Add Double3 impl. cpp
This commit is contained in:
385
Source/Engine/Core/Math/Double3.cpp
Normal file
385
Source/Engine/Core/Math/Double3.cpp
Normal file
@@ -0,0 +1,385 @@
|
||||
// Copyright (c) 2012-2021 Wojciech Figat. All rights reserved.
|
||||
|
||||
#include "Double2.h"
|
||||
#include "Double3.h"
|
||||
#include "Double4.h"
|
||||
#include "Vector2.h"
|
||||
#include "Vector3.h"
|
||||
#include "Vector4.h"
|
||||
#include "Quaternion.h"
|
||||
#include "Matrix.h"
|
||||
#include "Color.h"
|
||||
#include "Int2.h"
|
||||
#include "Int3.h"
|
||||
#include "Int4.h"
|
||||
#include "../Types/String.h"
|
||||
|
||||
static_assert(sizeof(Double3) == 24, "Invalid Double3 type size.");
|
||||
|
||||
const Double3 Double3::Zero(0.0);
|
||||
const Double3 Double3::One(1.0);
|
||||
const Double3 Double3::Half(0.5);
|
||||
const Double3 Double3::UnitX(1.0, 0.0, 0.0);
|
||||
const Double3 Double3::UnitY(0.0, 1.0, 0.0);
|
||||
const Double3 Double3::UnitZ(0.0, 0.0, 1.0);
|
||||
const Double3 Double3::Up(0.0, 1.0, 0.0);
|
||||
const Double3 Double3::Down(0.0, -1.0, 0.0);
|
||||
const Double3 Double3::Left(-1.0, 0.0, 0.0);
|
||||
const Double3 Double3::Right(1.0, 0.0, 0.0);
|
||||
const Double3 Double3::Forward(0.0, 0.0, 1.0);
|
||||
const Double3 Double3::Backward(0.0, 0.0, -1.0);
|
||||
const Double3 Double3::Minimum(MIN_double);
|
||||
const Double3 Double3::Maximum(MAX_double);
|
||||
|
||||
Double3::Double3(const Vector2& xy, double z)
|
||||
: X(xy.X)
|
||||
, Y(xy.Y)
|
||||
, Z(z)
|
||||
{
|
||||
}
|
||||
|
||||
Double3::Double3(const Vector2& xy)
|
||||
: X(xy.X)
|
||||
, Y(xy.Y)
|
||||
, Z(0)
|
||||
{
|
||||
}
|
||||
|
||||
Double3::Double3(const Int2& xy, double z)
|
||||
: X(static_cast<double>(xy.X))
|
||||
, Y(static_cast<double>(xy.Y))
|
||||
, Z(z)
|
||||
{
|
||||
}
|
||||
|
||||
Double3::Double3(const Int3& xyz)
|
||||
: X(static_cast<double>(xyz.X))
|
||||
, Y(static_cast<double>(xyz.Y))
|
||||
, Z(static_cast<double>(xyz.Z))
|
||||
{
|
||||
}
|
||||
|
||||
Double3::Double3(const Int4& xyzw)
|
||||
: X(static_cast<double>(xyzw.X))
|
||||
, Y(static_cast<double>(xyzw.Y))
|
||||
, Z(static_cast<double>(xyzw.Z))
|
||||
{
|
||||
}
|
||||
|
||||
Double3::Double3(const Vector4& xyzw)
|
||||
: X(xyzw.X)
|
||||
, Y(xyzw.Y)
|
||||
, Z(xyzw.Z)
|
||||
{
|
||||
}
|
||||
|
||||
Double3::Double3(const Double2& xy)
|
||||
: X(xy.X)
|
||||
, Y(xy.Y)
|
||||
, Z(0)
|
||||
{
|
||||
}
|
||||
|
||||
Double3::Double3(const Double2& xy, double z)
|
||||
: X(xy.X)
|
||||
, Y(xy.Y)
|
||||
, Z(z)
|
||||
{
|
||||
}
|
||||
|
||||
Double3::Double3(const Double4& xyzw)
|
||||
: X(xyzw.X)
|
||||
, Y(xyzw.Y)
|
||||
, Z(xyzw.Z)
|
||||
{
|
||||
}
|
||||
|
||||
Double3::Double3(const Color& color)
|
||||
: X(color.R)
|
||||
, Y(color.G)
|
||||
, Z(color.B)
|
||||
{
|
||||
}
|
||||
|
||||
String Double3::ToString() const
|
||||
{
|
||||
return String::Format(TEXT("{}"), *this);
|
||||
}
|
||||
|
||||
void Double3::UnwindEuler()
|
||||
{
|
||||
X = Math::UnwindDegrees(X);
|
||||
Y = Math::UnwindDegrees(Y);
|
||||
Z = Math::UnwindDegrees(Z);
|
||||
}
|
||||
|
||||
Double3 Double3::Floor(const Double3& v)
|
||||
{
|
||||
return Double3(
|
||||
Math::Floor(v.X),
|
||||
Math::Floor(v.Y),
|
||||
Math::Floor(v.Z)
|
||||
);
|
||||
}
|
||||
|
||||
Double3 Double3::Frac(const Double3& v)
|
||||
{
|
||||
return Double3(
|
||||
v.X - (int64)v.X,
|
||||
v.Y - (int64)v.Y,
|
||||
v.Z - (int64)v.Z
|
||||
);
|
||||
}
|
||||
|
||||
Double3 Double3::Clamp(const Double3& value, const Double3& min, const Double3& max)
|
||||
{
|
||||
double x = value.X;
|
||||
x = x > max.X ? max.X : x;
|
||||
x = x < min.X ? min.X : x;
|
||||
|
||||
double y = value.Y;
|
||||
y = y > max.Y ? max.Y : y;
|
||||
y = y < min.Y ? min.Y : y;
|
||||
|
||||
double z = value.Z;
|
||||
z = z > max.Z ? max.Z : z;
|
||||
z = z < min.Z ? min.Z : z;
|
||||
|
||||
return Double3(x, y, z);
|
||||
}
|
||||
|
||||
void Double3::Clamp(const Double3& value, const Double3& min, const Double3& max, Double3& result)
|
||||
{
|
||||
double x = value.X;
|
||||
x = x > max.X ? max.X : x;
|
||||
x = x < min.X ? min.X : x;
|
||||
|
||||
double y = value.Y;
|
||||
y = y > max.Y ? max.Y : y;
|
||||
y = y < min.Y ? min.Y : y;
|
||||
|
||||
double z = value.Z;
|
||||
z = z > max.Z ? max.Z : z;
|
||||
z = z < min.Z ? min.Z : z;
|
||||
|
||||
result = Double3(x, y, z);
|
||||
}
|
||||
|
||||
double Double3::Distance(const Double3& value1, const Double3& value2)
|
||||
{
|
||||
const double x = value1.X - value2.X;
|
||||
const double y = value1.Y - value2.Y;
|
||||
const double z = value1.Z - value2.Z;
|
||||
return Math::Sqrt(x * x + y * y + z * z);
|
||||
}
|
||||
|
||||
double Double3::DistanceSquared(const Double3& value1, const Double3& value2)
|
||||
{
|
||||
const double x = value1.X - value2.X;
|
||||
const double y = value1.Y - value2.Y;
|
||||
const double z = value1.Z - value2.Z;
|
||||
return x * x + y * y + z * z;
|
||||
}
|
||||
|
||||
Double3 Double3::Normalize(const Double3& input)
