Update Recast navigation lib to e75adf86f91eb3082220085e42dda62679f9a3ea
This commit is contained in:
@@ -203,14 +203,18 @@ void dtCalcPolyCenter(float* tc, const unsigned short* idx, int nidx, const floa
|
||||
|
||||
bool dtClosestHeightPointTriangle(const float* p, const float* a, const float* b, const float* c, float& h)
|
||||
{
|
||||
const float EPS = 1e-6f;
|
||||
float v0[3], v1[3], v2[3];
|
||||
|
||||
dtVsub(v0, c,a);
|
||||
dtVsub(v1, b,a);
|
||||
dtVsub(v2, p,a);
|
||||
dtVsub(v0, c, a);
|
||||
dtVsub(v1, b, a);
|
||||
dtVsub(v2, p, a);
|
||||
|
||||
// Compute scaled barycentric coordinates
|
||||
float denom = v0[0] * v1[2] - v0[2] * v1[0];
|
||||
if (fabsf(denom) < EPS)
|
||||
return false;
|
||||
|
||||
float u = v1[2] * v2[0] - v1[0] * v2[2];
|
||||
float v = v0[0] * v2[2] - v0[2] * v2[0];
|
||||
|
||||
@@ -220,13 +224,9 @@ bool dtClosestHeightPointTriangle(const float* p, const float* a, const float* b
|
||||
v = -v;
|
||||
}
|
||||
|
||||
// The (sloppy) epsilon is needed to allow to get height of points which
|
||||
// are interpolated along the edges of the triangles.
|
||||
float epsilon = - 1e-4f * denom;
|
||||
|
||||
// If point lies inside the triangle, return interpolated ycoord.
|
||||
if (u >= epsilon && v >= epsilon && (u+v) <= denom - epsilon) {
|
||||
h = a[1] + (v0[1]*u + v1[1]*v) / denom;
|
||||
if (u >= 0.0f && v >= 0.0f && (u + v) <= denom) {
|
||||
h = a[1] + (v0[1] * u + v1[1] * v) / denom;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
|
||||
@@ -283,6 +283,28 @@ inline bool dtVequal(const float* p0, const float* p1)
|
||||
return d < thr;
|
||||
}
|
||||
|
||||
/// Checks that the specified vector's components are all finite.
|
||||
/// @param[in] v A point. [(x, y, z)]
|
||||
/// @return True if all of the point's components are finite, i.e. not NaN
|
||||
/// or any of the infinities.
|
||||
inline bool dtVisfinite(const float* v)
|
||||
{
|
||||
bool result =
|
||||
dtMathIsfinite(v[0]) &&
|
||||
dtMathIsfinite(v[1]) &&
|
||||
dtMathIsfinite(v[2]);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/// Checks that the specified vector's 2D components are finite.
|
||||
/// @param[in] v A point. [(x, y, z)]
|
||||
inline bool dtVisfinite2D(const float* v)
|
||||
{
|
||||
bool result = dtMathIsfinite(v[0]) && dtMathIsfinite(v[2]);
|
||||
return result;
|
||||
}
|
||||
|
||||
/// Derives the dot product of two vectors on the xz-plane. (@p u . @p v)
|
||||
/// @param[in] u A vector [(x, y, z)]
|
||||
/// @param[in] v A vector [(x, y, z)]
|
||||
|
||||
@@ -1409,12 +1409,14 @@ void dtCrowd::update(const float dt, dtCrowdAgentDebugInfo* debug)
|
||||
}
|
||||
|
||||
// Update agents using off-mesh connection.
|
||||
for (int i = 0; i < m_maxAgents; ++i)
|
||||
for (int i = 0; i < nagents; ++i)
|
||||
{
|
||||
dtCrowdAgentAnimation* anim = &m_agentAnims[i];
|
||||
dtCrowdAgent* ag = agents[i];
|
||||
const int idx = (int)(ag - m_agents);
|
||||
dtCrowdAgentAnimation* anim = &m_agentAnims[idx];
|
||||
if (!anim->active)
|
||||
continue;
|
||||
dtCrowdAgent* ag = agents[i];
|
||||
|
||||
|
||||
anim->t += dt;
|
||||
if (anim->t > anim->tmax)
|
||||
|
||||
@@ -16,5 +16,6 @@ inline float dtMathCeilf(float x) { return ceilf(x); }
|
||||
inline float dtMathCosf(float x) { return cosf(x); }
|
||||
inline float dtMathSinf(float x) { return sinf(x); }
|
||||
inline float dtMathAtan2f(float y, float x) { return atan2f(y, x); }
|
||||
inline bool dtMathIsfinite(float x) { return isfinite(x); }
|
||||
|
||||
#endif
|
||||
|
||||
167
Source/ThirdParty/recastnavigation/DetourNavMesh.cpp
vendored
167
Source/ThirdParty/recastnavigation/DetourNavMesh.cpp
vendored
@@ -616,63 +616,84 @@ void dtNavMesh::baseOffMeshLinks(dtMeshTile* tile)
|
||||
}
|
||||
}
|
||||
|
||||
void dtNavMesh::closestPointOnPoly(dtPolyRef ref, const float* pos, float* closest, bool* posOverPoly) const
|
||||
namespace
|
||||
{
|
||||
const dtMeshTile* tile = 0;
|
||||
const dtPoly* poly = 0;
|
||||
getTileAndPolyByRefUnsafe(ref, &tile, &poly);
|
||||
|
||||
// Off-mesh connections don't have detail polygons.
|
||||
if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
|
||||
template<bool onlyBoundary>
|
||||
void closestPointOnDetailEdges(const dtMeshTile* tile, const dtPoly* poly, const float* pos, float* closest)
|
||||
{
|
||||
const float* v0 = &tile->verts[poly->verts[0]*3];
|
||||
const float* v1 = &tile->verts[poly->verts[1]*3];
|
||||
const float d0 = dtVdist(pos, v0);
|
||||
const float d1 = dtVdist(pos, v1);
|
||||
const float u = d0 / (d0+d1);
|
||||
dtVlerp(closest, v0, v1, u);
|
||||
if (posOverPoly)
|
||||
*posOverPoly = false;
|
||||
return;
|
||||
const unsigned int ip = (unsigned int)(poly - tile->polys);
|
||||
const dtPolyDetail* pd = &tile->detailMeshes[ip];
|
||||
|
||||
float dmin = FLT_MAX;
|
||||
float tmin = 0;
|
||||
const float* pmin = 0;
|
||||
const float* pmax = 0;
|
||||
|
||||
for (int i = 0; i < pd->triCount; i++)
|
||||
{
|
||||
const unsigned char* tris = &tile->detailTris[(pd->triBase + i) * 4];
|
||||
const int ANY_BOUNDARY_EDGE =
|
||||
(DT_DETAIL_EDGE_BOUNDARY << 0) |
|
||||
(DT_DETAIL_EDGE_BOUNDARY << 2) |
|
||||
(DT_DETAIL_EDGE_BOUNDARY << 4);
|
||||
if (onlyBoundary && (tris[3] & ANY_BOUNDARY_EDGE) == 0)
|
||||
continue;
|
||||
|
||||
const float* v[3];
|
||||
for (int j = 0; j < 3; ++j)
|
||||
{
|
||||
if (tris[j] < poly->vertCount)
|
||||
v[j] = &tile->verts[poly->verts[tris[j]] * 3];
|
||||
else
|
||||
v[j] = &tile->detailVerts[(pd->vertBase + (tris[j] - poly->vertCount)) * 3];
|
||||
}
|
||||
|
||||
for (int k = 0, j = 2; k < 3; j = k++)
|
||||
{
|
||||
if ((dtGetDetailTriEdgeFlags(tris[3], j) & DT_DETAIL_EDGE_BOUNDARY) == 0 &&
|
||||
(onlyBoundary || tris[j] < tris[k]))
|
||||
{
|
||||
// Only looking at boundary edges and this is internal, or
|
||||
// this is an inner edge that we will see again or have already seen.
