
|
|
unclaimedPoints.Add(set.Item2);
|
|
}
|
|
|
|
HalfEdge startingEdge = currentEdge;
|
|
do
|
|
{
|
|
Face oppositeFace = currentEdge.opposite.face;
|
|
if (!oppositeFace.visited)
|
|
{
|
|
var dist = oppositeFace.DistanceToPoint(eyePoint);
|
|
if (dist > epsilon)
|
|
{
|
|
// positive distance means this is visible
|
|
CalculateHorizon(oppositeFace, eyePoint, unclaimedPoints, outsideSet, horizonEdges,
|
|
currentEdge.opposite);
|
|
}
|
|
/*else if (Math.Abs(dist) <= epsilon)
|
|
{
|
|
dist = dist;
|
|
}*/
|
|
else
|
|
{
|
|
if (!horizonEdges.Contains(currentEdge))
|
|
horizonEdges.Add(currentEdge);
|
|
}
|
|
}
|
|
|
|
currentEdge = currentEdge.next;
|
|
} while (currentEdge != startingEdge);
|
|
}
|
|
|
|
public override void OnStart()
|
|
{
|
|
byte[] mapChars = File.ReadAllBytes(mapPath);
|
|
var root = MapParser.Parse(mapChars);
|
|
|
|
const float cs = 3000f;
|
|
|
|
Vector3[] cubePoints = new[]
|
|
{
|
|
new Vector3(-cs, -cs, -cs),
|
|
new Vector3(cs, -cs, -cs),
|
|
new Vector3(-cs, cs, -cs),
|
|
new Vector3(cs, cs, -cs),
|
|
new Vector3(-cs, -cs, cs),
|
|
new Vector3(cs, -cs, cs),
|
|
new Vector3(-cs, cs, cs),
|
|
new Vector3(cs, cs, cs),
|
|
};
|
|
Vector3[] cubeVerts = QuickHull2(cubePoints).ToArray();
|
|
|
|
List<Vector3> vertices = new List<Vector3>();
|
|
foreach (var brush in root.entities[0].brushes.Take(1))
|
|
{
|
|
List<Vector3> brushVertices = new List<Vector3>(cubeVerts);
|
|
//foreach (var plane in new [] { brush.planes.First() })
|
|
foreach (var plane in brush.planes.Reverse().Take(1))
|
|
//foreach (var plane in brush.planes)
|
|
{
|
|
Plane p = new Plane(plane.v1, plane.v2, plane.v3);
|
|
Vector3 planeNormal = p.Normal;
|
|
List<Vector3> newBrushVertices = new List<Vector3>();
|
|
List<Vector3> faceVertices = new List<Vector3>();
|
|
|
|
if (true)
|
|
{
|
|
Func<float, bool> isFront = (f) => f > epsilon;
|
|
Func<float, bool> isBack = (f) => f < -epsilon;
|
|
|
|
for (int i = 0; i < brushVertices.Count; i++)
|
|
{
|
|
int i2 = ((i + 1) % 3 == 0) ? (i - 2) : (i + 1);
|
|
Vector3 start = brushVertices[i];
|
|
Vector3 end = brushVertices[i2];
|
|
|
|
var d1 = (start.X * planeNormal.X) + (start.Y * planeNormal.Y) + (start.Z * planeNormal.Z) +
|
|
p.D;
|
|
var d2 = (end.X * planeNormal.X) + (end.Y * planeNormal.Y) + (end.Z * planeNormal.Z) + p.D;
|
|
|
|
if (isBack(d1))
|
|
{
|
|
// include back
|
|
faceVertices.Add(start);
|
|
}
|
|
|
|
if (isBack(d1) && isFront(d2) || isFront(d1) && isBack(d2))
|
|
{
|
|
//if (isFront(d2))
|
|
{
|
|
// include clip
|
|
Ray ray2 = new Ray(start, (end - start).Normalized);
|
|
if (p.Intersects(ref ray2, out Vector3 intersect2))
|
|
faceVertices.Add(intersect2);
|
|
else
|
|
d1 = d1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (true)
|
|
{
|
|
var newMeshPoints = new List<Vector3>();
|
|
int duplis = 0;
|
|
foreach (var v in faceVertices)
|
|
{
|
|
bool found = false;
|
|
foreach (var vo in newMeshPoints)
|
|
{
|
|
if ((v - vo).Length < epsilon)
|
|
{
|
|
found = true;
|
|
duplis++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
//if (!newMeshPoints.Contains(v))
|
|
if (!found)
|
|
newMeshPoints.Add(v);
|
|
}
|
|
|
|
if (duplis > 0)
|
|
Console.Print("duplicates: " + duplis);
|
|
|
|
if (newMeshPoints.Count > 0)
|
|
{
|
|
var hullPoints = QuickHull2(newMeshPoints.ToArray());
|
|
newBrushVertices.Clear();
|
|
newBrushVertices.AddRange(hullPoints);
|
|
}
|
|
else
|
|
newBrushVertices.Clear();
|
|
}
|
|
}
|
|
|
|
Assert.IsTrue(newBrushVertices.Count % 3 == 0,
|
|
"invalid amount of vertices: " + newBrushVertices.Count);
|
|
//Assert.IsTrue(newBrushVertices.Count > 0,
|
|
// "brush was clipped completely, vertices: " + newBrushVertices.Count);
|
|
|
|
brushVertices.Clear();
|
|
brushVertices.AddRange(newBrushVertices);
|
|
Console.Print("plane verts: " + newBrushVertices.Count);
|
|
}
|
|
|
|
vertices.AddRange(brushVertices);
|
|
}
|
|
|
|
|
|
model = Content.CreateVirtualAsset<Model>();
|
|
model.SetupLODs(new int[] {1});
|
|
{
|
|
var mesh = model.LODs[0].Meshes[0];
|
|
List<int> triangles = new List<int>(vertices.Count);
|
|
for (int i = 0; i < vertices.Count; i++)
|
|
triangles.Add(i);
|
|
Console.Print("verts: " + vertices.Count);
|
|
mesh.UpdateMesh(vertices.ToArray(), triangles.ToArray(), vertices.ToArray());
|
|
}
|
|
|
|
StaticModel childModel = Actor.AddChild<StaticModel>();
|
|
childModel.Name = "MapModel";
|
|
childModel.Model = model;
|
|
childModel.SetMaterial(0, material);
|
|
}
|
|
|
|
public override void OnEnable()
|
|
{
|
|
// Here you can add code that needs to be called when script is enabled (eg. register for events)
|
|
}
|
|
|
|
public override void OnDisable()
|
|
{
|
|
// Here you can add code that needs to be called when script is disabled (eg. unregister from events)
|
|
}
|
|
|
|
public override void OnUpdate()
|
|
{
|
|
// Here you can add code that needs to be called every frame
|
|
}
|
|
|
|
public override void OnDestroy()
|
|
{
|
|
Destroy(ref model);
|
|
base.OnDestroy();
|
|
}
|
|
}
|
|
#endif
|
|
} |