Add Transparent Lighting Modes for material with option to use non-directional shading

This commit is contained in:
Wojciech Figat
2022-07-14 09:21:09 +02:00
parent 047821f7d2
commit 85f351663b
14 changed files with 254 additions and 52 deletions

View File

@@ -78,7 +78,10 @@ namespace FlaxEditor.Windows.Assets
// Transparency
[EditorOrder(200), DefaultValue(true), EditorDisplay("Transparency"), Tooltip("Enables reflections when rendering material.")]
[EditorOrder(200), DefaultValue(MaterialTransparentLightingMode.Surface), EditorDisplay("Transparency"), Tooltip("Transparent material lighting mode.")]
public MaterialTransparentLightingMode TransparentLightingMode;
[EditorOrder(205), DefaultValue(true), EditorDisplay("Transparency"), Tooltip("Enables reflections when rendering material.")]
public bool EnableReflections;
[VisibleIf(nameof(EnableReflections))]
@@ -161,6 +164,7 @@ namespace FlaxEditor.Windows.Assets
MaxTessellationFactor = info.MaxTessellationFactor;
MaskThreshold = info.MaskThreshold;
DecalBlendingMode = info.DecalBlendingMode;
TransparentLightingMode = info.TransparentLightingMode;
PostFxLocation = info.PostFxLocation;
BlendMode = info.BlendMode;
ShadingModel = info.ShadingModel;
@@ -203,6 +207,7 @@ namespace FlaxEditor.Windows.Assets
info.MaxTessellationFactor = MaxTessellationFactor;
info.MaskThreshold = MaskThreshold;
info.DecalBlendingMode = DecalBlendingMode;
info.TransparentLightingMode = TransparentLightingMode;
info.PostFxLocation = PostFxLocation;
info.BlendMode = BlendMode;
info.ShadingModel = ShadingModel;

View File

@@ -439,7 +439,17 @@ void Material::InitCompilationOptions(ShaderCompilationOptions& options)
options.Macros.Add({ "MATERIAL_REFLECTIONS", Numbers[1] });
options.Macros.Add({ "USE_FOG", Numbers[info.FeaturesFlags & MaterialFeaturesFlags::DisableFog ? 0 : 1] });
if (useForward)
{
options.Macros.Add({ "USE_PIXEL_NORMAL_OFFSET_REFRACTION", Numbers[info.FeaturesFlags & MaterialFeaturesFlags::PixelNormalOffsetRefraction ? 1 : 0] });
switch (info.TransparentLightingMode)
{
case MaterialTransparentLightingMode::Surface:
break;
case MaterialTransparentLightingMode::SurfaceNonDirectional:
options.Macros.Add({ "LIGHTING_NO_DIRECTIONAL", "1" });
break;
}
}
// TODO: don't compile VS_Depth for deferred/forward materials if material doesn't use position offset or masking