|
||||
continue;
|
||||
}
|
||||
|
||||
float t;
|
||||
float d = dtDistancePtSegSqr2D(pos, v[j], v[k], t);
|
||||
if (d < dmin)
|
||||
{
|
||||
dmin = d;
|
||||
tmin = t;
|
||||
pmin = v[j];
|
||||
pmax = v[k];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
dtVlerp(closest, pmin, pmax, tmin);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
bool dtNavMesh::getPolyHeight(const dtMeshTile* tile, const dtPoly* poly, const float* pos, float* height) const
|
||||
{
|
||||
// Off-mesh connections do not have detail polys and getting height
|
||||
// over them does not make sense.
|
||||
if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
|
||||
return false;
|
||||
|
||||
const unsigned int ip = (unsigned int)(poly - tile->polys);
|
||||
const dtPolyDetail* pd = &tile->detailMeshes[ip];
|
||||
|
||||
// Clamp point to be inside the polygon.
|
||||
float verts[DT_VERTS_PER_POLYGON*3];
|
||||
float edged[DT_VERTS_PER_POLYGON];
|
||||
float edget[DT_VERTS_PER_POLYGON];
|
||||
const int nv = poly->vertCount;
|
||||
for (int i = 0; i < nv; ++i)
|
||||
dtVcopy(&verts[i*3], &tile->verts[poly->verts[i]*3]);
|
||||
|
||||
dtVcopy(closest, pos);
|
||||
if (!dtDistancePtPolyEdgesSqr(pos, verts, nv, edged, edget))
|
||||
{
|
||||
// Point is outside the polygon, dtClamp to nearest edge.
|
||||
float dmin = edged[0];
|
||||
int imin = 0;
|
||||
for (int i = 1; i < nv; ++i)
|
||||
{
|
||||
if (edged[i] < dmin)
|
||||
{
|
||||
dmin = edged[i];
|
||||
imin = i;
|
||||
}
|
||||
}
|
||||
const float* va = &verts[imin*3];
|
||||
const float* vb = &verts[((imin+1)%nv)*3];
|
||||
dtVlerp(closest, va, vb, edget[imin]);
|
||||
|
||||
if (posOverPoly)
|
||||
*posOverPoly = false;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (posOverPoly)
|
||||
*posOverPoly = true;
|
||||
}
|
||||
if (!dtPointInPolygon(pos, verts, nv))
|
||||
return false;
|
||||
|
||||
if (!height)
|
||||
return true;
|
||||
|
||||
// Find height at the location.
|
||||
for (int j = 0; j < pd->triCount; ++j)
|
||||
@@ -687,12 +708,53 @@ void dtNavMesh::closestPointOnPoly(dtPolyRef ref, const float* pos, float* close
|
||||
v[k] = &tile->detailVerts[(pd->vertBase+(t[k]-poly->vertCount))*3];
|
||||
}
|
||||
float h;
|
||||
if (dtClosestHeightPointTriangle(closest, v[0], v[1], v[2], h))
|
||||
if (dtClosestHeightPointTriangle(pos, v[0], v[1], v[2], h))
|
||||
{
|
||||
closest[1] = h;
|
||||
break;
|
||||
*height = h;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
// If all triangle checks failed above (can happen with degenerate triangles
|
||||
// or larger floating point values) the point is on an edge, so just select
|
||||
// closest. This should almost never happen so the extra iteration here is
|
||||
// ok.
|
||||
float closest[3];
|
||||
closestPointOnDetailEdges<false>(tile, poly, pos, closest);
|
||||
*height = closest[1];
|
||||
return true;
|
||||
}
|
||||
|
||||
void dtNavMesh::closestPointOnPoly(dtPolyRef ref, const float* pos, float* closest, bool* posOverPoly) const
|
||||
{
|
||||
const dtMeshTile* tile = 0;
|
||||
const dtPoly* poly = 0;
|
||||
getTileAndPolyByRefUnsafe(ref, &tile, &poly);
|
||||
|
||||
dtVcopy(closest, pos);
|
||||
if (getPolyHeight(tile, poly, pos, &closest[1]))
|
||||
{
|
||||
if (posOverPoly)
|
||||
*posOverPoly = true;
|
||||
return;
|
||||
}
|
||||
|
||||
if (posOverPoly)
|
||||
*posOverPoly = false;
|
||||
|
||||
// Off-mesh connections don't have detail polygons.
|
||||
if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
|
||||
{
|
||||
const float* v0 = &tile->verts[poly->verts[0]*3];
|
||||
const float* v1 = &tile->verts[poly->verts[1]*3];
|
||||
float t;
|
||||
dtDistancePtSegSqr2D(pos, v0, v1, t);
|
||||
dtVlerp(closest, v0, v1, t);
|
||||
return;
|
||||
}
|
||||
|
||||
// Outside poly that is not an offmesh connection.
|
||||
closestPointOnDetailEdges<true>(tile, poly, pos, closest);
|
||||
}
|
||||
|
||||
dtPolyRef dtNavMesh::findNearestPolyInTile(const dtMeshTile* tile,
|
||||
@@ -852,6 +914,13 @@ dtStatus dtNavMesh::addTile(unsigned char* data, int dataSize, int flags,
|
||||
return DT_FAILURE | DT_WRONG_MAGIC;
|
||||
if (header->version != DT_NAVMESH_VERSION)
|
||||
return DT_FAILURE | DT_WRONG_VERSION;
|
||||
|
||||
#ifndef DT_POLYREF64
|
||||
// Do not allow adding more polygons than specified in the NavMesh's maxPolys constraint.