|
||||
{
|
||||
Double3 output = input;
|
||||
const double length = input.Length();
|
||||
if (!Math::IsZero(length))
|
||||
{
|
||||
const double inv = 1.0f / length;
|
||||
output.X *= inv;
|
||||
output.Y *= inv;
|
||||
output.Z *= inv;
|
||||
}
|
||||
return output;
|
||||
}
|
||||
|
||||
void Double3::Normalize(const Double3& input, Double3& result)
|
||||
{
|
||||
result = input;
|
||||
const double length = input.Length();
|
||||
if (!Math::IsZero(length))
|
||||
{
|
||||
const double inv = 1.0f / length;
|
||||
result.X *= inv;
|
||||
result.Y *= inv;
|
||||
result.Z *= inv;
|
||||
}
|
||||
}
|
||||
|
||||
void Double3::Hermite(const Double3& value1, const Double3& tangent1, const Double3& value2, const Double3& tangent2, double amount, Double3& result)
|
||||
{
|
||||
const double squared = amount * amount;
|
||||
const double cubed = amount * squared;
|
||||
const double part1 = 2.0 * cubed - 3.0 * squared + 1.0;
|
||||
const double part2 = -2.0 * cubed + 3.0 * squared;
|
||||
const double part3 = cubed - 2.0 * squared + amount;
|
||||
const double part4 = cubed - squared;
|
||||
|
||||
result.X = value1.X * part1 + value2.X * part2 + tangent1.X * part3 + tangent2.X * part4;
|
||||
result.Y = value1.Y * part1 + value2.Y * part2 + tangent1.Y * part3 + tangent2.Y * part4;
|
||||
result.Z = value1.Z * part1 + value2.Z * part2 + tangent1.Z * part3 + tangent2.Z * part4;
|
||||
}
|
||||
|
||||
void Double3::Reflect(const Double3& vector, const Double3& normal, Double3& result)
|
||||
{
|
||||
const double dot = vector.X * normal.X + vector.Y * normal.Y + vector.Z * normal.Z;
|
||||
result.X = vector.X - 2.0 * dot * normal.X;
|
||||
result.Y = vector.Y - 2.0 * dot * normal.Y;
|
||||
result.Z = vector.Z - 2.0 * dot * normal.Z;
|
||||
}
|
||||
|
||||
void Double3::Transform(const Double3& vector, const Quaternion& rotation, Double3& result)
|
||||
{
|
||||
const double x = rotation.X + rotation.X;
|
||||
const double y = rotation.Y + rotation.Y;
|
||||
const double z = rotation.Z + rotation.Z;
|
||||
const double wx = rotation.W * x;
|
||||
const double wy = rotation.W * y;
|
||||
const double wz = rotation.W * z;
|
||||
const double xx = rotation.X * x;
|
||||
const double xy = rotation.X * y;
|
||||
const double xz = rotation.X * z;
|
||||
const double yy = rotation.Y * y;
|
||||
const double yz = rotation.Y * z;
|
||||
const double zz = rotation.Z * z;
|
||||
|
||||
result = Double3(
|
||||
vector.X * (1.0 - yy - zz) + vector.Y * (xy - wz) + vector.Z * (xz + wy),
|
||||
vector.X * (xy + wz) + vector.Y * (1.0 - xx - zz) + vector.Z * (yz - wx),
|
||||
vector.X * (xz - wy) + vector.Y * (yz + wx) + vector.Z * (1.0 - xx - yy));
|
||||
}
|
||||
|
||||
Double3 Double3::Transform(const Double3& vector, const Quaternion& rotation)
|
||||
{
|
||||
const double x = rotation.X + rotation.X;
|
||||
const double y = rotation.Y + rotation.Y;
|
||||
const double z = rotation.Z + rotation.Z;
|
||||
const double wx = rotation.W * x;
|
||||
const double wy = rotation.W * y;
|
||||
const double wz = rotation.W * z;
|
||||
const double xx = rotation.X * x;
|
||||
const double xy = rotation.X * y;
|
||||
const double xz = rotation.X * z;
|
||||
const double yy = rotation.Y * y;
|
||||
const double yz = rotation.Y * z;
|
||||
const double zz = rotation.Z * z;
|
||||
|
||||
return Double3(
|
||||
vector.X * (1.0 - yy - zz) + vector.Y * (xy - wz) + vector.Z * (xz + wy),
|
||||
vector.X * (xy + wz) + vector.Y * (1.0 - xx - zz) + vector.Z * (yz - wx),
|
||||
vector.X * (xz - wy) + vector.Y * (yz + wx) + vector.Z * (1.0 - xx - yy));
|
||||
}
|
||||
|
||||
void Double3::Transform(const Double3& vector, const Matrix& transform, Double4& result)
|
||||
{
|
||||
result = Double4(
|
||||
vector.X * transform.M11 + vector.Y * transform.M21 + vector.Z * transform.M31 + transform.M41,
|
||||
vector.X * transform.M12 + vector.Y * transform.M22 + vector.Z * transform.M32 + transform.M42,
|
||||
vector.X * transform.M13 + vector.Y * transform.M23 + vector.Z * transform.M33 + transform.M43,
|
||||
vector.X * transform.M14 + vector.Y * transform.M24 + vector.Z * transform.M34 + transform.M44);
|
||||
}
|
||||
|
||||
void Double3::Transform(const Double3& vector, const Matrix& transform, Double3& result)
|
||||
{
|
||||
result = Double3(
|
||||
vector.X * transform.M11 + vector.Y * transform.M21 + vector.Z * transform.M31 + transform.M41,
|
||||
vector.X * transform.M12 + vector.Y * transform.M22 + vector.Z * transform.M32 + transform.M42,
|
||||
vector.X * transform.M13 + vector.Y * transform.M23 + vector.Z * transform.M33 + transform.M43);
|
||||
}
|
||||
|
||||
void Double3::Transform(const Double3* vectors, const Matrix& transform, Double3* results, int32 vectorsCount)
|
||||
{
|
||||
for (int32 i = 0; i < vectorsCount; i++)
|
||||
{
|
||||
Transform(vectors[i], transform, results[i]);
|
||||
}
|
||||
}
|
||||
|
||||
Double3 Double3::Transform(const Double3& vector, const Matrix& transform)
|
||||
{
|
||||
return Double3(
