Add Deformable material domain

This commit is contained in:
Wojtek Figat
2021-02-08 15:44:38 +01:00
parent 5a561b1278
commit da784e98e5
13 changed files with 685 additions and 9 deletions

View File

@@ -0,0 +1,375 @@
// File generated by Flax Materials Editor
// Version: @0
#define MATERIAL 1
@3
#include "./Flax/Common.hlsl"
#include "./Flax/MaterialCommon.hlsl"
#include "./Flax/GBufferCommon.hlsl"
@7
// Primary constant buffer (with additional material parameters)
META_CB_BEGIN(0, Data)
float4x4 ViewProjectionMatrix;
float4x4 WorldMatrix;
float4x4 LocalMatrix;
float4x4 ViewMatrix;
float3 ViewPos;
float ViewFar;
float3 ViewDir;
float TimeParam;
float4 ViewInfo;
float4 ScreenSize;
float3 WorldInvScale;
float WorldDeterminantSign;
float MeshMinZ;
float Segment;
float ChunksPerSegment;
float PerInstanceRandom;
float4 TemporalAAJitter;
float3 GeometrySize;
float MeshMaxZ;
@1META_CB_END
// Shader resources
@2
// The spline deformation buffer (stored as 4x3, 3 float4 behind each other)
Buffer<float4> SplineDeformation : register(t0);
// Geometry data passed though the graphics rendering stages up to the pixel shader
struct GeometryData
{
float3 WorldPosition : TEXCOORD0;
float2 TexCoord : TEXCOORD1;
#if USE_VERTEX_COLOR
half4 VertexColor : COLOR;
#endif
float3 WorldNormal : TEXCOORD2;
float4 WorldTangent : TEXCOORD3;
};
// Interpolants passed from the vertex shader
struct VertexOutput
{
float4 Position : SV_Position;
GeometryData Geometry;
#if USE_CUSTOM_VERTEX_INTERPOLATORS
float4 CustomVSToPS[CUSTOM_VERTEX_INTERPOLATORS_COUNT] : TEXCOORD9;
#endif
#if USE_TESSELLATION
float TessellationMultiplier : TESS;
#endif
};
// Interpolants passed to the pixel shader
struct PixelInput
{
float4 Position : SV_Position;
GeometryData Geometry;
#if USE_CUSTOM_VERTEX_INTERPOLATORS
float4 CustomVSToPS[CUSTOM_VERTEX_INTERPOLATORS_COUNT] : TEXCOORD9;
#endif
bool IsFrontFace : SV_IsFrontFace;
};
// Material properties generation input
struct MaterialInput
{
float3 WorldPosition;
float TwoSidedSign;
float2 TexCoord;
#if USE_VERTEX_COLOR
half4 VertexColor;
#endif
float3x3 TBN;
float4 SvPosition;
float3 PreSkinnedPosition;
float3 PreSkinnedNormal;
#if USE_CUSTOM_VERTEX_INTERPOLATORS
float4 CustomVSToPS[CUSTOM_VERTEX_INTERPOLATORS_COUNT];
#endif
};
// Extracts geometry data to the material input
MaterialInput GetGeometryMaterialInput(GeometryData geometry)
{
MaterialInput output = (MaterialInput)0;
output.WorldPosition = geometry.WorldPosition;
output.TexCoord = geometry.TexCoord;
#if USE_VERTEX_COLOR
output.VertexColor = geometry.VertexColor;
#endif
output.TBN = CalcTangentBasis(geometry.WorldNormal, geometry.WorldTangent);
return output;
}
#if USE_TESSELLATION
// Interpolates the geometry positions data only (used by the tessallation when generating vertices)
#define InterpolateGeometryPositions(output, p0, w0, p1, w1, p2, w2, offset) output.WorldPosition = p0.WorldPosition * w0 + p1.WorldPosition * w1 + p2.WorldPosition * w2 + offset
// Offsets the geometry positions data only (used by the tessallation when generating vertices)
#define OffsetGeometryPositions(geometry, offset) geometry.WorldPosition += offset
// Applies the Phong tessallation to the geometry positions (used by the tessallation when doing Phong tess)
#define ApplyGeometryPositionsPhongTess(geometry, p0, p1, p2, U, V, W) \
float3 posProjectedU = TessalationProjectOntoPlane(p0.WorldNormal, p0.WorldPosition, geometry.WorldPosition); \
float3 posProjectedV = TessalationProjectOntoPlane(p1.WorldNormal, p1.WorldPosition, geometry.WorldPosition); \
float3 posProjectedW = TessalationProjectOntoPlane(p2.WorldNormal, p2.WorldPosition, geometry.WorldPosition); \
geometry.WorldPosition = U * posProjectedU + V * posProjectedV + W * posProjectedW
// Interpolates the geometry data except positions (used by the tessallation when generating vertices)
GeometryData InterpolateGeometry(GeometryData p0, float w0, GeometryData p1, float w1, GeometryData p2, float w2)