|
||||
// Otherwise, the poly ID cannot be represented with the given number of bits.
|
||||
if (m_polyBits < dtIlog2(dtNextPow2((unsigned int)header->polyCount)))
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
#endif
|
||||
|
||||
// Make sure the location is free.
|
||||
if (getTileAt(header->x, header->y, header->layer))
|
||||
|
||||
@@ -130,6 +130,11 @@ enum dtRaycastOptions
|
||||
DT_RAYCAST_USE_COSTS = 0x01, ///< Raycast should calculate movement cost along the ray and fill RaycastHit::cost
|
||||
};
|
||||
|
||||
enum dtDetailTriEdgeFlags
|
||||
{
|
||||
DT_DETAIL_EDGE_BOUNDARY = 0x01, ///< Detail triangle edge is part of the poly boundary
|
||||
};
|
||||
|
||||
|
||||
/// Limit raycasting during any angle pahfinding
|
||||
/// The limit is given as a multiple of the character radius
|
||||
@@ -287,7 +292,8 @@ struct dtMeshTile
|
||||
/// The detail mesh's unique vertices. [(x, y, z) * dtMeshHeader::detailVertCount]
|
||||
float* detailVerts;
|
||||
|
||||
/// The detail mesh's triangles. [(vertA, vertB, vertC) * dtMeshHeader::detailTriCount]
|
||||
/// The detail mesh's triangles. [(vertA, vertB, vertC, triFlags) * dtMeshHeader::detailTriCount].
|
||||
/// See dtDetailTriEdgeFlags and dtGetDetailTriEdgeFlags.
|
||||
unsigned char* detailTris;
|
||||
|
||||
/// The tile bounding volume nodes. [Size: dtMeshHeader::bvNodeCount]
|
||||
@@ -305,6 +311,15 @@ private:
|
||||
dtMeshTile& operator=(const dtMeshTile&);
|
||||
};
|
||||
|
||||
/// Get flags for edge in detail triangle.
|
||||
/// @param triFlags[in] The flags for the triangle (last component of detail vertices above).
|
||||
/// @param edgeIndex[in] The index of the first vertex of the edge. For instance, if 0,
|
||||
/// returns flags for edge AB.
|
||||
inline int dtGetDetailTriEdgeFlags(unsigned char triFlags, int edgeIndex)
|
||||
{
|
||||
return (triFlags >> (edgeIndex * 2)) & 0x3;
|
||||
}
|
||||
|
||||
/// Configuration parameters used to define multi-tile navigation meshes.
|
||||
/// The values are used to allocate space during the initialization of a navigation mesh.
|
||||
/// @see dtNavMesh::init()
|
||||
@@ -314,8 +329,8 @@ struct dtNavMeshParams
|
||||
float orig[3]; ///< The world space origin of the navigation mesh's tile space. [(x, y, z)]
|
||||
float tileWidth; ///< The width of each tile. (Along the x-axis.)
|
||||
float tileHeight; ///< The height of each tile. (Along the z-axis.)
|
||||
int maxTiles; ///< The maximum number of tiles the navigation mesh can contain.
|
||||
int maxPolys; ///< The maximum number of polygons each tile can contain.
|
||||
int maxTiles; ///< The maximum number of tiles the navigation mesh can contain. This and maxPolys are used to calculate how many bits are needed to identify tiles and polygons uniquely.
|
||||
int maxPolys; ///< The maximum number of polygons each tile can contain. This and maxTiles are used to calculate how many bits are needed to identify tiles and polygons uniquely.
|
||||
};
|
||||
|
||||
/// A navigation mesh based on tiles of convex polygons.
|
||||
@@ -636,6 +651,8 @@ private:
|
||||
/// Find nearest polygon within a tile.
|
||||
dtPolyRef findNearestPolyInTile(const dtMeshTile* tile, const float* center,
|
||||
const float* halfExtents, float* nearestPt) const;
|
||||
/// Returns whether position is over the poly and the height at the position if so.
|
||||
bool getPolyHeight(const dtMeshTile* tile, const dtPoly* poly, const float* pos, float* height) const;
|
||||
/// Returns closest point on polygon.
|
||||
void closestPointOnPoly(dtPolyRef ref, const float* pos, float* closest, bool* posOverPoly) const;
|
||||
|
||||
@@ -655,6 +672,8 @@ private:
|
||||
unsigned int m_tileBits; ///< Number of tile bits in the tile ID.
|
||||
unsigned int m_polyBits; ///< Number of poly bits in the tile ID.
|
||||
#endif
|
||||
|
||||
friend class dtNavMeshQuery;
|
||||
};
|
||||
|
||||
/// Allocates a navigation mesh object using the Detour allocator.
|
||||
|
||||
@@ -222,7 +222,10 @@ dtStatus dtNavMeshQuery::findRandomPoint(const dtQueryFilter* filter, float (*fr
|
||||
dtPolyRef* randomRef, float* randomPt) const
|
||||
{
|
||||
dtAssert(m_nav);
|
||||
|
||||
|
||||
if (!filter || !frand || !randomRef || !randomPt)
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
|
||||
// Randomly pick one tile. Assume that all tiles cover roughly the same area.
|
||||
const dtMeshTile* tile = 0;
|
||||
float tsum = 0.0f;
|
||||
@@ -319,8 +322,13 @@ dtStatus dtNavMeshQuery::findRandomPointAroundCircle(dtPolyRef startRef, const f
|
||||
dtAssert(m_openList);
|
||||
|
||||
// Validate input
|
||||
if (!startRef || !m_nav->isValidPolyRef(startRef))
|
||||
if (!m_nav->isValidPolyRef(startRef) ||
|
||||
!centerPos || !dtVisfinite(centerPos) ||
|
||||
maxRadius < 0 || !dtMathIsfinite(maxRadius) ||
|
||||
!filter || !frand || !randomRef || !randomPt)
|
||||
{
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
}
|
||||
|
||||
const dtMeshTile* startTile = 0;
|
||||
const dtPoly* startPoly = 0;
|
||||
@@ -506,85 +514,14 @@ dtStatus dtNavMeshQuery::findRandomPointAroundCircle(dtPolyRef startRef, const f
|
||||
dtStatus dtNavMeshQuery::closestPointOnPoly(dtPolyRef ref, const float* pos, float* closest, bool* posOverPoly) const
|
||||
{
|
||||
dtAssert(m_nav);
|
||||
const dtMeshTile* tile = 0;
|
||||
const dtPoly* poly = 0;
|
||||
if (dtStatusFailed(m_nav->getTileAndPolyByRef(ref, &tile, &poly)))
|
||||
if (!m_nav->isValidPolyRef(ref) ||
|
||||
!pos || !dtVisfinite(pos) ||
|
||||
!closest)
|
||||
{
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
if (!tile)
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
|
||||
// Off-mesh connections don't have detail polygons.