|
||||
vector.X * transform.M11 + vector.Y * transform.M21 + vector.Z * transform.M31 + transform.M41,
|
||||
vector.X * transform.M12 + vector.Y * transform.M22 + vector.Z * transform.M32 + transform.M42,
|
||||
vector.X * transform.M13 + vector.Y * transform.M23 + vector.Z * transform.M33 + transform.M43);
|
||||
}
|
||||
|
||||
void Double3::TransformCoordinate(const Double3& coordinate, const Matrix& transform, Double3& result)
|
||||
{
|
||||
Double4 vector;
|
||||
vector.X = coordinate.X * transform.M11 + coordinate.Y * transform.M21 + coordinate.Z * transform.M31 + transform.M41;
|
||||
vector.Y = coordinate.X * transform.M12 + coordinate.Y * transform.M22 + coordinate.Z * transform.M32 + transform.M42;
|
||||
vector.Z = coordinate.X * transform.M13 + coordinate.Y * transform.M23 + coordinate.Z * transform.M33 + transform.M43;
|
||||
vector.W = 1.0 / (coordinate.X * transform.M14 + coordinate.Y * transform.M24 + coordinate.Z * transform.M34 + transform.M44);
|
||||
result = Double3(vector.X * vector.W, vector.Y * vector.W, vector.Z * vector.W);
|
||||
}
|
||||
|
||||
void Double3::TransformNormal(const Double3& normal, const Matrix& transform, Double3& result)
|
||||
{
|
||||
result = Double3(
|
||||
normal.X * transform.M11 + normal.Y * transform.M21 + normal.Z * transform.M31,
|
||||
normal.X * transform.M12 + normal.Y * transform.M22 + normal.Z * transform.M32,
|
||||
normal.X * transform.M13 + normal.Y * transform.M23 + normal.Z * transform.M33);
|
||||
}
|
||||
|
||||
Double3 Double3::Project(const Double3& vector, const Double3& onNormal)
|
||||
{
|
||||
const double sqrMag = Dot(onNormal, onNormal);
|
||||
if (sqrMag < ZeroTolerance)
|
||||
return Zero;
|
||||
return onNormal * Dot(vector, onNormal) / sqrMag;
|
||||
}
|
||||
|
||||
void Double3::Project(const Double3& vector, double x, double y, double width, double height, double minZ, double maxZ, const Matrix& worldViewProjection, Double3& result)
|
||||
{
|
||||
Double3 v;
|
||||
TransformCoordinate(vector, worldViewProjection, v);
|
||||
|
||||
result = Double3((1.0 + v.X) * 0.5 * width + x, (1.0 - v.Y) * 0.5 * height + y, v.Z * (maxZ - minZ) + minZ);
|
||||
}
|
||||
|
||||
void Double3::Unproject(const Double3& vector, double x, double y, double width, double height, double minZ, double maxZ, const Matrix& worldViewProjection, Double3& result)
|
||||
{
|
||||
Matrix matrix;
|
||||
Matrix::Invert(worldViewProjection, matrix);
|
||||
|
||||
const Double3 v = Double3((vector.X - x) / width * 2.0 - 1.0, -((vector.Y - y) / height * 2.0 - 1.0), (vector.Z - minZ) / (maxZ - minZ));
|
||||
|
||||
TransformCoordinate(v, matrix, result);
|
||||
}
|
||||
|
||||
void Double3::CreateOrthonormalBasis(Double3& xAxis, Double3& yAxis, Double3& zAxis)
|
||||
{
|
||||
xAxis -= (xAxis | zAxis) / (zAxis | zAxis) * zAxis;
|
||||
yAxis -= (yAxis | zAxis) / (zAxis | zAxis) * zAxis;
|
||||
|
||||
if (xAxis.LengthSquared() < ZeroTolerance)
|
||||
xAxis = yAxis ^ zAxis;
|
||||
if (yAxis.LengthSquared() < ZeroTolerance)
|
||||
yAxis = xAxis ^ zAxis;
|
||||
|
||||
xAxis.Normalize();
|
||||
yAxis.Normalize();
|
||||
zAxis.Normalize();
|
||||
}
|
||||
|
||||
void Double3::FindBestAxisVectors(Double3& firstAxis, Double3& secondAxis) const
|
||||
{
|
||||
const double absX = Math::Abs(X);
|
||||
const double absY = Math::Abs(Y);
|
||||
const double absZ = Math::Abs(Z);
|
||||
|
||||
if (absZ > absX && absZ > absY)
|
||||
firstAxis = Double3(1, 0, 0);
|
||||
else
|
||||
firstAxis = Double3(0, 0, 1);
|
||||
|
||||
firstAxis = (firstAxis - *this * (firstAxis | *this)).GetNormalized();
|
||||
secondAxis = firstAxis ^ *this;
|
||||
}
|
||||
|
||||
double Double3::TriangleArea(const Double3& v0, const Double3& v1, const Double3& v2)
|
||||
{
|
||||
return (v2 - v0 ^ v1 - v0).Length() * 0.5;
|
||||
}
|
||||
970
Source/Engine/Core/Math/Double3.h
Normal file
970
Source/Engine/Core/Math/Double3.h
Normal file
@@ -0,0 +1,970 @@
|
||||
// Copyright (c) 2012-2021 Wojciech Figat. All rights reserved.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "Math.h"
|
||||
#include "Mathd.h"
|
||||
#include "Engine/Core/Formatting.h"
|
||||
#include "Engine/Core/Templates.h"
|
||||
|
||||
struct Double2;
|
||||
struct Double4;
|
||||
struct Vector2;
|
||||
struct Vector3;
|
||||
struct Vector4;
|
||||
struct Int2;
|
||||
struct Int3;
|
||||
struct Int4;
|
||||
struct Color;
|
||||
struct Matrix;
|
||||
|
||||
/// <summary>
|
||||
/// Represents a two dimensional mathematical vector.
|
||||
/// </summary>
|
||||
API_STRUCT() struct FLAXENGINE_API Double3
|
||||
{
|
||||
DECLARE_SCRIPTING_TYPE_MINIMAL(Double3);
|
||||
public:
|
||||
|
||||
union
|
||||
{
|
||||
struct
|
||||
{
|
||||
/// <summary>
|
||||
/// The X component of the vector.
|
||||
/// </summary>
|
||||
API_FIELD() double X;
|
||||
|
||||
/// <summary>
|
||||
/// The Y component of the vector.
|
||||
/// </summary>
|
||||
API_FIELD() double Y;
|
||||
|
||||
/// <summary>
|
||||
/// The Z component of the vector.