{
GeometryData output = (GeometryData)0;
output.TexCoord = p0.TexCoord * w0 + p1.TexCoord * w1 + p2.TexCoord * w2;
#if USE_VERTEX_COLOR
output.VertexColor = p0.VertexColor * w0 + p1.VertexColor * w1 + p2.VertexColor * w2;
#endif
output.WorldNormal = p0.WorldNormal * w0 + p1.WorldNormal * w1 + p2.WorldNormal * w2;
output.WorldNormal = normalize(output.WorldNormal);
output.WorldTangent = p0.WorldTangent * w0 + p1.WorldTangent * w1 + p2.WorldTangent * w2;
output.WorldTangent.xyz = normalize(output.WorldTangent.xyz);
return output;
}
#endif
MaterialInput GetMaterialInput(PixelInput input)
{
MaterialInput output = GetGeometryMaterialInput(input.Geometry);
output.TwoSidedSign = WorldDeterminantSign * (input.IsFrontFace ? 1.0 : -1.0);
output.SvPosition = input.Position;
#if USE_CUSTOM_VERTEX_INTERPOLATORS
output.CustomVSToPS = input.CustomVSToPS;
#endif
return output;
}
// Removes the scale vector from the local to world transformation matrix
float3x3 RemoveScaleFromLocalToWorld(float3x3 localToWorld)
{
localToWorld[0] *= WorldInvScale.x;
localToWorld[1] *= WorldInvScale.y;
localToWorld[2] *= WorldInvScale.z;
return localToWorld;
}
// Transforms a vector from tangent space to world space
float3 TransformTangentVectorToWorld(MaterialInput input, float3 tangentVector)
{
return mul(tangentVector, input.TBN);
}
// Transforms a vector from world space to tangent space
float3 TransformWorldVectorToTangent(MaterialInput input, float3 worldVector)
{
return mul(input.TBN, worldVector);
}
// Transforms a vector from world space to view space
float3 TransformWorldVectorToView(MaterialInput input, float3 worldVector)
{
return mul(worldVector, (float3x3)ViewMatrix);
}
// Transforms a vector from view space to world space
float3 TransformViewVectorToWorld(MaterialInput input, float3 viewVector)
{
return mul((float3x3)ViewMatrix, viewVector);
}
// Transforms a vector from local space to world space
float3 TransformLocalVectorToWorld(MaterialInput input, float3 localVector)
{
float3x3 localToWorld = (float3x3)WorldMatrix;
//localToWorld = RemoveScaleFromLocalToWorld(localToWorld);
return mul(localVector, localToWorld);
}
// Transforms a vector from local space to world space
float3 TransformWorldVectorToLocal(MaterialInput input, float3 worldVector)
{
float3x3 localToWorld = (float3x3)WorldMatrix;
//localToWorld = RemoveScaleFromLocalToWorld(localToWorld);
return mul(localToWorld, worldVector);
}
// Gets the current object position
float3 GetObjectPosition(MaterialInput input)
{
return WorldMatrix[3].xyz;
}
// Gets the current object size
float3 GetObjectSize(MaterialInput input)
{
float4x4 world = WorldMatrix;
return GeometrySize * float3(world._m00, world._m11, world._m22);
}
// Get the current object random value
float GetPerInstanceRandom(MaterialInput input)
{
return PerInstanceRandom;
}
// Get the current object LOD transition dither factor
float GetLODDitherFactor(MaterialInput input)
{
return 0;
}
// Gets the interpolated vertex color (in linear space)
float4 GetVertexColor(MaterialInput input)
{
#if USE_VERTEX_COLOR
return input.VertexColor;
#else
return 1;
#endif
}
float3 SampleLightmap(Material material, MaterialInput materialInput)
{
return 0;
}
@8
// Get material properties function (for vertex shader)
Material GetMaterialVS(MaterialInput input)
{
@5
}
// Get material properties function (for domain shader)
Material GetMaterialDS(MaterialInput input)
{
@6
}
// Get material properties function (for pixel shader)
Material GetMaterialPS(MaterialInput input)
{
@4
}
// Calculates the transform matrix from mesh tangent space to local space
float3x3 CalcTangentToLocal(ModelInput input)
{
float bitangentSign = input.Tangent.w ? -1.0f : +1.0f;
float3 normal = input.Normal.xyz * 2.0 - 1.0;
float3 tangent = input.Tangent.xyz * 2.0 - 1.0;
float3 bitangent = cross(normal, tangent) * bitangentSign;
return float3x3(tangent, bitangent, normal);
}
