Fixes for code style

This commit is contained in:
Wojtek Figat
2020-12-21 20:27:53 +01:00
parent 8ac2d7069d
commit 666aeca4ea
2 changed files with 96 additions and 134 deletions

BIN
Content/Shaders/MotionBlur.flax (Stored with Git LFS)

Binary file not shown.

View File

@@ -43,16 +43,16 @@ Texture2D Input0 : register(t0);
Texture2D Input1 : register(t1);
Texture2D Input2 : register(t2);
// Converts a motion vector into RGBA color.
float4 VectorToColor(float2 mv)
// Calculates the color for the a motion vector debugging
float4 VectorToColor(float2 motionVector)
{
float phi = atan2(mv.x, mv.y);
float phi = atan2(motionVector.x, motionVector.y);
float hue = (phi / PI + 1) * 0.5;
float r = abs(hue * 6 - 3) - 1;
float g = 2 - abs(hue * 6 - 2);
float b = 2 - abs(hue * 6 - 4);
float a = length(mv);
float a = length(motionVector);
return saturate(float4(r, g, b, a));
}
@@ -61,18 +61,15 @@ float4 VectorToColor(float2 mv)
META_PS(true, FEATURE_LEVEL_ES2)
float4 PS_MotionVectorsDebug(Quad_VS2PS input) : SV_Target
{
float4 src = SAMPLE_RT(Input0, input.TexCoord);
float4 color = SAMPLE_RT(Input0, input.TexCoord);
float2 motionVector = SAMPLE_RT(Input1, input.TexCoord).rg * (DebugAmplitude * 5.0f);
float4 motionColor = VectorToColor(motionVector);
float2 mv = SAMPLE_RT(Input1, input.TexCoord).rg * (DebugAmplitude * 5.0f);
float4 mc = VectorToColor(mv);
float colorRation = saturate(2 - DebugBlend * 2);
float motionColorRatio = saturate(DebugBlend * 2);
color.rgb = lerp(color.rgb * colorRation, motionColor.rgb, motionColor.a * motionColorRatio);
float3 rgb = mc.rgb;
float src_ratio = saturate(2 - DebugBlend * 2);
float mc_ratio = saturate(DebugBlend * 2);
rgb = lerp(src.rgb * src_ratio, rgb, mc.a * mc_ratio);
return float4(rgb, src.a);
return color;
}
// Motion vector arrow data from VS to PS
@@ -88,60 +85,51 @@ ArrowVaryings VS_DebugArrow(uint VertexId : SV_VertexID)
{
// Screen aspect ratio
float aspect = GBuffer.ScreenSize.x * GBuffer.ScreenSize.w;
float inv_aspect = GBuffer.ScreenSize.y * GBuffer.ScreenSize.z;
float aspectInv = GBuffer.ScreenSize.y * GBuffer.ScreenSize.z;
// Vertex IDs
uint arrow_id = VertexId / 6;
uint point_id = VertexId - arrow_id * 6;
uint arrowId = VertexId / 6;
uint pointId = VertexId - arrowId * 6;
// Column/Row number of the arrow
uint row = arrow_id / DebugColumnCount;
uint col = arrow_id - row * DebugColumnCount;
// Column and row number of the arrow
uint row = arrowId / DebugColumnCount;
uint col = arrowId - row * DebugColumnCount;
// Texture coordinate of the reference point
// Get the motion vector
float2 uv = float2((col + 0.5) / DebugColumnCount, (row + 0.5) / DebugRowCount);
// Retrieve the motion vector
float2 mv = SAMPLE_RT(Input1, uv).rg * DebugAmplitude;
float2 motionVector = SAMPLE_RT(Input1, uv).rg * DebugAmplitude;
// Arrow color
float4 color = VectorToColor(mv);
float4 color = VectorToColor(motionVector);
// Arrow vertex position parameter (0 = origin, 1 = head)
float arrow_l = point_id > 0;
// Rotation matrix for the arrow head
float2 head_dir = normalize(mv * float2(aspect, 1));
float2x2 head_rot = float2x2(head_dir.y, head_dir.x, -head_dir.x, head_dir.y);
// Offset for arrow head vertices
float head_x = point_id == 3 ? -1 : (point_id == 5 ? 1 : 0);
head_x *= arrow_l * 0.3 * saturate(length(mv) * DebugRowCount);
float2 head_offs = float2(head_x, -abs(head_x));
head_offs = mul(head_rot, head_offs) * float2(inv_aspect, 1);
// Arrow transformation
float isEnd = pointId > 0;
float2 direction = normalize(motionVector * float2(aspect, 1));
float2x2 rotation = float2x2(direction.y, direction.x, -direction.x, direction.y);
float offsetStart = pointId == 3 ? -1 : (pointId == 5 ? 1 : 0);
offsetStart *= isEnd * 0.3f * saturate(length(motionVector) * DebugRowCount);
float2 offset = float2(offsetStart, -abs(offsetStart));
offset = mul(rotation, offset) * float2(aspectInv, 1);
// Vertex position in the clip space
float2 vp = mv * arrow_l + head_offs * 2 / DebugRowCount + uv * 2 - 1;
float2 pos = motionVector * isEnd + offset * 2 / DebugRowCount + uv * 2.0f - 1.0f;
// Convert to the screen coordinates
float2 scoord = (vp + 1) * 0.5 * GBuffer.ScreenSize.xy;
// Snap to a pixel-perfect position.