View File

@@ -23,13 +23,14 @@ public:
static const Upgrader upgraders[] =
{
{ 18, 19, &Upgrade_18_To_19 },
{ 19, 20, &Upgrade_19_To_20 },
};
setup(upgraders, ARRAY_COUNT(upgraders));
}
private:
// ============================================
// Version 18:
// Versions 18,19,20:
// Designed: 7/24/2019
// Custom Data: Header
// Chunk 0: Material Params
@@ -38,20 +39,46 @@ private:
// Chunk 14: Visject Surface data
// Chunk 15: Source code: ANSI text (encrypted)
// ============================================
// Version 18:
// Designed: 9/13/2018
// Custom Data: Header
// Chunk 0: Material Params
// Chunk 1: Internal SM5 cache
// Chunk 2: Internal SM4 cache
// Chunk 14: Visject Surface data
// Chunk 15: Source code: ANSI text (encrypted)
// ============================================
typedef ShaderStorage::Header Header;
typedef ShaderStorage::Header20 Header20;
typedef ShaderStorage::Header19 Header19;
typedef ShaderStorage::Header18 Header18;
static bool Upgrade_19_To_20(AssetMigrationContext& context)
{
ASSERT(context.Input.SerializedVersion == 19 && context.Output.SerializedVersion == 20);
// Convert header
if (context.Input.CustomData.IsInvalid())
return true;
auto& oldHeader = *(Header19*)context.Input.CustomData.Get();
Header20 newHeader;
Platform::MemoryClear(&newHeader, sizeof(newHeader));
if (context.Input.Header.TypeName == TEXT("FlaxEngine.ParticleEmitter"))
{
newHeader.ParticleEmitter.GraphVersion = oldHeader.ParticleEmitter.GraphVersion;
newHeader.ParticleEmitter.CustomDataSize = oldHeader.ParticleEmitter.CustomDataSize;
}
else if (context.Input.Header.TypeName == TEXT("FlaxEngine.Material"))
{
newHeader.Material.GraphVersion = oldHeader.Material.GraphVersion;
newHeader.Material.Info = oldHeader.Material.Info;
}
else if (context.Input.Header.TypeName == TEXT("FlaxEngine.Shader"))
{
}
else
{
LOG(Warning, "Unknown input asset type.");
return true;
}
context.Output.CustomData.Copy(&newHeader);
// Copy all chunks
return CopyChunks(context);
}
static bool Upgrade_18_To_19(AssetMigrationContext& context)
{
ASSERT(context.Input.SerializedVersion == 18 && context.Output.SerializedVersion == 19);

View File

@@ -107,10 +107,10 @@ CreateMaterial::Options::Options()
CreateAssetResult CreateMaterial::Create(CreateAssetContext& context)
{
// Base
IMPORT_SETUP(Material, 19);
IMPORT_SETUP(Material, 20);
context.SkipMetadata = true;
ShaderStorage::Header19 shaderHeader;
ShaderStorage::Header20 shaderHeader;
Platform::MemoryClear(&shaderHeader, sizeof(shaderHeader));
if (context.CustomArg)
{

View File

@@ -18,6 +18,7 @@ namespace FlaxEngine
UsageFlags = MaterialUsageFlags.None,
FeaturesFlags = MaterialFeaturesFlags.None,
DecalBlendingMode = MaterialDecalBlendingMode.Translucent,
TransparentLightingMode = MaterialTransparentLightingMode.SurfaceNonDirectional,
PostFxLocation = MaterialPostFxLocation.AfterPostProcessingPass,
MaskThreshold = 0.3f,
OpacityThreshold = 0.12f,
@@ -61,6 +62,7 @@ namespace FlaxEngine
&& UsageFlags == other.UsageFlags
&& FeaturesFlags == other.FeaturesFlags
&& DecalBlendingMode == other.DecalBlendingMode
&& TransparentLightingMode == other.TransparentLightingMode
&& PostFxLocation == other.PostFxLocation
&& Mathf.NearEqual(MaskThreshold, other.MaskThreshold)
&& Mathf.NearEqual(OpacityThreshold, other.OpacityThreshold)
@@ -86,6 +88,7 @@ namespace FlaxEngine
hashCode = (hashCode * 397) ^ (int)FeaturesFlags;
hashCode = (hashCode * 397) ^ (int)PostFxLocation;
hashCode = (hashCode * 397) ^ (int)DecalBlendingMode;
hashCode = (hashCode * 397) ^ (int)TransparentLightingMode;
hashCode = (hashCode * 397) ^ (int)(MaskThreshold * 1000.0f);
hashCode = (hashCode * 397) ^ (int)(OpacityThreshold * 1000.0f);
hashCode = (hashCode * 397) ^ (int)TessellationMode;