|
||||
if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
|
||||
{
|
||||
const float* v0 = &tile->verts[poly->verts[0]*3];
|
||||
const float* v1 = &tile->verts[poly->verts[1]*3];
|
||||
const float d0 = dtVdist(pos, v0);
|
||||
const float d1 = dtVdist(pos, v1);
|
||||
const float u = d0 / (d0+d1);
|
||||
dtVlerp(closest, v0, v1, u);
|
||||
if (posOverPoly)
|
||||
*posOverPoly = false;
|
||||
return DT_SUCCESS;
|
||||
}
|
||||
|
||||
const unsigned int ip = (unsigned int)(poly - tile->polys);
|
||||
const dtPolyDetail* pd = &tile->detailMeshes[ip];
|
||||
|
||||
// Clamp point to be inside the polygon.
|
||||
float verts[DT_VERTS_PER_POLYGON*3];
|
||||
float edged[DT_VERTS_PER_POLYGON];
|
||||
float edget[DT_VERTS_PER_POLYGON];
|
||||
const int nv = poly->vertCount;
|
||||
for (int i = 0; i < nv; ++i)
|
||||
dtVcopy(&verts[i*3], &tile->verts[poly->verts[i]*3]);
|
||||
|
||||
dtVcopy(closest, pos);
|
||||
if (!dtDistancePtPolyEdgesSqr(pos, verts, nv, edged, edget))
|
||||
{
|
||||
// Point is outside the polygon, dtClamp to nearest edge.
|
||||
float dmin = edged[0];
|
||||
int imin = 0;
|
||||
for (int i = 1; i < nv; ++i)
|
||||
{
|
||||
if (edged[i] < dmin)
|
||||
{
|
||||
dmin = edged[i];
|
||||
imin = i;
|
||||
}
|
||||
}
|
||||
const float* va = &verts[imin*3];
|
||||
const float* vb = &verts[((imin+1)%nv)*3];
|
||||
dtVlerp(closest, va, vb, edget[imin]);
|
||||
|
||||
if (posOverPoly)
|
||||
*posOverPoly = false;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (posOverPoly)
|
||||
*posOverPoly = true;
|
||||
}
|
||||
|
||||
// Find height at the location.
|
||||
for (int j = 0; j < pd->triCount; ++j)
|
||||
{
|
||||
const unsigned char* t = &tile->detailTris[(pd->triBase+j)*4];
|
||||
const float* v[3];
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
if (t[k] < poly->vertCount)
|
||||
v[k] = &tile->verts[poly->verts[t[k]]*3];
|
||||
else
|
||||
v[k] = &tile->detailVerts[(pd->vertBase+(t[k]-poly->vertCount))*3];
|
||||
}
|
||||
float h;
|
||||
if (dtClosestHeightPointTriangle(closest, v[0], v[1], v[2], h))
|
||||
{
|
||||
closest[1] = h;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
m_nav->closestPointOnPoly(ref, pos, closest, posOverPoly);
|
||||
return DT_SUCCESS;
|
||||
}
|
||||
|
||||
@@ -607,6 +544,9 @@ dtStatus dtNavMeshQuery::closestPointOnPolyBoundary(dtPolyRef ref, const float*
|
||||
const dtPoly* poly = 0;
|
||||
if (dtStatusFailed(m_nav->getTileAndPolyByRef(ref, &tile, &poly)))
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
|
||||
if (!pos || !dtVisfinite(pos) || !closest)
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
|
||||
// Collect vertices.
|
||||
float verts[DT_VERTS_PER_POLYGON*3];
|
||||
@@ -648,7 +588,7 @@ dtStatus dtNavMeshQuery::closestPointOnPolyBoundary(dtPolyRef ref, const float*
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// Will return #DT_FAILURE if the provided position is outside the xz-bounds
|
||||
/// Will return #DT_FAILURE | DT_INVALID_PARAM if the provided position is outside the xz-bounds
|
||||
/// of the polygon.
|
||||
///
|
||||
dtStatus dtNavMeshQuery::getPolyHeight(dtPolyRef ref, const float* pos, float* height) const
|
||||
@@ -659,44 +599,28 @@ dtStatus dtNavMeshQuery::getPolyHeight(dtPolyRef ref, const float* pos, float* h
|
||||
const dtPoly* poly = 0;
|
||||
if (dtStatusFailed(m_nav->getTileAndPolyByRef(ref, &tile, &poly)))
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
|
||||
|
||||
if (!pos || !dtVisfinite2D(pos))
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
|
||||
// We used to return success for offmesh connections, but the
|
||||
// getPolyHeight in DetourNavMesh does not do this, so special
|
||||
// case it here.