scoord = round(scoord);
float2 posSS = (pos + 1) * 0.5f * GBuffer.ScreenSize.xy;
posSS = round(posSS);
// Bring back to the clip space
vp = (scoord + 0.5) * GBuffer.ScreenSize.zw * 2 - 1;
vp.y *= -1;
pos = (posSS + 0.5f) * GBuffer.ScreenSize.zw * 2.0f - 1.0f;
pos.y *= -1;
// Color tweaks
color.rgb = lerp(color.rgb, 1, 0.5);
color.rgb = lerp(color.rgb, 1, 0.5f);
color.a = DebugBlend;
// Output
ArrowVaryings output;
output.Position = float4(vp, 0, 1);
output.ScreenUV = scoord;
output.Position = float4(pos, 0, 1);
output.ScreenUV = posSS;
output.Color = color;
return output;
}
@@ -150,8 +138,8 @@ META_PS(true, FEATURE_LEVEL_ES2)
float4 PS_DebugArrow(ArrowVaryings input) : SV_Target
{
// Pseudo anti-aliasing
float aa = length(frac(input.ScreenUV) - 0.5) / 0.707;
aa *= (aa * (aa * 0.305306011 + 0.682171111) + 0.012522878); // gamma
float aa = length(frac(input.ScreenUV) - 0.5f) / 0.707f;
aa *= (aa * (aa * 0.305306011f + 0.682171111f) + 0.012522878f);
return float4(input.Color.rgb, input.Color.a * aa);
}
@@ -190,10 +178,10 @@ float4 PS_VelocitySetup(Quad_VS2PS input) : SV_Target
float2 v = SAMPLE_RT(Input0, input.TexCoord).rg;
// Apply the exposure time and convert to the pixel space
v *= (VelocityScale * 0.5) * GBuffer.ScreenSize.xy;
v *= (VelocityScale * 0.5f) * GBuffer.ScreenSize.xy;
// Clamp the vector with the maximum blur radius
v /= max(1.0, length(v) * RcpMaxBlurRadius);
v /= max(1.0f, length(v) * RcpMaxBlurRadius);
// Sample the depth of the pixel
float depth = SAMPLE_RT(Input1, input.TexCoord).r;
@@ -201,7 +189,7 @@ float4 PS_VelocitySetup(Quad_VS2PS input) : SV_Target
depth = LinearizeZ(gBufferData, depth);
// Pack into 10/10/10/2 format
return float4((v * RcpMaxBlurRadius + 1.0) * 0.5, depth, 0.0);
return float4((v * RcpMaxBlurRadius + 1.0f) * 0.5f, depth, 0.0f);
}
float2 MaxV(float2 v1, float2 v2)
@@ -220,40 +208,40 @@ float4 PS_TileMax1(Quad_VS2PS input) : SV_Target
float2 v3 = SAMPLE_RT(Input0, input.TexCoord + d.xw).rg;
float2 v4 = SAMPLE_RT(Input0, input.TexCoord + d.zw).rg;
v1 = (v1 * 2.0 - 1.0) * MaxBlurRadius;
v2 = (v2 * 2.0 - 1.0) * MaxBlurRadius;
v3 = (v3 * 2.0 - 1.0) * MaxBlurRadius;
v4 = (v4 * 2.0 - 1.0) * MaxBlurRadius;
v1 = (v1 * 2.0f - 1.0f) * MaxBlurRadius;
v2 = (v2 * 2.0f - 1.0f) * MaxBlurRadius;
v3 = (v3 * 2.0f - 1.0f) * MaxBlurRadius;
v4 = (v4 * 2.0f - 1.0f) * MaxBlurRadius;
return float4(MaxV(MaxV(MaxV(v1, v2), v3), v4), 0.0, 0.0);
return float4(MaxV(MaxV(MaxV(v1, v2), v3), v4), 0.0f, 0.0f);
}
// Pixel Shader for TileMax filter (2 pixel width)
META_PS(true, FEATURE_LEVEL_ES2)
float4 PS_TileMax2(Quad_VS2PS input) : SV_Target
{
float4 d = TexelSize2.xyxy * float4(-0.5, -0.5, 0.5, 0.5);
float4 d = TexelSize2.xyxy * float4(-0.5f, -0.5f, 0.5f, 0.5f);
float2 v1 = SAMPLE_RT(Input0, input.TexCoord + d.xy).rg;
float2 v2 = SAMPLE_RT(Input0, input.TexCoord + d.zy).rg;
float2 v3 = SAMPLE_RT(Input0, input.TexCoord + d.xw).rg;
float2 v4 = SAMPLE_RT(Input0, input.TexCoord + d.zw).rg;
return float4(MaxV(MaxV(MaxV(v1, v2), v3), v4), 0.0, 0.0);
return float4(MaxV(MaxV(MaxV(v1, v2), v3), v4), 0.0f, 0.0f);
}
// Pixel Shader for TileMax filter (2 pixel width)
META_PS(true, FEATURE_LEVEL_ES2)
float4 PS_TileMax4(Quad_VS2PS input) : SV_Target
{
float4 d = TexelSize4.xyxy * float4(-0.5, -0.5, 0.5, 0.5);