// Vertex Shader function for GBuffer Pass and Depth Pass (with full vertex data)
META_VS(true, FEATURE_LEVEL_ES2)
META_VS_IN_ELEMENT(POSITION, 0, R32G32B32_FLOAT, 0, 0, PER_VERTEX, 0, true)
META_VS_IN_ELEMENT(TEXCOORD, 0, R16G16_FLOAT, 1, 0, PER_VERTEX, 0, true)
META_VS_IN_ELEMENT(NORMAL, 0, R10G10B10A2_UNORM, 1, ALIGN, PER_VERTEX, 0, true)
META_VS_IN_ELEMENT(TANGENT, 0, R10G10B10A2_UNORM, 1, ALIGN, PER_VERTEX, 0, true)
META_VS_IN_ELEMENT(TEXCOORD, 1, R16G16_FLOAT, 1, ALIGN, PER_VERTEX, 0, true)
META_VS_IN_ELEMENT(COLOR, 0, R8G8B8A8_UNORM, 2, 0, PER_VERTEX, 0, USE_VERTEX_COLOR)
VertexOutput VS_SplineModel(ModelInput input)
{
VertexOutput output;
// Apply local transformation of the geometry before deformation
float3 position = mul(float4(input.Position, 1), LocalMatrix).xyz;
// Apply spline curve deformation
float splineAlpha = saturate((position.z - MeshMinZ) / (MeshMaxZ - MeshMinZ));
int splineIndex = (int)((Segment + splineAlpha) * ChunksPerSegment);
position.z = splineAlpha;
float3x4 splineMatrix = float3x4(SplineDeformation[splineIndex * 3], SplineDeformation[splineIndex * 3 + 1], SplineDeformation[splineIndex * 3 + 2]);
position = mul(splineMatrix, float4(position, 1));
// Compute world space vertex position
output.Geometry.WorldPosition = mul(float4(position, 1), WorldMatrix).xyz;
// Compute clip space position
output.Position = mul(float4(output.Geometry.WorldPosition, 1), ViewProjectionMatrix);
// Pass vertex attributes
output.Geometry.TexCoord = input.TexCoord;
#if USE_VERTEX_COLOR
output.Geometry.VertexColor = input.Color;
#endif
// Calculate tanget space to world space transformation matrix for unit vectors
float3x3 tangentToLocal = CalcTangentToLocal(input);
float3x3 localToWorld = RemoveScaleFromLocalToWorld((float3x3)WorldMatrix);
float3x3 tangentToWorld = mul(tangentToLocal, localToWorld);
output.Geometry.WorldNormal = tangentToWorld[2];
output.Geometry.WorldTangent.xyz = tangentToWorld[0];
output.Geometry.WorldTangent.w = input.Tangent.w ? -1.0f : +1.0f;
// Get material input params if need to evaluate any material property
#if USE_POSITION_OFFSET || USE_TESSELLATION || USE_CUSTOM_VERTEX_INTERPOLATORS
MaterialInput materialInput = GetGeometryMaterialInput(output.Geometry);
materialInput.TwoSidedSign = WorldDeterminantSign;
materialInput.SvPosition = output.Position;
materialInput.PreSkinnedPosition = input.Position.xyz;
materialInput.PreSkinnedNormal = tangentToLocal[2].xyz;
Material material = GetMaterialVS(materialInput);
#endif
// Apply world position offset per-vertex
#if USE_POSITION_OFFSET
output.Geometry.WorldPosition += material.PositionOffset;
output.Position = mul(float4(output.Geometry.WorldPosition, 1), ViewProjectionMatrix);
#endif
// Get tessalation multiplier (per vertex)
#if USE_TESSELLATION
output.TessellationMultiplier = material.TessellationMultiplier;
#endif
// Copy interpolants for other shader stages
#if USE_CUSTOM_VERTEX_INTERPOLATORS
output.CustomVSToPS = material.CustomVSToPS;
#endif
return output;
}
// Vertex Shader function for Depth Pass
META_VS(true, FEATURE_LEVEL_ES2)
META_VS_IN_ELEMENT(POSITION, 0, R32G32B32_FLOAT, 0, 0, PER_VERTEX, 0, true)
float4 VS_Depth(ModelInput_PosOnly input) : SV_Position
{
float3 worldPosition = mul(float4(input.Position.xyz, 1), WorldMatrix).xyz;
float4 position = mul(float4(worldPosition, 1), ViewProjectionMatrix);
return position;
}
#if USE_DITHERED_LOD_TRANSITION
void ClipLODTransition(PixelInput input)
{
}
#endif
// Pixel Shader function for Depth Pass
META_PS(true, FEATURE_LEVEL_ES2)
void PS_Depth(PixelInput input)
{
#if MATERIAL_MASKED || MATERIAL_BLEND != MATERIAL_BLEND_OPAQUE
// Get material parameters
MaterialInput materialInput = GetMaterialInput(input);
Material material = GetMaterialPS(materialInput);
// Perform per pixel clipping
#if MATERIAL_MASKED
clip(material.Mask - MATERIAL_MASK_THRESHOLD);
#endif
#if MATERIAL_BLEND != MATERIAL_BLEND_OPAQUE
clip(material.Opacity - MATERIAL_OPACITY_THRESHOLD);
#endif
#endif
}
@9