|
||||
/// </summary>
|
||||
API_FIELD() double Z;
|
||||
};
|
||||
|
||||
// Raw values
|
||||
double Raw[3];
|
||||
};
|
||||
|
||||
public:
|
||||
|
||||
// Vector with all components equal 0
|
||||
static const Double3 Zero;
|
||||
|
||||
// Vector with all components equal 1
|
||||
static const Double3 One;
|
||||
|
||||
// Vector with all components equal half (0.5, 0.5, 0.5)
|
||||
static const Double3 Half;
|
||||
|
||||
// Vector X=1, Y=0, Z=0
|
||||
static const Double3 UnitX;
|
||||
|
||||
// Vector X=0, Y=1, Z=0
|
||||
static const Double3 UnitY;
|
||||
|
||||
// Vector X=0, Y=0, Z=1
|
||||
static const Double3 UnitZ;
|
||||
|
||||
// A unit vector designating up (0, 1, 0)
|
||||
static const Double3 Up;
|
||||
|
||||
// A unit vector designating down (0, -1, 0)
|
||||
static const Double3 Down;
|
||||
|
||||
// A unit vector designating a (-1, 0, 0)
|
||||
static const Double3 Left;
|
||||
|
||||
// A unit vector designating b (1, 0, 0)
|
||||
static const Double3 Right;
|
||||
|
||||
// A unit vector designating forward in a a-handed coordinate system (0, 0, 1)
|
||||
static const Double3 Forward;
|
||||
|
||||
// A unit vector designating backward in a a-handed coordinate system (0, 0, -1)
|
||||
static const Double3 Backward;
|
||||
|
||||
// A minimum Double3
|
||||
static const Double3 Minimum;
|
||||
|
||||
// A maximum Double3
|
||||
static const Double3 Maximum;
|
||||
|
||||
public:
|
||||
|
||||
|
||||
/// <summary>
|
||||
/// Empty constructor.
|
||||
/// </summary>
|
||||
Double3()
|
||||
{
|
||||
}
|
||||
|
||||
// Init
|
||||
// @param xyz Value to assign to the all components
|
||||
Double3(double xyz)
|
||||
: X(xyz)
|
||||
, Y(xyz)
|
||||
, Z(xyz)
|
||||
{
|
||||
}
|
||||
|
||||
// Init
|
||||
// @param x X component value
|
||||
// @param y Y component value
|
||||
// @param z Z component value
|
||||
Double3(double x, double y, double z)
|
||||
: X(x)
|
||||
, Y(y)
|
||||
, Z(z)
|
||||
{
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Init
|
||||
/// </summary>
|
||||
/// <param name="xyz">X, Y and Z components in an array</param>
|
||||
explicit Double3(double xyz[3])
|
||||
: X(xyz[0])
|
||||
, Y(xyz[1])
|
||||
, Z(xyz[2])
|
||||
{
|
||||
}
|
||||
|
||||
// Init
|
||||
// @param xy Vector2 with X and Y components values
|
||||
// @param z Z component value
|
||||
explicit Double3(const Vector2& xy, double z);
|
||||
|
||||
// Init
|
||||
// @param xy Vector2 value
|
||||
explicit Double3(const Vector2& xy);
|
||||
|
||||
// Init
|
||||
// @param xy Int22 with X and Y components values
|
||||
// @param z Z component value
|
||||
explicit Double3(const Int2& xy, double z);
|
||||
|
||||
// Init
|
||||
// @param xyz Int3 value
|
||||
explicit Double3(const Int3& xyz);
|
||||
|
||||
// Init
|
||||
// @param xyzw Int4 value
|
||||
explicit Double3(const Int4& xyzw);
|
||||
|
||||
// Init
|
||||
// @param xyz Vector4 value
|
||||
explicit Double3(const Vector4& xyzw);
|
||||
|
||||
// Init
|
||||
// @param xy Double2 value
|
||||
Double3(const Double2& xy);
|
||||
|
||||
// Init
|
||||
// @param xy Double2 value
|
||||
// @param z Z component value
|
||||
explicit Double3(const Double2& xy, double z);
|
||||
|
||||
|
||||
// Init
|
||||
// @param xyzw Double4 value
|
||||
explicit Double3(const Double4& xyzw);
|
||||
|
||||
// Init
|
||||
// @param color Color value
|
||||
explicit Double3(const Color& color);
|
||||
|
||||
public:
|
||||
|
||||
String ToString() const;
|
||||
|
||||
public:
|
||||
|
||||
// Gets a value indicting whether this instance is normalized
|
||||
bool IsNormalized() const
|
||||
{
|
||||
return Math::IsOne(X * X + Y * Y + Z * Z);
|
||||
}
|
||||
|
||||
// Gets a value indicting whether this vector is zero
|
||||
bool IsZero() const
|
||||
{
|
||||
return Math::IsZero(X) && Math::IsZero(Y) && Math::IsZero(Z);
|
||||
}
|
||||
|
||||
// Gets a value indicting whether any vector component is zero
|
||||
bool IsAnyZero() const
|
||||
{
|
||||
return Math::IsZero(X) || Math::IsZero(Y) || Math::IsZero(Z);
|
||||
}
|
||||
|
||||
// Gets a value indicting whether this vector is one
|
||||
bool IsOne() const
|
||||
{
|
||||
return Math::IsOne(X) && Math::IsOne(Y) && Math::IsOne(Z);
|
||||
}
|
||||
|
||||
// Calculates length of the vector
|
||||
// @returns Length of the vector
|
||||
double Length() const
|
||||
{
|
||||
return Math::Sqrt(X * X + Y * Y + Z * Z);
|
||||
}
|
||||
|
||||
// Calculates the squared length of the vector
|
||||
// @returns The squared length of the vector
|
||||
double LengthSquared() const
|
||||
{
|
||||
return X * X + Y * Y + Z * Z;
|
||||
}
|
||||
|
||||
// Calculates inverted length of the vector (1 / Length())
|
||||
double InvLength() const
|
||||
{
|
||||
return 1.0 / Length();
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Calculates a vector with values being absolute values of that vector
|
||||
/// </summary>
|
||||
/// <returns>Absolute vector</returns>
|
||||
Double3 GetAbsolute() const
|
||||
{
|
||||
return Double3(Math::Abs(X), Math::Abs(Y), Math::Abs(Z));
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Calculates a vector with values being opposite to values of that vector
|
||||
/// </summary>
|
||||
/// <returns>Negative vector</returns>
|
||||
Double3 GetNegative() const
|
||||
{
|
||||
return Double3(-X, -Y, -Z);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Calculates a normalized vector that has length equal to 1.