|
||||
if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
|
||||
{
|
||||
const float* v0 = &tile->verts[poly->verts[0]*3];
|
||||
const float* v1 = &tile->verts[poly->verts[1]*3];
|
||||
const float d0 = dtVdist2D(pos, v0);
|
||||
const float d1 = dtVdist2D(pos, v1);
|
||||
const float u = d0 / (d0+d1);
|
||||
float t;
|
||||
dtDistancePtSegSqr2D(pos, v0, v1, t);
|
||||
if (height)
|
||||
*height = v0[1] + (v1[1] - v0[1]) * u;
|
||||
*height = v0[1] + (v1[1] - v0[1])*t;
|
||||
|
||||
return DT_SUCCESS;
|
||||
}
|
||||
else
|
||||
{
|
||||
const unsigned int ip = (unsigned int)(poly - tile->polys);
|
||||
const dtPolyDetail* pd = &tile->detailMeshes[ip];
|
||||
for (int j = 0; j < pd->triCount; ++j)
|
||||
{
|
||||
const unsigned char* t = &tile->detailTris[(pd->triBase+j)*4];
|
||||
const float* v[3];
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
if (t[k] < poly->vertCount)
|
||||
v[k] = &tile->verts[poly->verts[t[k]]*3];
|
||||
else
|
||||
v[k] = &tile->detailVerts[(pd->vertBase+(t[k]-poly->vertCount))*3];
|
||||
}
|
||||
float h;
|
||||
if (dtClosestHeightPointTriangle(pos, v[0], v[1], v[2], h))
|
||||
{
|
||||
if (height)
|
||||
*height = h;
|
||||
return DT_SUCCESS;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
|
||||
return m_nav->getPolyHeight(tile, poly, pos, height)
|
||||
? DT_SUCCESS
|
||||
: DT_FAILURE | DT_INVALID_PARAM;
|
||||
}
|
||||
|
||||
class dtFindNearestPolyQuery : public dtPolyQuery
|
||||
@@ -706,15 +630,17 @@ class dtFindNearestPolyQuery : public dtPolyQuery
|
||||
float m_nearestDistanceSqr;
|
||||
dtPolyRef m_nearestRef;
|
||||
float m_nearestPoint[3];
|
||||
bool m_overPoly;
|
||||
|
||||
public:
|
||||
dtFindNearestPolyQuery(const dtNavMeshQuery* query, const float* center)
|
||||
: m_query(query), m_center(center), m_nearestDistanceSqr(FLT_MAX), m_nearestRef(0), m_nearestPoint()
|
||||
: m_query(query), m_center(center), m_nearestDistanceSqr(FLT_MAX), m_nearestRef(0), m_nearestPoint(), m_overPoly(false)
|
||||
{
|
||||
}
|
||||
|
||||
dtPolyRef nearestRef() const { return m_nearestRef; }
|
||||
const float* nearestPoint() const { return m_nearestPoint; }
|
||||
bool isOverPoly() const { return m_overPoly; }
|
||||
|
||||
void process(const dtMeshTile* tile, dtPoly** polys, dtPolyRef* refs, int count)
|
||||
{
|
||||
@@ -748,6 +674,7 @@ public:
|
||||
|
||||
m_nearestDistanceSqr = d;
|
||||
m_nearestRef = ref;
|
||||
m_overPoly = posOverPoly;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -762,11 +689,22 @@ public:
|
||||
dtStatus dtNavMeshQuery::findNearestPoly(const float* center, const float* halfExtents,
|
||||
const dtQueryFilter* filter,
|
||||
dtPolyRef* nearestRef, float* nearestPt) const
|
||||
{
|
||||
return findNearestPoly(center, halfExtents, filter, nearestRef, nearestPt, NULL);
|
||||
}
|
||||
|
||||
// If center and nearestPt point to an equal position, isOverPoly will be true;
|
||||
// however there's also a special case of climb height inside the polygon (see dtFindNearestPolyQuery)
|
||||
dtStatus dtNavMeshQuery::findNearestPoly(const float* center, const float* halfExtents,
|
||||
const dtQueryFilter* filter,
|
||||
dtPolyRef* nearestRef, float* nearestPt, bool* isOverPoly) const
|
||||
{
|
||||
dtAssert(m_nav);
|
||||
|
||||
if (!nearestRef)
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
|
||||
// queryPolygons below will check rest of params
|
||||
|
||||
dtFindNearestPolyQuery query(this, center);
|
||||
|
||||
@@ -778,7 +716,11 @@ dtStatus dtNavMeshQuery::findNearestPoly(const float* center, const float* halfE
|
||||
// Only override nearestPt if we actually found a poly so the nearest point
|
||||
// is valid.
|
||||
if (nearestPt && *nearestRef)
|
||||
{
|
||||
dtVcopy(nearestPt, query.nearestPoint());
|
||||
if (isOverPoly)
|
||||
*isOverPoly = query.isOverPoly();
|
||||
}
|
||||
|
||||
return DT_SUCCESS;
|
||||
}
|
||||
@@ -972,8 +914,12 @@ dtStatus dtNavMeshQuery::queryPolygons(const float* center, const float* halfExt
|
||||
{
|
||||
dtAssert(m_nav);
|
||||
|
||||
if (!center || !halfExtents || !filter || !query)
|
||||
if (!center || !dtVisfinite(center) ||
|
||||
!halfExtents || !dtVisfinite(halfExtents) ||
|
||||
!filter || !query)
|
||||
{
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
}
|
||||
|
||||
float bmin[3], bmax[3];
|
||||
dtVsub(bmin, center, halfExtents);
|
||||
@@ -1021,14 +967,20 @@ dtStatus dtNavMeshQuery::findPath(dtPolyRef startRef, dtPolyRef endRef,
|
||||
dtAssert(m_nav);
|
||||
dtAssert(m_nodePool);
|
||||
dtAssert(m_openList);
|
||||
|
||||
if (pathCount)
|
||||
*pathCount = 0;
|
||||
|
||||
if (!pathCount)
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
|
||||
*pathCount = 0;
|
||||
|
||||
// Validate input
|
||||
if (!m_nav->isValidPolyRef(startRef) || !m_nav->isValidPolyRef(endRef) ||
|
||||
!startPos || !endPos || !filter || maxPath <= 0 || !path || !pathCount)
|
||||
!startPos || !dtVisfinite(startPos) ||
|
||||
!endPos || !dtVisfinite(endPos) ||
|
||||
!filter || !path || maxPath <= 0)
|
||||
{
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
}
|
||||
|
||||
if (startRef == endRef)
|
||||
{
|
||||
@@ -1263,18 +1215,21 @@ dtStatus dtNavMeshQuery::initSlicedFindPath(dtPolyRef startRef, dtPolyRef endRef
|
||||
m_query.status = DT_FAILURE;
|
||||
m_query.startRef = startRef;
|
||||
m_query.endRef = endRef;
|
||||
dtVcopy(m_query.startPos, startPos);
|
||||
dtVcopy(m_query.endPos, endPos);
|
||||
if (startPos)
|
||||
dtVcopy(m_query.startPos, startPos);
|
||||
if (endPos)
|
||||
dtVcopy(m_query.endPos, endPos);
|
||||
m_query.filter = filter;
|
||||
m_query.options = options;
|
||||
m_query.raycastLimitSqr = FLT_MAX;
|
||||
|
||||
if (!startRef || !endRef)
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
|
||||
// Validate input
|
||||
if (!m_nav->isValidPolyRef(startRef) || !m_nav->isValidPolyRef(endRef))
|
||||
if (!m_nav->isValidPolyRef(startRef) || !m_nav->isValidPolyRef(endRef) ||
|
||||
!startPos || !dtVisfinite(startPos) ||
|
||||
!endPos || !dtVisfinite(endPos) || !filter)
|
||||
{
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
}
|
||||
|
||||
// trade quality with performance?