View File

@@ -156,6 +156,7 @@ namespace FlaxEditor.Surface.Archetypes
case MaterialDomain.Surface:
case MaterialDomain.Terrain:
case MaterialDomain.Particle:
case MaterialDomain.Deformable:
{
bool isNotUnlit = info.ShadingModel != MaterialShadingModel.Unlit;
bool isTransparent = info.BlendMode == MaterialBlendMode.Transparent;

View File

@@ -172,6 +172,9 @@ namespace FlaxEditor.Viewport.Previews
usePreviewActor = false;
particleMaterial = _material;
break;
case MaterialDomain.Deformable:
// TODO: preview Deformable material (eg. by using Spline with Spline Model)
break;
default: throw new ArgumentOutOfRangeException();
}
}

View File

@@ -392,12 +392,12 @@ void Material::InitCompilationOptions(ShaderCompilationOptions& options)
auto& info = _shaderHeader.Material.Info;
const bool isSurfaceOrTerrain = info.Domain == MaterialDomain::Surface || info.Domain == MaterialDomain::Terrain;
const bool useCustomData = info.ShadingModel == MaterialShadingModel::Subsurface || info.ShadingModel == MaterialShadingModel::Foliage;
const bool useForward = (info.Domain == MaterialDomain::Surface && info.BlendMode != MaterialBlendMode::Opaque) || info.Domain == MaterialDomain::Particle;
const bool useForward = ((info.Domain == MaterialDomain::Surface || info.Domain == MaterialDomain::Deformable) && info.BlendMode != MaterialBlendMode::Opaque) || info.Domain == MaterialDomain::Particle;
const bool useTess =
info.TessellationMode != TessellationMethod::None &&
RenderTools::CanSupportTessellation(options.Profile) && isSurfaceOrTerrain;
const bool useDistortion =
(info.Domain == MaterialDomain::Surface || info.Domain == MaterialDomain::Particle) &&
(info.Domain == MaterialDomain::Surface || info.Domain == MaterialDomain::Deformable || info.Domain == MaterialDomain::Particle) &&
info.BlendMode != MaterialBlendMode::Opaque &&
(info.UsageFlags & MaterialUsageFlags::UseRefraction) != 0 &&
(info.FeaturesFlags & MaterialFeaturesFlags::DisableDistortion) == 0;
@@ -455,6 +455,7 @@ void Material::InitCompilationOptions(ShaderCompilationOptions& options)
options.Macros.Add({ "IS_DECAL", Numbers[info.Domain == MaterialDomain::Decal ? 1 : 0] });
options.Macros.Add({ "IS_TERRAIN", Numbers[info.Domain == MaterialDomain::Terrain ? 1 : 0] });
options.Macros.Add({ "IS_PARTICLE", Numbers[info.Domain == MaterialDomain::Particle ? 1 : 0] });
options.Macros.Add({ "IS_DEFORMABLE", Numbers[info.Domain == MaterialDomain::Deformable ? 1 : 0] });
options.Macros.Add({ "USE_FORWARD", Numbers[useForward ? 1 : 0] });
options.Macros.Add({ "USE_DEFERRED", Numbers[isSurfaceOrTerrain && info.BlendMode == MaterialBlendMode::Opaque ? 1 : 0] });
options.Macros.Add({ "USE_DISTORTION", Numbers[useDistortion ? 1 : 0] });