View File

@@ -355,6 +355,22 @@ API_ENUM() enum class MaterialDecalBlendingMode : byte
Emissive = 3,
};
/// <summary>
/// Transparent material lighting modes.
/// </summary>
API_ENUM() enum class MaterialTransparentLightingMode : byte
{
/// <summary>
/// Default directional lighting evaluated per-pixel at the material surface. Use it for semi-transparent surfaces - with both diffuse and specular lighting component active.
/// </summary>
Surface = 0,
/// <summary>
/// Non-directional lighting evaluated per-pixel at material surface. Use it for volumetric objects such as smoke, rain or dust - only diffuse lighting term is active (no specular highlights).
/// </summary>
SurfaceNonDirectional = 1,
};
/// <summary>
/// Material input scene textures. Special inputs from the graphics pipeline.
/// </summary>
@@ -441,6 +457,33 @@ struct MaterialInfo8
bool operator==(const MaterialInfo8& other) const;
};
/// <summary>
/// Material info structure - version 9
/// [Deprecated on 13.07.2022, expires on 13.07.2024]
/// </summary>
struct MaterialInfo9
{
MaterialDomain Domain;
MaterialBlendMode BlendMode;
MaterialShadingModel ShadingModel;
MaterialUsageFlags UsageFlags;
MaterialFeaturesFlags FeaturesFlags;
MaterialDecalBlendingMode DecalBlendingMode;
MaterialPostFxLocation PostFxLocation;
CullMode CullMode;
float MaskThreshold;
float OpacityThreshold;
TessellationMethod TessellationMode;
int32 MaxTessellationFactor;
MaterialInfo9()
{
}
MaterialInfo9(const MaterialInfo8& other);
bool operator==(const MaterialInfo9& other) const;
};
/// <summary>
/// Structure with basic information about the material surface. It describes how material is reacting on light and which graphical features of it requires to render.
/// </summary>
@@ -478,6 +521,11 @@ API_STRUCT() struct FLAXENGINE_API MaterialInfo
/// </summary>
API_FIELD() MaterialDecalBlendingMode DecalBlendingMode;
/// <summary>
/// The transparent material lighting mode.
/// </summary>
API_FIELD() MaterialTransparentLightingMode TransparentLightingMode;
/// <summary>
/// The post fx material rendering location.
/// </summary>
@@ -512,10 +560,10 @@ API_STRUCT() struct FLAXENGINE_API MaterialInfo
{
}
MaterialInfo(const MaterialInfo8& other);
MaterialInfo(const MaterialInfo9& other);
bool operator==(const MaterialInfo& other) const;
};
// The current material info descriptor version used by the material pipeline
typedef MaterialInfo MaterialInfo9;
#define MaterialInfo_Version 9
typedef MaterialInfo MaterialInfo10;
#define MaterialInfo_Version 10

View File

@@ -30,7 +30,7 @@ bool MaterialInfo8::operator==(const MaterialInfo8& other) const
&& MaxTessellationFactor == other.MaxTessellationFactor;
}
MaterialInfo::MaterialInfo(const MaterialInfo8& other)
MaterialInfo9::MaterialInfo9(const MaterialInfo8& other)
{
Domain = other.Domain;
BlendMode = other.BlendMode;
@@ -78,6 +78,39 @@ MaterialInfo::MaterialInfo(const MaterialInfo8& other)
MaxTessellationFactor = other.MaxTessellationFactor;
}
bool MaterialInfo9::operator==(const MaterialInfo9& other) const
{
return Domain == other.Domain
&& BlendMode == other.BlendMode
&& ShadingModel == other.ShadingModel
&& UsageFlags == other.UsageFlags
&& FeaturesFlags == other.FeaturesFlags
&& DecalBlendingMode == other.DecalBlendingMode
&& PostFxLocation == other.PostFxLocation
&& CullMode == other.CullMode
&& Math::NearEqual(MaskThreshold, other.MaskThreshold)
&& Math::NearEqual(OpacityThreshold, other.OpacityThreshold)
&& TessellationMode == other.TessellationMode
&& MaxTessellationFactor == other.MaxTessellationFactor;
}
MaterialInfo::MaterialInfo(const MaterialInfo9& other)
{
Domain = other.Domain;
BlendMode = other.BlendMode;
ShadingModel = other.ShadingModel;
UsageFlags = other.UsageFlags;
FeaturesFlags = other.FeaturesFlags;
DecalBlendingMode = other.DecalBlendingMode;
TransparentLightingMode = MaterialTransparentLightingMode::Surface;
PostFxLocation = other.PostFxLocation;
CullMode = other.CullMode;
MaskThreshold = other.MaskThreshold;
OpacityThreshold = other.OpacityThreshold;
TessellationMode = other.TessellationMode;
MaxTessellationFactor = other.MaxTessellationFactor;
}
bool MaterialInfo::operator==(const MaterialInfo& other) const
{
return Domain == other.Domain
@@ -86,6 +119,7 @@ bool MaterialInfo::operator==(const MaterialInfo& other) const
&& UsageFlags == other.UsageFlags
&& FeaturesFlags == other.FeaturesFlags
&& DecalBlendingMode == other.DecalBlendingMode
&& TransparentLightingMode == other.TransparentLightingMode
&& PostFxLocation == other.PostFxLocation
&& CullMode == other.CullMode
&& Math::NearEqual(MaskThreshold, other.MaskThreshold)