|
||||
if (options & DT_FINDPATH_ANY_ANGLE)
|
||||
@@ -1530,7 +1485,13 @@ dtStatus dtNavMeshQuery::updateSlicedFindPath(const int maxIter, int* doneIters)
|
||||
|
||||
dtStatus dtNavMeshQuery::finalizeSlicedFindPath(dtPolyRef* path, int* pathCount, const int maxPath)
|
||||
{
|
||||
if (!pathCount)
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
|
||||
*pathCount = 0;
|
||||
|
||||
if (!path || maxPath <= 0)
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
|
||||
if (dtStatusFailed(m_query.status))
|
||||
{
|
||||
@@ -1615,12 +1576,13 @@ dtStatus dtNavMeshQuery::finalizeSlicedFindPath(dtPolyRef* path, int* pathCount,
|
||||
dtStatus dtNavMeshQuery::finalizeSlicedFindPathPartial(const dtPolyRef* existing, const int existingSize,
|
||||
dtPolyRef* path, int* pathCount, const int maxPath)
|
||||
{
|
||||
if (!pathCount)
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
|
||||
*pathCount = 0;
|
||||
|
||||
if (existingSize == 0)
|
||||
{
|
||||
return DT_FAILURE;
|
||||
}
|
||||
|
||||
if (!existing || existingSize <= 0 || !path || !pathCount || maxPath <= 0)
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
|
||||
if (dtStatusFailed(m_query.status))
|
||||
{
|
||||
@@ -1823,14 +1785,19 @@ dtStatus dtNavMeshQuery::findStraightPath(const float* startPos, const float* en
|
||||
int* straightPathCount, const int maxStraightPath, const int options) const
|
||||
{
|
||||
dtAssert(m_nav);
|
||||
|
||||
|
||||
if (!straightPathCount)
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
|
||||
*straightPathCount = 0;
|
||||
|
||||
if (!maxStraightPath)
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
|
||||
if (!path[0])
|
||||
|
||||
if (!startPos || !dtVisfinite(startPos) ||
|
||||
!endPos || !dtVisfinite(endPos) ||
|
||||
!path || pathSize <= 0 || !path[0] ||
|
||||
maxStraightPath <= 0)
|
||||
{
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
}
|
||||
|
||||
dtStatus stat = 0;
|
||||
|
||||
@@ -2070,13 +2037,19 @@ dtStatus dtNavMeshQuery::moveAlongSurface(dtPolyRef startRef, const float* start
|
||||
dtAssert(m_nav);
|
||||
dtAssert(m_tinyNodePool);
|
||||
|
||||
if (!visitedCount)
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
|
||||
*visitedCount = 0;
|
||||
|
||||
// Validate input
|
||||
if (!startRef)
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
if (!m_nav->isValidPolyRef(startRef))
|
||||
|
||||
if (!m_nav->isValidPolyRef(startRef) ||
|
||||
!startPos || !dtVisfinite(startPos) ||
|
||||
!endPos || !dtVisfinite(endPos) ||
|
||||
!filter || !resultPos || !visited ||
|
||||
maxVisitedSize <= 0)
|
||||
{
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
}
|
||||
|
||||
dtStatus status = DT_SUCCESS;
|
||||
|
||||
@@ -2484,16 +2457,23 @@ dtStatus dtNavMeshQuery::raycast(dtPolyRef startRef, const float* startPos, cons
|
||||
dtRaycastHit* hit, dtPolyRef prevRef) const
|
||||
{
|
||||
dtAssert(m_nav);
|
||||
|
||||
|
||||
if (!hit)
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
|
||||
hit->t = 0;
|
||||
hit->pathCount = 0;
|
||||
hit->pathCost = 0;
|
||||
|
||||
// Validate input
|
||||
if (!startRef || !m_nav->isValidPolyRef(startRef))
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
if (prevRef && !m_nav->isValidPolyRef(prevRef))
|
||||
if (!m_nav->isValidPolyRef(startRef) ||
|
||||
!startPos || !dtVisfinite(startPos) ||
|
||||
!endPos || !dtVisfinite(endPos) ||
|
||||
!filter ||
|
||||
(prevRef && !m_nav->isValidPolyRef(prevRef)))
|
||||
{
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
}
|
||||
|
||||
float dir[3], curPos[3], lastPos[3];
|
||||
float verts[DT_VERTS_PER_POLYGON*3+3];
|
||||
@@ -2735,11 +2715,18 @@ dtStatus dtNavMeshQuery::findPolysAroundCircle(dtPolyRef startRef, const float*
|
||||
dtAssert(m_nodePool);
|
||||
dtAssert(m_openList);
|
||||
|
||||
*resultCount = 0;
|
||||
|
||||
// Validate input
|
||||
if (!startRef || !m_nav->isValidPolyRef(startRef))
|
||||
if (!resultCount)
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
|
||||
*resultCount = 0;
|
||||
|
||||
if (!m_nav->isValidPolyRef(startRef) ||
|
||||
!centerPos || !dtVisfinite(centerPos) ||
|
||||
radius < 0 || !dtMathIsfinite(radius) ||
|
||||
!filter || maxResult < 0)
|
||||
{
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
}
|
||||
|
||||
m_nodePool->clear();
|
||||
m_openList->clear();
|
||||
@@ -2901,8 +2888,18 @@ dtStatus dtNavMeshQuery::findPolysAroundShape(dtPolyRef startRef, const float* v
|
||||
dtAssert(m_nav);
|
||||
dtAssert(m_nodePool);
|
||||
dtAssert(m_openList);
|
||||
|
||||
|
||||
if (!resultCount)
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
|
||||
*resultCount = 0;
|
||||
|
||||
if (!m_nav->isValidPolyRef(startRef) ||
|
||||
!verts || nverts < 3 ||
|
||||
!filter || maxResult < 0)
|
||||
{
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
}
|
||||
|
||||
// Validate input
|
||||
if (!startRef || !m_nav->isValidPolyRef(startRef))
|
||||
@@ -3088,13 +3085,20 @@ dtStatus dtNavMeshQuery::findLocalNeighbourhood(dtPolyRef startRef, const float*
|
||||
{
|
||||
dtAssert(m_nav);
|
||||
dtAssert(m_tinyNodePool);
|
||||
|
||||
|
||||
if (!resultCount)
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
|
||||
*resultCount = 0;
|
||||
|
||||
// Validate input
|
||||
if (!startRef || !m_nav->isValidPolyRef(startRef))
|
||||
if (!m_nav->isValidPolyRef(startRef) ||
|
||||
!centerPos || !dtVisfinite(centerPos) ||
|
||||
radius < 0 || !dtMathIsfinite(radius) ||
|
||||
!filter || maxResult < 0)
|
||||
{
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
|
||||
}
|
||||
|
||||
static const int MAX_STACK = 48;
|
||||
dtNode* stack[MAX_STACK];
|
||||
int nstack = 0;
|
||||
@@ -3301,13 +3305,19 @@ dtStatus dtNavMeshQuery::getPolyWallSegments(dtPolyRef ref, const dtQueryFilter*
|
||||
const int maxSegments) const
|
||||
{
|
||||
dtAssert(m_nav);
|
||||
|
||||
if (!segmentCount)
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
|
||||
*segmentCount = 0;
|
||||
|
||||
|
||||
const dtMeshTile* tile = 0;
|
||||
const dtPoly* poly = 0;
|
||||
if (dtStatusFailed(m_nav->getTileAndPolyByRef(ref, &tile, &poly)))
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
|
||||
if (!filter || !segmentVerts || maxSegments < 0)
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
|
||||
int n = 0;
|
||||
static const int MAX_INTERVAL = 16;
|
||||
@@ -3455,8 +3465,13 @@ dtStatus dtNavMeshQuery::findDistanceToWall(dtPolyRef startRef, const float* cen
|
||||
dtAssert(m_openList);
|
||||
|
||||
// Validate input
|
||||
if (!startRef || !m_nav->isValidPolyRef(startRef))
|
||||
if (!m_nav->isValidPolyRef(startRef) ||
|
||||
!centerPos || !dtVisfinite(centerPos) ||
|
||||
maxRadius < 0 || !dtMathIsfinite(maxRadius) ||
|
||||
!filter || !hitDist || !hitPos || !hitNormal)
|
||||
{
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
}
|
||||
|
||||
m_nodePool->clear();
|
||||
m_openList->clear();
|
||||
|
||||
@@ -120,8 +120,6 @@ public:
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
/// Provides information about raycast hit
|
||||
/// filled by dtNavMeshQuery::raycast
|
||||
/// @ingroup detour
|
||||
@@ -316,15 +314,31 @@ public:
|
||||
///@{
|
||||
|
||||
/// Finds the polygon nearest to the specified center point.