View File

@@ -0,0 +1,195 @@
// Copyright (c) 2012-2021 Wojciech Figat. All rights reserved.
#include "DeformableMaterialShader.h"
#include "MaterialShaderFeatures.h"
#include "MaterialParams.h"
#include "Engine/Graphics/RenderBuffers.h"
#include "Engine/Graphics/RenderView.h"
#include "Engine/Renderer/DrawCall.h"
#include "Engine/Renderer/RenderList.h"
#include "Engine/Graphics/GPUContext.h"
#include "Engine/Graphics/Shaders/GPUConstantBuffer.h"
#include "Engine/Graphics/GPUDevice.h"
#include "Engine/Graphics/Shaders/GPUShader.h"
#include "Engine/Graphics/GPULimits.h"
#include "Engine/Engine/Time.h"
#include "Engine/Graphics/RenderTask.h"
PACK_STRUCT(struct DeformableMaterialShaderData {
Matrix ViewProjectionMatrix;
Matrix WorldMatrix;
Matrix LocalMatrix;
Matrix ViewMatrix;
Vector3 ViewPos;
float ViewFar;
Vector3 ViewDir;
float TimeParam;
Vector4 ViewInfo;
Vector4 ScreenSize;
Vector3 WorldInvScale;
float WorldDeterminantSign;
float MeshMinZ;
float Segment;
float ChunksPerSegment;
float PerInstanceRandom;
Vector4 TemporalAAJitter;
Vector3 GeometrySize;
float MeshMaxZ;
});
DrawPass DeformableMaterialShader::GetDrawModes() const
{
return _drawModes;
}
void DeformableMaterialShader::Bind(BindParameters& params)
{
// Prepare
auto context = params.GPUContext;
auto& view = params.RenderContext.View;
auto& drawCall = *params.FirstDrawCall;
byte* cb = _cbData.Get();
auto materialData = reinterpret_cast<DeformableMaterialShaderData*>(cb);
cb += sizeof(DeformableMaterialShaderData);
int32 srv = 1;
// Setup features
if (_info.BlendMode != MaterialBlendMode::Opaque)
ForwardShadingFeature::Bind(params, cb, srv);
// Setup parameters
MaterialParameter::BindMeta bindMeta;
bindMeta.Context = context;
bindMeta.Constants = cb;
bindMeta.Input = nullptr;
bindMeta.Buffers = nullptr;
bindMeta.CanSampleDepth = false;
bindMeta.CanSampleGBuffer = false;
MaterialParams::Bind(params.ParamsLink, bindMeta);
// Setup material constants
{
Matrix::Transpose(view.Frustum.GetMatrix(), materialData->ViewProjectionMatrix);
Matrix::Transpose(drawCall.World, materialData->WorldMatrix);
Matrix::Transpose(drawCall.Deformable.LocalMatrix, materialData->LocalMatrix);
Matrix::Transpose(view.View, materialData->ViewMatrix);
materialData->ViewPos = view.Position;
materialData->ViewFar = view.Far;
materialData->ViewDir = view.Direction;
materialData->TimeParam = Time::Draw.UnscaledTime.GetTotalSeconds();
materialData->ViewInfo = view.ViewInfo;
materialData->ScreenSize = view.ScreenSize;
const float scaleX = Vector3(drawCall.World.M11, drawCall.World.M12, drawCall.World.M13).Length();
const float scaleY = Vector3(drawCall.World.M21, drawCall.World.M22, drawCall.World.M23).Length();
const float scaleZ = Vector3(drawCall.World.M31, drawCall.World.M32, drawCall.World.M33).Length();
materialData->WorldInvScale = Vector3(
scaleX > 0.00001f ? 1.0f / scaleX : 0.0f,
scaleY > 0.00001f ? 1.0f / scaleY : 0.0f,
scaleZ > 0.00001f ? 1.0f / scaleZ : 0.0f);
materialData->WorldDeterminantSign = drawCall.WorldDeterminantSign;