|
||||
/// </summary>
|
||||
/// <returns>The normalized vector.</returns>
|
||||
Double3 GetNormalized() const
|
||||
{
|
||||
const double rcp = 1.0 / Length();
|
||||
return Double3(X * rcp, Y * rcp, Z * rcp);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Returns average arithmetic of all the components
|
||||
/// </summary>
|
||||
/// <returns>Average arithmetic of all the components</returns>
|
||||
double AverageArithmetic() const
|
||||
{
|
||||
return (X + Y + Z) * 0.333333334;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Gets sum of all vector components values
|
||||
/// </summary>
|
||||
/// <returns>Sum of X,Y and Z</returns>
|
||||
double SumValues() const
|
||||
{
|
||||
return X + Y + Z;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Returns minimum value of all the components
|
||||
/// </summary>
|
||||
/// <returns>Minimum value</returns>
|
||||
double MinValue() const
|
||||
{
|
||||
return Math::Min(X, Y, Z);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Returns maximum value of all the components
|
||||
/// </summary>
|
||||
/// <returns>Maximum value</returns>
|
||||
double MaxValue() const
|
||||
{
|
||||
return Math::Max(X, Y, Z);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Returns true if vector has one or more components is not a number (NaN)
|
||||
/// </summary>
|
||||
/// <returns>True if one or more components is not a number (NaN)</returns>
|
||||
bool IsNaN() const
|
||||
{
|
||||
return isnan(X) || isnan(Y) || isnan(Z);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Returns true if vector has one or more components equal to +/- infinity
|
||||
/// </summary>
|
||||
/// <returns>True if one or more components equal to +/- infinity</returns>
|
||||
bool IsInfinity() const
|
||||
{
|
||||
return isinf(X) || isinf(Y) || isinf(Z);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Returns true if vector has one or more components equal to +/- infinity or NaN
|
||||
/// </summary>
|
||||
/// <returns>True if one or more components equal to +/- infinity or NaN</returns>
|
||||
bool IsNanOrInfinity() const
|
||||
{
|
||||
return IsInfinity() || IsNaN();
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
/// <summary>
|
||||
/// Performs vector normalization (scales vector up to unit length)
|
||||
/// </summary>
|
||||
void Normalize()
|
||||
{
|
||||
const double length = Length();
|
||||
if (!Math::IsZero(length))
|
||||
{
|
||||
const double inv = 1.0f / length;
|
||||
X *= inv;
|
||||
Y *= inv;
|
||||
Z *= inv;
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Performs fast vector normalization (scales vector up to unit length)
|
||||
/// </summary>
|
||||
void NormalizeFast()
|
||||
{
|
||||
const double inv = 1.0f / Length();
|
||||
X *= inv;
|
||||
Y *= inv;
|
||||
Z *= inv;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Sets all vector components to the absolute values
|
||||
/// </summary>
|
||||
void Absolute()
|
||||
{
|
||||
X = Math::Abs(X);
|
||||
Y = Math::Abs(Y);
|
||||
Z = Math::Abs(Z);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Negates all components of that vector
|
||||
/// </summary>
|
||||
void Negate()
|
||||
{
|
||||
X = -X;
|
||||
Y = -Y;
|
||||
Z = -Z;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// When this vector contains Euler angles (degrees), ensure that angles are between +/-180
|
||||
/// </summary>
|
||||
void UnwindEuler();
|
||||
|
||||
public:
|
||||
|
||||
// Arithmetic operators with Double3
|
||||
Double3 operator+(const Double3& b) const
|
||||
{
|
||||
return Add(*this, b);
|
||||
}
|
||||
|
||||
Double3 operator-(const Double3& b) const
|
||||
{
|
||||
return Subtract(*this, b);
|
||||
}
|
||||
|
||||
Double3 operator*(const Double3& b) const
|
||||
{
|
||||
return Multiply(*this, b);
|
||||
}
|
||||
|
||||
Double3 operator/(const Double3& b) const
|
||||
{
|
||||
return Divide(*this, b);
|
||||
}
|
||||
|
||||
Double3 operator-() const
|
||||
{
|
||||
return Double3(-X, -Y, -Z);
|
||||
}
|
||||
|
||||
Double3 operator^(const Double3& b) const
|
||||
{
|
||||
return Cross(*this, b);
|
||||
}
|
||||
|
||||
double operator|(const Double3& b) const
|
||||
{
|
||||
return Dot(*this, b);
|
||||
}
|
||||
|
||||
// op= operators with Vector3
|
||||
Double3& operator+=(const Double3& b)
|
||||
{
|
||||
*this = Add(*this, b);
|
||||
return *this;
|
||||
}
|
||||
|
||||
Double3& operator-=(const Double3& b)
|
||||
{
|
||||
*this = Subtract(*this, b);
|
||||
return *this;
|
||||
}
|
||||
|
||||
Double3& operator*=(const Double3& b)
|
||||
{
|
||||
*this = Multiply(*this, b);
|
||||
return *this;
|
||||
}
|
||||
|
||||
Double3& operator/=(const Double3& b)
|
||||
{
|
||||
*this = Divide(*this, b);
|
||||
return *this;
|
||||
}
|
||||
|
||||
// Arithmetic operators with double
|
||||
Double3 operator+(double b) const
|
||||
{
|
||||
return Add(*this, b);
|
||||
}
|
||||
|
||||
Double3 operator-(double b) const
|
||||
{
|
||||
return Subtract(*this, b);
|
||||
}
|
||||
|
||||
Double3 operator*(double b) const
|
||||
{
|
||||
return Multiply(*this, b);
|
||||
}
|
||||
|
||||
Double3 operator/(double b) const
|
||||
{
|
||||
return Divide(*this, b);
|
||||
}
|
||||
|
||||
// op= operators with double
|
||||
Double3& operator+=(double b)
|
||||
{
|
||||
*this = Add(*this, b);
|
||||
return *this;
|
||||
}
|
||||
|
||||
Double3& operator-=(double b)
|
||||
{
|
||||
*this = Subtract(*this, b);
|
||||
return *this;
|
||||
}
|
||||
|
||||
Double3& operator*=(double b)
|
||||
{
|
||||
*this = Multiply(*this, b);
|
||||
return *this;
|
||||
}
|
||||
|
||||
Double3& operator/=(double b)
|
||||
{
|
||||
*this = Divide(*this, b);
|
||||
return *this;
|
||||
}
|
||||
|
||||
// Comparison operators
|
||||
bool operator==(const Double3& b) const
|
||||
{
|
||||
return X == b.X && Y == b.Y && Z == b.Z;
|
||||
}
|
||||
|
||||
bool operator!=(const Double3& b) const
|
||||
{
|
||||
return X != b.X || Y != b.Y || Z != b.Z;
|
||||
}
|
||||
|
||||
bool operator>(const Double3& b) const
|
||||
{
|
||||
return X > b.X && Y > b.Y && Z > b.Z;
|
||||
}
|
||||
|
||||
bool operator>=(const Double3& b) const
|
||||
{
|
||||
return X >= b.X && Y >= b.Y && Z >= b.Z;
|
||||
}
|
||||
|
||||
bool operator<(const Double3& b) const
|
||||
{
|
||||
return X < b.X && Y < b.Y && Z < b.Z;
|
||||
}
|
||||
|
||||
bool operator<=(const Double3& b) const
|
||||
{
|
||||
return X <= b.X && Y <= b.Y && Z <= b.Z;