|
||||
/// [opt] means the specified parameter can be a null pointer, in that case the output parameter will not be set.
|
||||
///
|
||||
/// @param[in] center The center of the search box. [(x, y, z)]
|
||||
/// @param[in] halfExtents The search distance along each axis. [(x, y, z)]
|
||||
/// @param[in] halfExtents The search distance along each axis. [(x, y, z)]
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] nearestRef The reference id of the nearest polygon.
|
||||
/// @param[out] nearestPt The nearest point on the polygon. [opt] [(x, y, z)]
|
||||
/// @param[out] nearestRef The reference id of the nearest polygon. Will be set to 0 if no polygon is found.
|
||||
/// @param[out] nearestPt The nearest point on the polygon. Unchanged if no polygon is found. [opt] [(x, y, z)]
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus findNearestPoly(const float* center, const float* halfExtents,
|
||||
const dtQueryFilter* filter,
|
||||
dtPolyRef* nearestRef, float* nearestPt) const;
|
||||
|
||||
/// Finds the polygon nearest to the specified center point.
|
||||
/// [opt] means the specified parameter can be a null pointer, in that case the output parameter will not be set.
|
||||
///
|
||||
/// @param[in] center The center of the search box. [(x, y, z)]
|
||||
/// @param[in] halfExtents The search distance along each axis. [(x, y, z)]
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] nearestRef The reference id of the nearest polygon. Will be set to 0 if no polygon is found.
|
||||
/// @param[out] nearestPt The nearest point on the polygon. Unchanged if no polygon is found. [opt] [(x, y, z)]
|
||||
/// @param[out] isOverPoly Set to true if the point's X/Z coordinate lies inside the polygon, false otherwise. Unchanged if no polygon is found. [opt]
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus findNearestPoly(const float* center, const float* halfExtents,
|
||||
const dtQueryFilter* filter,
|
||||
dtPolyRef* nearestRef, float* nearestPt, bool* isOverPoly) const;
|
||||
|
||||
/// Finds polygons that overlap the search box.
|
||||
/// @param[in] center The center of the search box. [(x, y, z)]
|
||||
|
||||
47
Source/ThirdParty/recastnavigation/RecastAlloc.h
vendored
47
Source/ThirdParty/recastnavigation/RecastAlloc.h
vendored
@@ -106,6 +106,8 @@ class rcVectorBase {
|
||||
// Creates an array of the given size, copies all of this vector's data into it, and returns it.
|
||||
T* allocate_and_copy(rcSizeType size);
|
||||
void resize_impl(rcSizeType size, const T* value);
|
||||
// Requires: min_capacity > m_cap.
|
||||
rcSizeType get_new_capacity(rcSizeType min_capacity);
|
||||
public:
|
||||
typedef rcSizeType size_type;
|
||||
typedef T value_type;
|
||||
@@ -196,8 +198,7 @@ void rcVectorBase<T, H>::push_back(const T& value) {
|
||||
return;
|
||||
}
|
||||
|
||||
rcAssert(RC_SIZE_MAX / 2 >= m_size);
|
||||
rcSizeType new_cap = m_size ? 2*m_size : 1;
|
||||
const rcSizeType new_cap = get_new_capacity(m_cap + 1);
|
||||
T* data = allocate_and_copy(new_cap);
|
||||
// construct between allocate and destroy+free in case value is
|
||||
// in this vector.
|
||||
@@ -208,25 +209,44 @@ void rcVectorBase<T, H>::push_back(const T& value) {
|
||||
rcFree(m_data);
|
||||
m_data = data;
|
||||
}
|
||||
|
||||
template <typename T, rcAllocHint H>
|
||||
rcSizeType rcVectorBase<T, H>::get_new_capacity(rcSizeType min_capacity) {
|
||||
rcAssert(min_capacity <= RC_SIZE_MAX);
|
||||
if (rcUnlikely(m_cap >= RC_SIZE_MAX / 2))
|
||||
return RC_SIZE_MAX;
|
||||
return 2 * m_cap > min_capacity ? 2 * m_cap : min_capacity;
|
||||
}
|
||||
|
||||
template <typename T, rcAllocHint H>
|
||||
void rcVectorBase<T, H>::resize_impl(rcSizeType size, const T* value) {
|
||||
if (size < m_size) {
|
||||
destroy_range(size, m_size);
|
||||
m_size = size;
|
||||
} else if (size > m_size) {
|
||||
T* new_data = allocate_and_copy(size);
|
||||
// We defer deconstructing/freeing old data until after constructing
|
||||
// new elements in case "value" is there.
|
||||
if (value) {
|
||||
construct_range(new_data + m_size, new_data + size, *value);
|
||||
if (size <= m_cap) {
|
||||
if (value) {
|
||||
construct_range(m_data + m_size, m_data + size, *value);
|
||||
} else {
|
||||
construct_range(m_data + m_size, m_data + size);
|
||||
}
|
||||
m_size = size;
|
||||
} else {
|
||||
construct_range(new_data + m_size, new_data + size);
|
||||
const rcSizeType new_cap = get_new_capacity(size);
|
||||
T* new_data = allocate_and_copy(new_cap);
|
||||
// We defer deconstructing/freeing old data until after constructing
|
||||
// new elements in case "value" is there.