materialData->Segment = drawCall.Deformable.Segment;
materialData->ChunksPerSegment = drawCall.Deformable.ChunksPerSegment;
materialData->MeshMinZ = drawCall.Deformable.MeshMinZ;
materialData->MeshMaxZ = drawCall.Deformable.MeshMaxZ;
materialData->PerInstanceRandom = drawCall.PerInstanceRandom;
materialData->TemporalAAJitter = view.TemporalAAJitter;
materialData->GeometrySize = drawCall.Deformable.GeometrySize;
}
// Bind spline deformation buffer
context->BindSR(0, drawCall.Deformable.SplineDeformation->View());
// Bind constants
if (_cb)
{
context->UpdateCB(_cb, _cbData.Get());
context->BindCB(0, _cb);
}
// Select pipeline state based on current pass and render mode
const bool wireframe = (_info.FeaturesFlags & MaterialFeaturesFlags::Wireframe) != 0 || view.Mode == ViewMode::Wireframe;
CullMode cullMode = view.Pass == DrawPass::Depth ? CullMode::TwoSided : _info.CullMode;
if (cullMode != CullMode::TwoSided && drawCall.WorldDeterminantSign < 0)
{
// Invert culling when scale is negative
if (cullMode == CullMode::Normal)
cullMode = CullMode::Inverted;
else
cullMode = CullMode::Normal;
}
PipelineStateCache* psCache = _cache.GetPS(view.Pass);
ASSERT(psCache);
GPUPipelineState* state = psCache->GetPS(cullMode, wireframe);
// Bind pipeline
context->SetState(state);
}
void DeformableMaterialShader::Unload()
{
// Base
MaterialShader::Unload();
_cache.Release();
}
bool DeformableMaterialShader::Load()
{
_drawModes = DrawPass::Depth;
auto psDesc = GPUPipelineState::Description::Default;
psDesc.DepthTestEnable = (_info.FeaturesFlags & MaterialFeaturesFlags::DisableDepthTest) == 0;
psDesc.DepthWriteEnable = (_info.FeaturesFlags & MaterialFeaturesFlags::DisableDepthWrite) == 0;
// Check if use tessellation (both material and runtime supports it)
const bool useTess = _info.TessellationMode != TessellationMethod::None && GPUDevice::Instance->Limits.HasTessellation;
if (useTess)
{
psDesc.HS = _shader->GetHS("HS");
psDesc.DS = _shader->GetDS("DS");
}
if (_info.BlendMode == MaterialBlendMode::Opaque)
{
_drawModes = DrawPass::GBuffer;
// GBuffer Pass
psDesc.VS = _shader->GetVS("VS_SplineModel");
psDesc.PS = _shader->GetPS("PS_GBuffer");
_cache.Default.Init(psDesc);
}
else
{
_drawModes = DrawPass::Forward;
// Forward Pass
psDesc.VS = _shader->GetVS("VS_SplineModel");
psDesc.PS = _shader->GetPS("PS_Forward");
psDesc.DepthWriteEnable = false;
psDesc.BlendMode = BlendingMode::AlphaBlend;
switch (_info.BlendMode)
{
case MaterialBlendMode::Transparent:
psDesc.BlendMode = BlendingMode::AlphaBlend;
break;
case MaterialBlendMode::Additive:
psDesc.BlendMode = BlendingMode::Additive;
break;
case MaterialBlendMode::Multiply:
psDesc.BlendMode = BlendingMode::Multiply;
break;
}
_cache.Default.Init(psDesc);
}
// Depth Pass
psDesc.CullMode = CullMode::TwoSided;
psDesc.DepthClipEnable = false;
psDesc.DepthWriteEnable = true;
psDesc.DepthTestEnable = true;
psDesc.DepthFunc = ComparisonFunc::Less;
psDesc.HS = nullptr;
psDesc.DS = nullptr;
_cache.Depth.Init(psDesc);
return false;
}