View File

@@ -76,7 +76,7 @@ void ForwardShadingFeature::Bind(MaterialShader::BindParameters& params, Span<by
// Set reflection probe data
EnvironmentProbe* probe = nullptr;
// TODO: optimize env probe searching for a transparent material - use spatial cache for renderer to find it
const Vector3 drawCallOrigin = drawCall.World.GetTranslation() + view.Origin;
const Vector3 drawCallOrigin = drawCall.ObjectPosition + view.Origin;
for (int32 i = 0; i < cache->EnvironmentProbes.Count(); i++)
{
const auto p = cache->EnvironmentProbes[i];
@@ -103,7 +103,7 @@ void ForwardShadingFeature::Bind(MaterialShader::BindParameters& params, Span<by
for (int32 i = 0; i < cache->PointLights.Count() && data.LocalLightsCount < MaxLocalLights; i++)
{
const auto& light = cache->PointLights[i];
if (BoundingSphere(light.Position, light.Radius).Contains(drawCall.World.GetTranslation()) != ContainmentType::Disjoint)
if (BoundingSphere(light.Position, light.Radius).Contains(drawCall.ObjectPosition) != ContainmentType::Disjoint)
{
light.SetupLightData(&data.LocalLights[data.LocalLightsCount], false);
data.LocalLightsCount++;
@@ -112,7 +112,7 @@ void ForwardShadingFeature::Bind(MaterialShader::BindParameters& params, Span<by
for (int32 i = 0; i < cache->SpotLights.Count() && data.LocalLightsCount < MaxLocalLights; i++)
{
const auto& light = cache->SpotLights[i];
if (BoundingSphere(light.Position, light.Radius).Contains(drawCall.World.GetTranslation()) != ContainmentType::Disjoint)
if (BoundingSphere(light.Position, light.Radius).Contains(drawCall.ObjectPosition) != ContainmentType::Disjoint)
{
light.SetupLightData(&data.LocalLights[data.LocalLightsCount], false);
data.LocalLightsCount++;

View File

@@ -69,9 +69,9 @@ public:
/// </summary>
MaterialInfo8 MaterialInfo;
};
/// <summary>
/// File header, version 19
/// [Deprecated on 13.07.2022, expires on 13.07.2024]
/// </summary>
struct Header19
{
@@ -115,8 +115,53 @@ public:
}
};
/// <summary>
/// File header, version 20
/// </summary>
struct Header20
{
static const int32 Version = 20;
union
{
struct
{
} Shader;
struct
{
/// <summary>
/// The material graph version.
/// </summary>
int32 GraphVersion;
/// <summary>
/// The material additional information.
/// </summary>
MaterialInfo10 Info;
} Material;
struct
{
/// <summary>
/// The particle emitter graph version.
/// </summary>
int32 GraphVersion;
/// <summary>
/// The custom particles data size (in bytes).
/// </summary>
int32 CustomDataSize;
} ParticleEmitter;
};
Header20()
{
}
};
/// <summary>
/// Current header type
/// </summary>
typedef Header19 Header;
typedef Header20 Header;
};