|
||||
if (value) {
|
||||
construct_range(new_data + m_size, new_data + size, *value);
|
||||
} else {
|
||||
construct_range(new_data + m_size, new_data + size);
|
||||
}
|
||||
destroy_range(0, m_size);
|
||||
rcFree(m_data);
|
||||
m_data = new_data;
|
||||
m_cap = new_cap;
|
||||
m_size = size;
|
||||
}
|
||||
destroy_range(0, m_size);
|
||||
rcFree(m_data);
|
||||
m_data = new_data;
|
||||
m_cap = size;
|
||||
m_size = size;
|
||||
}
|
||||
}
|
||||
template <typename T, rcAllocHint H>
|
||||
@@ -303,6 +323,7 @@ public:
|
||||
rcIntArray(int n) : m_impl(n, 0) {}
|
||||
void push(int item) { m_impl.push_back(item); }
|
||||
void resize(int size) { m_impl.resize(size); }
|
||||
void clear() { m_impl.clear(); }
|
||||
int pop()
|
||||
{
|
||||
int v = m_impl.back();
|
||||
|
||||
@@ -921,8 +921,8 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
|
||||
continue;
|
||||
const unsigned char area = chf.areas[i];
|
||||
|
||||
verts.resize(0);
|
||||
simplified.resize(0);
|
||||
verts.clear();
|
||||
simplified.clear();
|
||||
|
||||
ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
|
||||
walkContour(x, y, i, chf, flags, verts);
|
||||
@@ -1009,7 +1009,7 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
|
||||
if (cset.nconts > 0)
|
||||
{
|
||||
// Calculate winding of all polygons.
|
||||
rcScopedDelete<char> winding((char*)rcAlloc(sizeof(char)*cset.nconts, RC_ALLOC_TEMP));
|
||||
rcScopedDelete<signed char> winding((signed char*)rcAlloc(sizeof(signed char)*cset.nconts, RC_ALLOC_TEMP));
|
||||
if (!winding)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'hole' (%d).", cset.nconts);
|
||||
|
||||
@@ -653,8 +653,8 @@ static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
|
||||
for (int i = 0; i < nin; ++i)
|
||||
rcVcopy(&verts[i*3], &in[i*3]);
|
||||
|
||||
edges.resize(0);
|
||||
tris.resize(0);
|
||||
edges.clear();
|
||||
tris.clear();
|
||||
|
||||
const float cs = chf.cs;
|
||||
const float ics = 1.0f/cs;
|
||||
@@ -803,7 +803,7 @@ static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
|
||||
int x1 = (int)ceilf(bmax[0]/sampleDist);
|
||||
int z0 = (int)floorf(bmin[2]/sampleDist);
|
||||
int z1 = (int)ceilf(bmax[2]/sampleDist);
|
||||
samples.resize(0);
|
||||
samples.clear();
|
||||
for (int z = z0; z < z1; ++z)
|
||||
{
|
||||
for (int x = x0; x < x1; ++x)
|
||||
@@ -864,8 +864,8 @@ static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
|
||||
|
||||
// Create new triangulation.
|
||||
// TODO: Incremental add instead of full rebuild.
|
||||
edges.resize(0);
|
||||
tris.resize(0);
|
||||
edges.clear();
|
||||
tris.clear();
|
||||
delaunayHull(ctx, nverts, verts, nhull, hull, tris, edges);
|
||||
}
|
||||
}
|
||||
@@ -935,7 +935,7 @@ static void seedArrayWithPolyCenter(rcContext* ctx, const rcCompactHeightfield&
|
||||
pcy /= npoly;
|
||||
|
||||
// Use seeds array as a stack for DFS
|
||||
array.resize(0);
|
||||
array.clear();
|
||||
array.push(startCellX);
|
||||
array.push(startCellY);
|
||||
array.push(startSpanIndex);
|
||||
@@ -1001,7 +1001,7 @@ static void seedArrayWithPolyCenter(rcContext* ctx, const rcCompactHeightfield&
|
||||
rcSwap(dirs[directDir], dirs[3]);
|
||||
}
|
||||
|
||||
array.resize(0);
|
||||
array.clear();
|
||||
// getHeightData seeds are given in coordinates with borders
|
||||
array.push(cx+bs);
|
||||
array.push(cy+bs);
|
||||
@@ -1030,7 +1030,7 @@ static void getHeightData(rcContext* ctx, const rcCompactHeightfield& chf,
|
||||
// Note: Reads to the compact heightfield are offset by border size (bs)
|
||||
// since border size offset is already removed from the polymesh vertices.
|
||||
|
||||
queue.resize(0);
|
||||
queue.clear();
|
||||
// Set all heights to RC_UNSET_HEIGHT.
|
||||
memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height);
|
||||
|
||||
@@ -1141,7 +1141,8 @@ static void getHeightData(rcContext* ctx, const rcCompactHeightfield& chf,
|
||||
static unsigned char getEdgeFlags(const float* va, const float* vb,
|
||||
const float* vpoly, const int npoly)
|
||||
{
|
||||
// Return true if edge (va,vb) is part of the polygon.
|
||||
// The flag returned by this function matches dtDetailTriEdgeFlags in Detour.
|
||||
// Figure out if edge (va,vb) is part of the polygon boundary.
|
||||
static const float thrSqr = rcSqr(0.001f);
|
||||
for (int i = 0, j = npoly-1; i < npoly; j=i++)
|
||||
{
|
||||
|
||||
@@ -650,7 +650,7 @@ static bool mergeRegions(rcRegion& rega, rcRegion& regb)
|
||||
return false;
|
||||
|
||||
// Merge neighbours.
|
||||
rega.connections.resize(0);
|
||||
rega.connections.clear();
|
||||
for (int i = 0, ni = acon.size(); i < ni-1; ++i)
|
||||
rega.connections.push(acon[(insa+1+i) % ni]);
|
||||
|
||||
@@ -876,8 +876,8 @@ static bool mergeAndFilterRegions(rcContext* ctx, int minRegionArea, int mergeRe
|
||||
// Also keep track of the regions connects to a tile border.
|
||||
bool connectsToBorder = false;
|
||||
int spanCount = 0;
|
||||
stack.resize(0);
|
||||
trace.resize(0);
|
||||
stack.clear();
|
||||
trace.clear();
|
||||
|
||||
reg.visited = true;
|
||||
stack.push(i);
|
||||
@@ -1068,7 +1068,7 @@ static bool mergeAndFilterLayerRegions(rcContext* ctx, int minRegionArea,
|
||||
{
|
||||
const rcCompactCell& c = chf.cells[x+y*w];
|
||||
|
||||
lregs.resize(0);
|
||||
lregs.clear();
|
||||
|
||||
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
|
||||
{
|
||||
@@ -1139,7 +1139,7 @@ static bool mergeAndFilterLayerRegions(rcContext* ctx, int minRegionArea,
|
||||
// Start search.
|
||||
root.id = layerId;
|
||||
|
||||
stack.resize(0);
|
||||
stack.clear();
|
||||
stack.push(i);
|
||||
|
||||
while (stack.size() > 0)
|
||||
|
||||
Reference in New Issue
Block a user