View File

@@ -0,0 +1,63 @@
// Copyright (c) 2012-2021 Wojciech Figat. All rights reserved.
#pragma once
#include "MaterialShader.h"
/// <summary>
/// Represents material that can be used to render objects that can be deformed.
/// </summary>
class DeformableMaterialShader : public MaterialShader
{
private:
struct Cache
{
PipelineStateCache Default;
PipelineStateCache Depth;
FORCE_INLINE PipelineStateCache* GetPS(const DrawPass pass)
{
switch (pass)
{
case DrawPass::Depth:
return &Depth;
case DrawPass::GBuffer:
case DrawPass::Forward:
return &Default;
default:
return nullptr;
}
}
FORCE_INLINE void Release()
{
Default.Release();
Depth.Release();
}
};
private:
Cache _cache;
DrawPass _drawModes = DrawPass::None;
public:
DeformableMaterialShader(const String& name)
: MaterialShader(name)
{
}
public:
// [MaterialShader]
DrawPass GetDrawModes() const override;
void Bind(BindParameters& params) override;
void Unload() override;
protected:
// [MaterialShader]
bool Load() override;
};

View File

@@ -74,6 +74,14 @@ public:
return GetInfo().Domain == MaterialDomain::Particle;
}
/// <summary>
/// Determines whether material is a deformable shader.
/// </summary>
FORCE_INLINE bool IsDeformable() const
{
return GetInfo().Domain == MaterialDomain::Deformable;
}
/// <summary>
/// Returns true if material is ready for rendering.
/// </summary>

View File

@@ -39,6 +39,11 @@ API_ENUM() enum class MaterialDomain : byte
/// The particle shader. Can be used only with particles geometry (sprites, trails and ribbons). Supports reading particle data on a GPU.
/// </summary>
Particle = 5,
/// <summary>
/// The deformable shader. Can be used only with objects that can be deformed (spline models).
/// </summary>
Deformable = 6,
};
/// <summary>

View File

@@ -14,7 +14,7 @@
#include "GUIMaterialShader.h"
#include "TerrainMaterialShader.h"
#include "ParticleMaterialShader.h"
//#include "DeformableMaterialShader.h"
#include "DeformableMaterialShader.h"
GPUPipelineState* MaterialShader::PipelineStateCache::InitPS(CullMode mode, bool wireframe)
{
@@ -62,9 +62,9 @@ MaterialShader* MaterialShader::Create(const String& name, MemoryReadStream& sha
case MaterialDomain::Particle:
material = New<ParticleMaterialShader>(name);
break;
/*case MaterialDomain::Deformable:
material = New<DeformableMaterialShader>(name);
break;*/
case MaterialDomain::Deformable:
material = New<DeformableMaterialShader>(name);
break;
default:
LOG(Fatal, "Unknown material type.");
return nullptr;