float4 d = TexelSize4.xyxy * float4(-0.5f, -0.5f, 0.5f, 0.5f);
float2 v1 = SAMPLE_RT(Input0, input.TexCoord + d.xy).rg;
float2 v2 = SAMPLE_RT(Input0, input.TexCoord + d.zy).rg;
float2 v3 = SAMPLE_RT(Input0, input.TexCoord + d.xw).rg;
float2 v4 = SAMPLE_RT(Input0, input.TexCoord + d.zw).rg;
return float4(MaxV(MaxV(MaxV(v1, v2), v3), v4), 0.0, 0.0);
return float4(MaxV(MaxV(MaxV(v1, v2), v3), v4), 0.0f, 0.0f);
}
// Pixel Shader for TileMax filter (variable width)
@@ -306,7 +294,7 @@ float4 PS_NeighborMax(Quad_VS2PS input) : SV_Target
float2 vb = MaxV(v4, MaxV(v5, v6));
float2 vc = MaxV(v7, MaxV(v8, v9));
return float4(MaxV(va, MaxV(vb, vc)) * (1.0 / cw), 0.0, 0.0);
return float4(MaxV(va, MaxV(vb, vc)) * (1.0f / cw), 0.0f, 0.0f);
}
// Interleaved gradient function from Jimenez 2014
@@ -314,8 +302,8 @@ float4 PS_NeighborMax(Quad_VS2PS input) : SV_Target
float GradientNoise(float2 uv)
{
uv = floor(uv * GBuffer.ScreenSize.xy);
float f = dot(float2(0.06711056, 0.00583715), uv);
return frac(52.9829189 * frac(f));
float f = dot(float2(0.06711056f, 0.00583715f), uv);
return frac(52.9829189f * frac(f));
}
// Returns true or false with a given interval
@@ -328,103 +316,77 @@ bool Interval(float phase, float interval)
float2 JitterTile(float2 uv)
{
float rx, ry;
sincos(GradientNoise(uv + float2(2.0, 0.0)) * (2.0f * PI), ry, rx);
return float2(rx, ry) * TexelSizeNM.xy * 0.25;
sincos(GradientNoise(uv + float2(2.0f, 0.0f)) * (2.0f * PI), ry, rx);
return float2(rx, ry) * TexelSizeNM.xy * 0.25f;
}
// Velocity sampling function
float3 SampleVelocity(float2 uv)
{
float3 v = SAMPLE_RT(Input1, uv).xyz;
return float3((v.xy * 2.0 - 1.0) * MaxBlurRadius, v.z);
return float3((v.xy * 2.0f - 1.0f) * MaxBlurRadius, v.z);
}
// Pixel Shader for reconstruction filter (applies the motion blur to the frame)
META_PS(true, FEATURE_LEVEL_ES2)
float4 PS_Reconstruction(Quad_VS2PS input) : SV_Target
{
// Color sample at the center point
const float4 c_p = SAMPLE_RT(Input0, input.TexCoord);
// Sample at the current location
const float4 color = SAMPLE_RT(Input0, input.TexCoord);
const float3 velocity = SampleVelocity(input.TexCoord);
const float velocityLen = max(length(velocity.xy), 0.5);
const float depthInv = 1.0 / velocity.z;
// Velocity/Depth sample at the center point
const float3 vd_p = SampleVelocity(input.TexCoord);
const float l_v_p = max(length(vd_p.xy), 0.5);
const float rcp_d_p = 1.0 / vd_p.z;
const float2 velocityMax = SAMPLE_RT(Input2, input.TexCoord + JitterTile(input.TexCoord)).xy;
const float velocityMaxLength = length(velocityMax);
if (velocityMaxLength < 2.0f)
return color;
const float2 velocityWeighted = (velocityLen * 2.0f > velocityMaxLength) ? velocity.xy * (velocityMaxLength / velocityLen) : velocityMax;
// NeighborMax vector sample at the center point
const float2 v_max = SAMPLE_RT(Input2, input.TexCoord + JitterTile(input.TexCoord)).xy;
const float l_v_max = length(v_max);
const float rcp_l_v_max = 1.0 / l_v_max;
// Calculate the amount of samples
const float sc = floor(min(LoopCount, velocityMaxLength * 0.5f));
// Escape early if the NeighborMax vector is small enough
if (l_v_max < 2.0)
return c_p;
// Use V_p as a secondary sampling direction except when it's too small
// compared to V_max. This vector is rescaled to be the length of V_max.