View File

@@ -1,7 +1,7 @@
// Copyright (c) 2012-2022 Wojciech Figat. All rights reserved.
// Diffuse-only lighting
#define NO_SPECULAR 1
#define LIGHTING_NO_SPECULAR 1
#include "./Flax/Common.hlsl"
#include "./Flax/Math.hlsl"

View File

@@ -5,10 +5,6 @@
#include "./Flax/LightingCommon.hlsl"
#ifndef NO_SPECULAR
#define NO_SPECULAR 0
#endif
ShadowData GetShadow(LightData lightData, GBufferSample gBuffer, float4 shadowMask)
{
ShadowData shadow;
@@ -28,7 +24,7 @@ LightingData StandardShading(GBufferSample gBuffer, float energy, float3 L, floa
LightingData lighting;
lighting.Diffuse = Diffuse_Lambert(diffuseColor);
#if NO_SPECULAR
#if LIGHTING_NO_SPECULAR
lighting.Specular = 0;
#else
float3 specularColor = GetSpecularColor(gBuffer);
@@ -95,7 +91,12 @@ float4 GetSkyLightLighting(LightData lightData, GBufferSample gBuffer, TextureCu
// Compute the preconvolved incoming lighting with the normal direction (apply ambient color)
// Some data is packed, see C++ RendererSkyLightData::SetupLightData
float mip = lightData.SourceLength;
float3 diffuseLookup = ibl.SampleLevel(SamplerLinearClamp, gBuffer.Normal, mip).rgb * lightData.Color.rgb;
#if LIGHTING_NO_DIRECTIONAL
float3 uvw = float3(0, 0, 0);
#else
float3 uvw = gBuffer.Normal;
#endif
float3 diffuseLookup = ibl.SampleLevel(SamplerLinearClamp, uvw, mip).rgb * lightData.Color.rgb;
diffuseLookup += float3(lightData.SpotAngles.rg, lightData.SourceRadius);
// Fade out based on distance to capture
@@ -117,26 +118,28 @@ float4 GetLighting(float3 viewPos, LightData lightData, GBufferSample gBuffer, f
float3 N = gBuffer.Normal;
float3 L = lightData.Direction; // no need to normalize
float NoL = saturate(dot(N, L));
float distanceAttenuation = 1;
float lightRadiusMask = 1;
float spotAttenuation = 1;
float3 toLight = lightData.Direction;
// Calculate shadow
ShadowData shadow = GetShadow(lightData, gBuffer, shadowMask);
// Calculate attenuation
if (isRadial)
{
toLight = lightData.Position - gBuffer.WorldPos;
float distanceSqr = dot(toLight, toLight);
L = toLight * rsqrt(distanceSqr);
float distanceAttenuation = 1, lightRadiusMask = 1, spotAttenuation = 1;
GetRadialLightAttenuation(lightData, isSpotLight, N, distanceSqr, 1, toLight, L, NoL, distanceAttenuation, lightRadiusMask, spotAttenuation);
float attenuation = distanceAttenuation * lightRadiusMask * spotAttenuation;
shadow.SurfaceShadow *= attenuation;
shadow.TransmissionShadow *= attenuation;
}
float attenuation = distanceAttenuation * lightRadiusMask * spotAttenuation;
// Calculate shadow
ShadowData shadow = GetShadow(lightData, gBuffer, shadowMask);
#if !LIGHTING_NO_DIRECTIONAL
// Reduce shadow mapping artifacts
shadow.SurfaceShadow *= saturate(NoL * 6.0f - 0.2f);
shadow.SurfaceShadow *= saturate(NoL * 6.0f - 0.2f) * NoL;
#endif
BRANCH
if (shadow.SurfaceShadow + shadow.TransmissionShadow > 0)
@@ -148,8 +151,8 @@ float4 GetLighting(float3 viewPos, LightData lightData, GBufferSample gBuffer, f
LightingData lighting = SurfaceShading(gBuffer, energy, L, V, N);
// Calculate final light color
float3 surfaceLight = (lighting.Diffuse + lighting.Specular) * (NoL * attenuation * shadow.SurfaceShadow);
float3 subsurfaceLight = lighting.Transmission * (attenuation * shadow.TransmissionShadow);
float3 surfaceLight = (lighting.Diffuse + lighting.Specular) * shadow.SurfaceShadow;
float3 subsurfaceLight = lighting.Transmission * shadow.TransmissionShadow;
result.rgb = lightData.Color * (surfaceLight + subsurfaceLight);
result.a = 1;
}