View File

@@ -350,7 +350,7 @@ bool Mesh::Intersects(const Ray& ray, const Matrix& world, float& distance, Vect
#endif
}
void Mesh::GetDrawCallGeometry(DrawCall& drawCall)
void Mesh::GetDrawCallGeometry(DrawCall& drawCall) const
{
drawCall.Geometry.IndexBuffer = _indexBuffer;
drawCall.Geometry.VertexBuffers[0] = _vertexBuffers[0];

View File

@@ -377,7 +377,7 @@ public:
/// Gets the draw call geometry for this mesh. Sets the index and vertex buffers.
/// </summary>
/// <param name="drawCall">The draw call.</param>
void GetDrawCallGeometry(DrawCall& drawCall);
void GetDrawCallGeometry(DrawCall& drawCall) const;
/// <summary>
/// Model instance drawing packed data.

View File

@@ -211,6 +211,17 @@ struct DrawCall
} Ribbon;
} Particle;
struct
{
GPUBuffer* SplineDeformation;
Matrix LocalMatrix; // Geometry transformation applied before deformation.
Vector3 GeometrySize; // Object geometry size in the world (unscaled).
float Segment;
float ChunksPerSegment;
float MeshMinZ;
float MeshMaxZ;
} Deformable;
struct
{
byte Raw[96];

View File

@@ -206,6 +206,14 @@ bool MaterialGenerator::Generate(WriteStream& source, MaterialInfo& materialInfo
ADD_FEATURE(DistortionFeature);
ADD_FEATURE(ForwardShadingFeature);
break;
case MaterialDomain::Deformable:
if (materialInfo.TessellationMode != TessellationMethod::None)
ADD_FEATURE(TessellationFeature);
if (materialInfo.BlendMode == MaterialBlendMode::Opaque)
ADD_FEATURE(DeferredShadingFeature);
if (materialInfo.BlendMode != MaterialBlendMode::Opaque)
ADD_FEATURE(ForwardShadingFeature);
break;
default:
break;
}
@@ -228,7 +236,7 @@ bool MaterialGenerator::Generate(WriteStream& source, MaterialInfo& materialInfo
{
materialVarPS = Value(VariantType::Void, baseLayer->GetVariableName(nullptr));
_writer.Write(TEXT("\tMaterial {0} = (Material)0;\n"), materialVarPS.Value);
if (baseLayer->Domain == MaterialDomain::Surface || baseLayer->Domain == MaterialDomain::Terrain || baseLayer->Domain == MaterialDomain::Particle)
if (baseLayer->Domain == MaterialDomain::Surface || baseLayer->Domain == MaterialDomain::Terrain || baseLayer->Domain == MaterialDomain::Particle || baseLayer->Domain == MaterialDomain::Deformable)
{
eatMaterialGraphBox(baseLayer, MaterialGraphBoxes::Emissive);
eatMaterialGraphBox(baseLayer, MaterialGraphBoxes::Normal);
@@ -410,6 +418,9 @@ bool MaterialGenerator::Generate(WriteStream& source, MaterialInfo& materialInfo
case MaterialDomain::Particle:
srv = 2; // Particles data + Sorted indices/Ribbon segments
break;
case MaterialDomain::Deformable:
srv = 1; // Mesh deformation buffer
break;
}
for (auto f : features)
{
@@ -489,6 +500,9 @@ bool MaterialGenerator::Generate(WriteStream& source, MaterialInfo& materialInfo
case MaterialDomain::Particle:
path /= TEXT("Particle.shader");
break;
case MaterialDomain::Deformable:
path /= TEXT("Deformable.shader");
break;
default:
LOG(Warning, "Unknown material domain.");
return true;