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
static bool NearEqual(const Double3& a, const Double3& b)
|
||||
{
|
||||
return Math::NearEqual(a.X, b.X) && Math::NearEqual(a.Y, b.Y) && Math::NearEqual(a.Z, b.Z);
|
||||
}
|
||||
|
||||
static bool NearEqual(const Double3& a, const Double3& b, double epsilon)
|
||||
{
|
||||
return Math::NearEqual(a.X, b.X, epsilon) && Math::NearEqual(a.Y, b.Y, epsilon) && Math::NearEqual(a.Z, b.Z, epsilon);
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
static void Add(const Double3& a, const Double3& b, Double3& result)
|
||||
{
|
||||
result.X = a.X + b.X;
|
||||
result.Y = a.Y + b.Y;
|
||||
result.Z = a.Z + b.Z;
|
||||
}
|
||||
|
||||
static Double3 Add(const Double3& a, const Double3& b)
|
||||
{
|
||||
Double3 result;
|
||||
Add(a, b, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
static void Subtract(const Double3& a, const Double3& b, Double3& result)
|
||||
{
|
||||
result.X = a.X - b.X;
|
||||
result.Y = a.Y - b.Y;
|
||||
result.Z = a.Z - b.Z;
|
||||
}
|
||||
|
||||
static Double3 Subtract(const Double3& a, const Double3& b)
|
||||
{
|
||||
Double3 result;
|
||||
Subtract(a, b, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
static Double3 Multiply(const Double3& a, const Double3& b)
|
||||
{
|
||||
return Double3(a.X * b.X, a.Y * b.Y, a.Z * b.Z);
|
||||
}
|
||||
|
||||
static void Multiply(const Double3& a, const Double3& b, Double3& result)
|
||||
{
|
||||
result = Double3(a.X * b.X, a.Y * b.Y, a.Z * b.Z);
|
||||
}
|
||||
|
||||
static Double3 Multiply(const Double3& a, double b)
|
||||
{
|
||||
return Double3(a.X * b, a.Y * b, a.Z * b);
|
||||
}
|
||||
|
||||
static Double3 Divide(const Double3& a, const Double3& b)
|
||||
{
|
||||
return Double3(a.X / b.X, a.Y / b.Y, a.Z / b.Z);
|
||||
}
|
||||
|
||||
static void Divide(const Double3& a, const Double3& b, Double3& result)
|
||||
{
|
||||
result = Double3(a.X / b.X, a.Y / b.Y, a.Z / b.Z);
|
||||
}
|
||||
|
||||
static Double3 Divide(const Double3& a, double b)
|
||||
{
|
||||
return Double3(a.X / b, a.Y / b, a.Z / b);
|
||||
}
|
||||
|
||||
static Double3 Floor(const Double3& v);
|
||||
static Double3 Frac(const Double3& v);
|
||||
|
||||
static double ScalarProduct(const Double3& a, const Double3& b)
|
||||
{
|
||||
return a.X * b.X + a.Y * b.Y + a.Z * b.Z;
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
// Restricts a value to be within a specified range
|
||||
// @param value The value to clamp
|
||||
// @param min The minimum value,
|
||||
// @param max The maximum value
|
||||
// @returns Clamped value
|
||||
static Double3 Clamp(const Double3& value, const Double3& min, const Double3& max);
|
||||
|
||||
// Restricts a value to be within a specified range
|
||||
// @param value The value to clamp
|
||||
// @param min The minimum value,
|
||||
// @param max The maximum value
|
||||
// @param result When the method completes, contains the clamped value
|
||||
static void Clamp(const Double3& value, const Double3& min, const Double3& max, Double3& result);
|
||||
|
||||
// Calculates the distance between two vectors
|
||||
// @param value1 The first vector
|
||||
// @param value2 The second vector
|
||||
// @returns The distance between the two vectors
|
||||
static double Distance(const Double3& value1, const Double3& value2);
|
||||
|
||||
// Calculates the squared distance between two vectors
|
||||
// @param value1 The first vector
|
||||
// @param value2 The second vector
|
||||
// @returns The squared distance between the two vectors
|
||||
static double DistanceSquared(const Double3& value1, const Double3& value2);
|
||||
|
||||
// Performs vector normalization (scales vector up to unit length)
|
||||
// @param inout Input vector to normalize
|
||||
// @returns Output vector that is normalized (has unit length)
|
||||
static Double3 Normalize(const Double3& input);
|
||||
|
||||
// Performs vector normalization (scales vector up to unit length). This is a faster version that does not performs check for length equal 0 (it assumes that input vector is not empty).
|
||||
// @param inout Input vector to normalize (cannot be zero).
|
||||
// @returns Output vector that is normalized (has unit length)
|
||||
static Double3 NormalizeFast(const Double3& input)
|
||||
{
|
||||
const double inv = 1.0 / input.Length();
|
||||
return Double3(input.X * inv, input.Y * inv, input.Z * inv);
|
||||
}
|
||||
|
||||
// Performs vector normalization (scales vector up to unit length)
|
||||
// @param inout Input vector to normalize
|
||||
// @param output Output vector that is normalized (has unit length)
|
||||
static void Normalize(const Double3& input, Double3& result);
|
||||
|
||||
// dot product with another vector
|
||||
static double Dot(const Double3& a, const Double3& b)
|
||||
{
|
||||
return a.X * b.X + a.Y * b.Y + a.Z * b.Z;
|
||||
}
|
||||
|
||||
// Calculates the cross product of two vectors
|
||||
// @param a First source vector
|
||||
// @param b Second source vector
|
||||
// @param result When the method completes, contains the cross product of the two vectors
|
||||
static void Cross(const Double3& a, const Double3& b, Double3& result)
|
||||
{
|
||||
result = Double3(
|
||||
a.Y * b.Z - a.Z * b.Y,
|
||||
a.Z * b.X - a.X * b.Z,
|
||||
a.X * b.Y - a.Y * b.X);
|
||||
}
|
||||
|
||||
// Calculates the cross product of two vectors
|
||||
// @param a First source vector
|
||||
// @param b Second source vector
|
||||
// @returns Cross product of the two vectors
|
||||
static Double3 Cross(const Double3& a, const Double3& b)
|
||||
{
|
||||
return Double3(
|
||||
a.Y * b.Z - a.Z * b.Y,
|
||||
a.Z * b.X - a.X * b.Z,
|
||||
a.X * b.Y - a.Y * b.X);
|
||||
}
|
||||
|
||||
// Performs a linear interpolation between two vectors
|
||||
// @param start Start vector
|
||||
// @param end End vector
|
||||
// @param amount Value between 0 and 1 indicating the weight of end
|
||||
// @param result When the method completes, contains the linear interpolation of the two vectors
|
||||
static void Lerp(const Double3& start, const Double3& end, double amount, Double3& result)
|
||||
{
|
||||
result.X = Math::Lerp(start.X, end.X, amount);
|
||||
result.Y = Math::Lerp(start.Y, end.Y, amount);
|
||||
result.Z = Math::Lerp(start.Z, end.Z, amount);
|
||||
}
|
||||
|
||||
// <summary>
|
||||
// Performs a linear interpolation between two vectors.