const float2 v_alt = (l_v_p * 2.0 > l_v_max) ? vd_p.xy * (l_v_max / l_v_p) : v_max;
// Determine the sample count.
const float sc = floor(min(LoopCount, l_v_max * 0.5));
// Loop variables (starts from the outermost sample)
const float dt = 1.0 / sc;
const float t_offs = (GradientNoise(input.TexCoord) - 0.5) * dt;
float t = 1.0 - dt * 0.5;
float count = 0.0;
// Background velocity
// This is used for tracking the maximum velocity in the background layer
float l_v_bg = max(l_v_p, 1.0);
// Color accumlation
float4 acc = 0.0;
// Accumlation loop
float backgroudVelocity = max(velocityLen, 1.0f);
const float dt = 1.0f / sc;
const float offsetNoise = (GradientNoise(input.TexCoord) - 0.5f) * dt;
float t = 1.0f - dt * 0.5f;
float count = 0.0f;
float4 sum = 0.0f;
LOOP
while (t > dt * 0.25)
{
// Sampling direction (switched per every two samples)
const float2 v_s = Interval(count, 4.0) ? v_alt : v_max;
const float2 sampleVelocity = Interval(count, 4.0) ? velocityWeighted : velocityMax;
// Sample position (inverted per every sample)
const float t_s = (Interval(count, 2.0) ? -t : t) + t_offs;
const float samplePosition = (Interval(count, 2.0) ? -t : t) + offsetNoise;
// Distance to the sample position
const float l_t = l_v_max * abs(t_s);
// Calculate UVs for the sample position
const float2 sampleUV = input.TexCoord + sampleVelocity * samplePosition * GBuffer.ScreenSize.zw;
// UVs for the sample position
const float2 uv0 = input.TexCoord + v_s * t_s * GBuffer.ScreenSize.zw;
//const float2 uv1 = input.TexCoord + v_s * t_s * MotionVectorsTexelSize.xy;
const float2 uv1 = uv0;
// Color sample
const float3 c = SAMPLE_RT(Input0, uv0).rgb;
// Velocity/Depth sample
const float3 vd = SampleVelocity(uv1);
// Background/Foreground separation
const float fg = saturate((vd_p.z - vd.z) * 20.0 * rcp_d_p);
// Sample color and velocity with depth
const float3 c = SAMPLE_RT(Input0, sampleUV).rgb;
const float3 velocityDepth = SampleVelocity(sampleUV);
// Length of the velocity vector
const float l_v = lerp(l_v_bg, length(vd.xy), fg);
const float foreground = saturate((velocity.z - velocityDepth.z) * 20.0f * depthInv);
const float sampleVelocityLength = lerp(backgroudVelocity, length(velocityDepth.xy), foreground);
// Sample weight
// (Distance test) * (Spreading out by motion) * (Triangular window)
const float w = saturate(l_v - l_t) / l_v * (1.2 - t);
// Apply color accumulation
float weight = saturate(sampleVelocityLength - (velocityMaxLength * abs(samplePosition))) / sampleVelocityLength * (1.2f - t);
sum += float4(c, 1.0) * weight;
// Color accumulation
acc += float4(c, 1.0) * w;
// Calculate the background velocity
backgroudVelocity = max(backgroudVelocity, sampleVelocityLength);
// Update the background velocity.
l_v_bg = max(l_v_bg, l_v);
// Advance to the next sample.
t = Interval(count, 2.0) ? t - dt : t;
count += 1.0;
// Move to the next sample
t = Interval(count, 2.0f) ? t - dt : t;
count += 1.0f;
}
// Add the center sample
acc += float4(c_p.rgb, 1.0) * (1.2 / (l_v_bg * sc * 2.0));
sum += float4(color.rgb, 1.0f) * (1.2f / (backgroudVelocity * sc * 2.0f));
return float4(acc.rgb / acc.a, c_p.a);
return float4(sum.rgb / sum.a, color.a);
}