View File

@@ -6,6 +6,16 @@
#include "./Flax/BRDF.hlsl"
#include "./Flax/GBufferCommon.hlsl"
// Disables directional lighting (no shadowing with dot(N, L), eg. for smoke particles)
#ifndef LIGHTING_NO_DIRECTIONAL
#define LIGHTING_NO_DIRECTIONAL 0
#endif
// Disables specular lighting (diffuse-only)
#ifndef LIGHTING_NO_SPECULAR
#define LIGHTING_NO_SPECULAR 0
#endif
// Structure that contains information about light
struct LightData
{

View File

@@ -40,8 +40,8 @@ Model_VS2PS VS_Model(ModelInput_PosOnly input)
// Pixel shader for directional light rendering
META_PS(true, FEATURE_LEVEL_ES2)
META_PERMUTATION_1(NO_SPECULAR=0)
META_PERMUTATION_1(NO_SPECULAR=1)
META_PERMUTATION_1(LIGHTING_NO_SPECULAR=0)
META_PERMUTATION_1(LIGHTING_NO_SPECULAR=1)
void PS_Directional(Quad_VS2PS input, out float4 output : SV_Target0)
{
output = 0;
@@ -72,10 +72,10 @@ void PS_Directional(Quad_VS2PS input, out float4 output : SV_Target0)
// Pixel shader for point light rendering
META_PS(true, FEATURE_LEVEL_ES2)
META_PERMUTATION_2(NO_SPECULAR=0, USE_IES_PROFILE=0)
META_PERMUTATION_2(NO_SPECULAR=1, USE_IES_PROFILE=0)
META_PERMUTATION_2(NO_SPECULAR=0, USE_IES_PROFILE=1)
META_PERMUTATION_2(NO_SPECULAR=1, USE_IES_PROFILE=1)
META_PERMUTATION_2(LIGHTING_NO_SPECULAR=0, USE_IES_PROFILE=0)
META_PERMUTATION_2(LIGHTING_NO_SPECULAR=1, USE_IES_PROFILE=0)
META_PERMUTATION_2(LIGHTING_NO_SPECULAR=0, USE_IES_PROFILE=1)
META_PERMUTATION_2(LIGHTING_NO_SPECULAR=1, USE_IES_PROFILE=1)
void PS_Point(Model_VS2PS input, out float4 output : SV_Target0)
{
output = 0;
@@ -114,10 +114,10 @@ void PS_Point(Model_VS2PS input, out float4 output : SV_Target0)
// Pixel shader for spot light rendering
META_PS(true, FEATURE_LEVEL_ES2)
META_PERMUTATION_2(NO_SPECULAR=0, USE_IES_PROFILE=0)
META_PERMUTATION_2(NO_SPECULAR=1, USE_IES_PROFILE=0)
META_PERMUTATION_2(NO_SPECULAR=0, USE_IES_PROFILE=1)
META_PERMUTATION_2(NO_SPECULAR=1, USE_IES_PROFILE=1)
META_PERMUTATION_2(LIGHTING_NO_SPECULAR=0, USE_IES_PROFILE=0)
META_PERMUTATION_2(LIGHTING_NO_SPECULAR=1, USE_IES_PROFILE=0)
META_PERMUTATION_2(LIGHTING_NO_SPECULAR=0, USE_IES_PROFILE=1)
META_PERMUTATION_2(LIGHTING_NO_SPECULAR=1, USE_IES_PROFILE=1)
void PS_Spot(Model_VS2PS input, out float4 output : SV_Target0)
{
output = 0;