|
||||
// </summary>
|
||||
// @param start Start vector,
|
||||
// @param end End vector,
|
||||
// @param amount Value between 0 and 1 indicating the weight of @paramref end"/>,
|
||||
// @returns The linear interpolation of the two vectors
|
||||
static Double3 Lerp(const Double3& start, const Double3& end, double amount)
|
||||
{
|
||||
Double3 result;
|
||||
Lerp(start, end, amount, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
// Performs a cubic interpolation between two vectors
|
||||
// @param start Start vector
|
||||
// @param end End vector
|
||||
// @param amount Value between 0 and 1 indicating the weight of end
|
||||
// @param result When the method completes, contains the cubic interpolation of the two vectors
|
||||
static void SmoothStep(const Double3& start, const Double3& end, double amount, Double3& result)
|
||||
{
|
||||
amount = Math::SmoothStep(amount);
|
||||
Lerp(start, end, amount, result);
|
||||
}
|
||||
|
||||
// Performs a Hermite spline interpolation.
|
||||
// @param value1 First source position vector
|
||||
// @param tangent1 First source tangent vector
|
||||
// @param value2 Second source position vector
|
||||
// @param tangent2 Second source tangent vector
|
||||
// @param amount Weighting factor,
|
||||
// @param result When the method completes, contains the result of the Hermite spline interpolation,
|
||||
static void Hermite(const Double3& value1, const Double3& tangent1, const Double3& value2, const Double3& tangent2, double amount, Double3& result);
|
||||
|
||||
// Returns the reflection of a vector off a surface that has the specified normal
|
||||
// @param vector The source vector
|
||||
// @param normal Normal of the surface
|
||||
// @param result When the method completes, contains the reflected vector
|
||||
static void Reflect(const Double3& vector, const Double3& normal, Double3& result);
|
||||
|
||||
// Transforms a 3D vector by the given Quaternion rotation
|
||||
// @param vector The vector to rotate
|
||||
// @param rotation The Quaternion rotation to apply
|
||||
// @param result When the method completes, contains the transformed Vector4
|
||||
static void Transform(const Double3& vector, const Quaternion& rotation, Double3& result);
|
||||
|
||||
// Transforms a 3D vector by the given Quaternion rotation
|
||||
// @param vector The vector to rotate
|
||||
// @param rotation The Quaternion rotation to apply
|
||||
// @returns The transformed Double3
|
||||
static Double3 Transform(const Double3& vector, const Quaternion& rotation);
|
||||
|
||||
// Transforms a 3D vector by the given matrix
|
||||
// @param vector The source vector
|
||||
// @param transform The transformation matrix
|
||||
// @param result When the method completes, contains the transformed Double3
|
||||
static void Transform(const Double3& vector, const Matrix& transform, Double3& result);
|
||||
|
||||
// Transforms a 3D vectors by the given matrix
|
||||
// @param vectors The source vectors
|
||||
// @param transform The transformation matrix
|
||||
// @param results When the method completes, contains the transformed Vector3s
|
||||
// @param vectorsCount Amount of vectors to transform
|
||||
static void Transform(const Double3* vectors, const Matrix& transform, Double3* results, int32 vectorsCount);
|
||||
|
||||
// Transforms a 3D vector by the given matrix
|
||||
// @param vector The source vector
|
||||
// @param transform The transformation matrix
|
||||
// @returns Transformed Double3
|
||||
static Double3 Transform(const Double3& vector, const Matrix& transform);
|
||||
|
||||
// Transforms a 3D vector by the given matrix
|
||||
// @param vector The source vector
|
||||
// @param transform The transformation matrix
|
||||
// @param result When the method completes, contains the transformed Double4
|
||||
static void Transform(const Double3& vector, const Matrix& transform, Double4& result);
|
||||
|
||||
// Performs a coordinate transformation using the given matrix
|
||||
// @param coordinate The coordinate vector to transform
|
||||
// @param transform The transformation matrix
|
||||
// @param result When the method completes, contains the transformed coordinates
|
||||
static void TransformCoordinate(const Double3& coordinate, const Matrix& transform, Double3& result);
|
||||
|
||||
// Performs a normal transformation using the given matrix
|
||||
// @param normal The normal vector to transform
|
||||
// @param transform The transformation matrix
|
||||
// @param result When the method completes, contains the transformed normal
|
||||
static void TransformNormal(const Double3& normal, const Matrix& transform, Double3& result);
|
||||
|
||||
// Returns a vector containing the largest components of the specified vectors
|
||||
// @param a The first source vector
|
||||
// @param b The second source vector
|
||||
// @param result When the method completes, contains an new vector composed of the largest components of the source vectors
|
||||
static Double3 Max(const Double3& a, const Double3& b)
|
||||
{
|
||||
return Double3(a.X > b.X ? a.X : b.X, a.Y > b.Y ? a.Y : b.Y, a.Z > b.Z ? a.Z : b.Z);
|
||||
}
|
||||
|
||||
// Returns a vector containing the smallest components of the specified vectors
|
||||
// @param a The first source vector
|
||||
// @param b The second source vector
|
||||
// @param result When the method completes, contains an new vector composed of the smallest components of the source vectors
|
||||
static Double3 Min(const Double3& a, const Double3& b)
|
||||
{
|
||||
return Double3(a.X < b.X ? a.X : b.X, a.Y < b.Y ? a.Y : b.Y, a.Z < b.Z ? a.Z : b.Z);
|
||||
}
|
||||
|
||||
// Returns a vector containing the largest components of the specified vectors
|
||||
// @param a The first source vector
|
||||
// @param b The second source vector
|
||||
// @param result When the method completes, contains an new vector composed of the largest components of the source vectors
|
||||
static void Max(const Double3& a, const Double3& b, Double3& result)
|
||||
{
|
||||
result = Double3(a.X > b.X ? a.X : b.X, a.Y > b.Y ? a.Y : b.Y, a.Z > b.Z ? a.Z : b.Z);
|
||||
}
|
||||
|
||||
// Returns a vector containing the smallest components of the specified vectors
|
||||
// @param a The first source vector
|
||||
// @param b The second source vector
|
||||
// @param result When the method completes, contains an new vector composed of the smallest components of the source vectors
|
||||
static void Min(const Double3& a, const Double3& b, Double3& result)
|
||||
{
|
||||
result = Double3(a.X < b.X ? a.X : b.X, a.Y < b.Y ? a.Y : b.Y, a.Z < b.Z ? a.Z : b.Z);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Projects a vector onto another vector.
|
||||
/// </summary>
|
||||
/// <param name="vector">The vector to project.</param>
|
||||
/// <param name="onNormal">The projection normal vector.</param>
|
||||
/// <returns>The projected vector.</returns>
|
||||
static Double3 Project(const Double3& vector, const Double3& onNormal);
|
||||
|
||||
/// <summary>
|
||||
/// Projects a vector onto a plane defined by a normal orthogonal to the plane.
|
||||
/// </summary>
|
||||
/// <param name="vector">The vector to project.</param>
|
||||
/// <param name="planeNormal">The plane normal vector.</param>
|
||||
/// <returns>The projected vector.</returns>
|
||||
static Double3 ProjectOnPlane(const Double3& vector, const Double3& planeNormal)
|
||||
{
|
||||
return vector - Project(vector, planeNormal);
|
||||
}
|
||||
|
||||
// Projects a 3D vector from object space into screen space
|
||||
// @param vector The vector to project
|
||||
// @param x The X position of the viewport
|
||||
// @param y The Y position of the viewport
|
||||
// @param width The width of the viewport
|
||||
// @param height The height of the viewport
|
||||
// @param minZ The minimum depth of the viewport
|
||||
// @param maxZ The maximum depth of the viewport
|
||||
// @param worldViewProjection The combined world-view-projection matrix
|
||||
// @param result When the method completes, contains the vector in screen space
|
||||
static void Project(const Double3& vector, double x, double y, double width, double height, double minZ, double maxZ, const Matrix& worldViewProjection, Double3& result);
|
||||
|
||||
// Projects a 3D vector from object space into screen space
|
||||
// @param vector The vector to project
|
||||
// @param x The X position of the viewport
|
||||
// @param y The Y position of the viewport
|
||||
// @param width The width of the viewport
|
||||
// @param height The height of the viewport
|
||||
// @param minZ The minimum depth of the viewport
|
||||
// @param maxZ The maximum depth of the viewport
|
||||
// @param worldViewProjection The combined world-view-projection matrix
|
||||
// @returns The vector in screen space
|
||||
static Double3 Project(const Double3& vector, double x, double y, double width, double height, double minZ, double maxZ, const Matrix& worldViewProjection)
|
||||
{
|
||||
Double3 result;
|
||||
Project(vector, x, y, width, height, minZ, maxZ, worldViewProjection, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
// Projects a 3D vector from screen space into object space
|
||||
// @param vector The vector to project
|
||||
// @param x The X position of the viewport
|
||||
// @param y The Y position of the viewport
|
||||
// @param width The width of the viewport
|
||||
// @param height The height of the viewport
|
||||
// @param minZ The minimum depth of the viewport
|
||||
// @param maxZ The maximum depth of the viewport
|
||||
// @param worldViewProjection The combined world-view-projection matrix
|
||||
// @param result When the method completes, contains the vector in object space
|
||||
static void Unproject(const Double3& vector, double x, double y, double width, double height, double minZ, double maxZ, const Matrix& worldViewProjection, Double3& result);
|
||||
|
||||
// Projects a 3D vector from screen space into object space
|
||||
// @param vector The vector to project
|
||||
// @param x The X position of the viewport
|
||||
// @param y The Y position of the viewport
|
||||
// @param width The width of the viewport
|
||||
// @param height The height of the viewport
|
||||
// @param minZ The minimum depth of the viewport
|
||||
// @param maxZ The maximum depth of the viewport
|
||||
// @param worldViewProjection The combined world-view-projection matrix
|
||||
// @returns The vector in object space
|
||||
static Double3 Unproject(const Double3& vector, double x, double y, double width, double height, double minZ, double maxZ, const Matrix& worldViewProjection)
|
||||
{
|
||||
Double3 result;
|
||||
Unproject(vector, x, y, width, height, minZ, maxZ, worldViewProjection, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Creates an orthonormal basis from a basis with at least two orthogonal vectors.
|
||||
/// </summary>
|
||||
/// <param name="xAxis">The X axis.</param>
|
||||
/// <param name="yAxis">The y axis.</param>
|
||||
/// <param name="zAxis">The z axis.</param>
|
||||
static void CreateOrthonormalBasis(Double3& xAxis, Double3& yAxis, Double3& zAxis);
|
||||
|
||||
/// <summary>
|
||||
/// Finds the best arbitrary axis vectors to represent U and V axes of a plane, by using this vector as the normal of the plane.
|
||||
/// </summary>
|
||||
/// <param name="firstAxis">The reference to first axis.</param>
|
||||
/// <param name="secondAxis">The reference to second axis.</param>
|
||||
void FindBestAxisVectors(Double3& firstAxis, Double3& secondAxis) const;
|
||||
|
||||
static Double3 Round(const Double3& v)
|
||||
{
|
||||
return Double3(
|
||||
Math::Round(v.X),
|
||||
Math::Round(v.Y),
|
||||
Math::Round(v.Z)
|
||||
);
|
||||
}
|
||||
|
||||
static Double3 Ceil(const Double3& v)
|
||||
{
|
||||
return Double3(
|
||||
Math::Ceil(v.X),
|
||||
Math::Ceil(v.Y),
|
||||
Math::Ceil(v.Z)
|
||||
);
|
||||
}
|
||||
|
||||
static Double3 Abs(const Double3& v)
|
||||
{
|
||||
return Double3(Math::Abs(v.X), Math::Abs(v.Y), Math::Abs(v.Z));
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Calculates the area of the triangle.
|
||||
/// </summary>
|
||||
/// <param name="v0">The first triangle vertex.</param>
|
||||
/// <param name="v1">The second triangle vertex.</param>
|
||||
/// <param name="v2">The third triangle vertex.</param>
|
||||
/// <returns>The triangle area.</returns>
|
||||
static double TriangleArea(const Double3& v0, const Double3& v1, const Double3& v2);
|
||||
|
||||
};
|
||||
|
||||
inline Double3 operator+(double a, const Double3& b)
|
||||
{
|
||||
return b + a;
|
||||
}
|
||||
|
||||
inline Double3 operator-(double a, const Double3& b)
|
||||
{
|
||||
return Double3(a) - b;
|
||||
}
|
||||
|
||||
inline Double3 operator*(double a, const Double3& b)
|
||||
{
|
||||
return b * a;
|
||||
}
|
||||
|
||||
inline Double3 operator/(double a, const Double3& b)
|
||||
{
|
||||
return Double3(a) / b;
|
||||
}
|
||||
|
||||
namespace Math
|
||||
{
|
||||
FORCE_INLINE static bool NearEqual(const Double3& a, const Double3& b)
|
||||
{
|
||||
return Double3::NearEqual(a, b);
|
||||
}
|
||||
}
|
||||
|
||||
template<>
|
||||
struct TIsPODType<Double3>
|
||||
{
|
||||
enum { Value = true };
|
||||
};
|
||||
|
||||
DEFINE_DEFAULT_FORMATTING(Double3, "X:{0} Y:{1} Z:{2}", v.X, v.Y, v.Z);
|
||||
Reference in New Issue
Block a user