View File

@@ -458,6 +458,9 @@ float SampleShadow(LightData light, LightShadowData shadow, Texture2DArray shado
}
#endif
float3 samplePosWS = gBuffer.WorldPos;
#if !LIGHTING_NO_DIRECTIONAL
// Skip if surface is in a full shadow
float NoL = dot(gBuffer.Normal, light.Direction);
BRANCH
@@ -467,8 +470,8 @@ float SampleShadow(LightData light, LightShadowData shadow, Texture2DArray shado
}
// Apply normal offset bias
float3 samplePosWS = gBuffer.WorldPos;
samplePosWS += GetShadowPositionOffset(shadow.NormalOffsetScale, NoL, gBuffer.Normal);
#endif
// Sample shadow
return SampleShadow(light, shadow, shadowMap, samplePosWS, viewDepth);
@@ -480,7 +483,11 @@ float SampleShadow(LightData light, LightShadowData shadow, Texture2D shadowMap,
float3 toLight = light.Position - worldPosition;
float toLightLength = length(toLight);
float3 L = toLight / toLightLength;
#if LIGHTING_NO_DIRECTIONAL
float dirCheck = 1.0f;
#else
float dirCheck = dot(-light.Direction, L);
#endif
// Skip pixels outside of the light influence
BRANCH
@@ -539,7 +546,11 @@ float SampleShadow(LightData light, LightShadowData shadow, Texture2D shadowMap,
float3 toLight = light.Position - gBuffer.WorldPos;
float toLightLength = length(toLight);
float3 L = toLight / toLightLength;
#if LIGHTING_NO_DIRECTIONAL
float dirCheck = 1.0f;
#else
float dirCheck = dot(-light.Direction, L);
#endif
// Skip pixels outside of the light influence
BRANCH
@@ -569,7 +580,10 @@ float SampleShadow(LightData light, LightShadowData shadow, Texture2D shadowMap,
subsurfaceShadow = lerp(1.0f, subsurfaceShadow, shadow.Fade);
}
#endif
float3 samplePosWS = gBuffer.WorldPos;
#if !LIGHTING_NO_DIRECTIONAL
// Skip if surface is in a full shadow
float NoL = dot(gBuffer.Normal, L);
BRANCH
@@ -579,8 +593,8 @@ float SampleShadow(LightData light, LightShadowData shadow, Texture2D shadowMap,
}
// Apply normal offset bias
float3 samplePosWS = gBuffer.WorldPos;
samplePosWS += GetShadowPositionOffset(shadow.NormalOffsetScale, NoL, gBuffer.Normal);
#endif
// Sample shadow
return SampleShadow(light, shadow, shadowMap, samplePosWS);
@@ -686,7 +700,10 @@ float SampleShadow(LightData light, LightShadowData shadow, TextureCube<float> s
subsurfaceShadow = lerp(1.0f, subsurfaceShadow, shadow.Fade);
}
#endif
float3 samplePosWS = gBuffer.WorldPos;
#if !LIGHTING_NO_DIRECTIONAL
// Skip if surface is in a full shadow
float NoL = dot(gBuffer.Normal, L);
BRANCH
@@ -696,8 +713,8 @@ float SampleShadow(LightData light, LightShadowData shadow, TextureCube<float> s
}
// Apply normal offset bias
float3 samplePosWS = gBuffer.WorldPos;
samplePosWS += GetShadowPositionOffset(shadow.NormalOffsetScale, NoL, gBuffer.Normal);
#endif
// Sample shadow
return SampleShadow(light, shadow, shadowMap, samplePosWS);